Enhancing the Photovoltaic Properties via Incorporation of Selenophene Units in Organic Chromophores with A2-π2-A1-π1-A2 Configuration: A DFT-Based Exploration
Abstract
:1. Introduction
2. Computational Procedure
3. Results and Discussion
3.1. Frontier Molecular Orbital (FMO) Analysis
3.2. Optical Properties
3.3. Global Reactivity Parameters (GRPs) Investigations
3.4. The Density of State (DOS) Analysis
3.5. Transition Density Matrix (TDM) Study
3.6. Dipole Moment (µtot) Analysis
3.7. The Open-Circuit Voltage (Voc) Investigations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, P.; Li, G.; Zhan, X.; Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics 2018, 12, 131–142. [Google Scholar] [CrossRef]
- Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A.K.-Y.; Marder, S.R.; Zhan, X. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 18003. [Google Scholar] [CrossRef]
- Ans, M.; Iqbal, J.; Ayub, K.; Ali, E.; Eliasson, B. Spirobifluorene based small molecules as an alternative to traditional fullerene acceptors for organic solar cells. Mater. Sci. Semicond. Process. 2019, 94, 97–106. [Google Scholar] [CrossRef]
- Zhu, J.; Xiao, Y.; Wang, J.; Liu, K.; Jiang, H.; Lin, Y.; Lu, X.; Zhan, X. Alkoxy-induced near-infrared sensitive electron acceptor for high-performance organic solar cells. Chem. Mater. 2018, 30, 4150–4156. [Google Scholar] [CrossRef]
- Aldrich, T.J.; Matta, M.; Zhu, W.; Swick, S.M.; Stern, C.L.; Schatz, G.C.; Facchetti, A.; Melkonyan, F.S.; Marks, T.J. Fluorination effects on indacenodithienothiophene acceptor packing and electronic structure, end-group redistribution, and solar cell photovoltaic response. J. Am. Chem. Soc. 2019, 141, 3274–3287. [Google Scholar] [CrossRef]
- Qi, Q.; Guo, X.; Zhu, B.; Deng, P.; Zhan, H.; Yang, J. Side-chain optimization of perylene diimide-thiophene random terpolymer acceptors for enhancing the photovoltaic efficiency of all-polymer solar cells. Org. Electron. 2020, 78, 105616. [Google Scholar] [CrossRef]
- Wang, H.; Li, M.; Liu, Y.; Song, J.; Li, C.; Bo, Z. Perylene diimide based star-shaped small molecular acceptors for high efficiency organic solar cells. J. Mater. Chem. C 2019, 7, 819–825. [Google Scholar] [CrossRef]
- Meng, D.; Sun, D.; Zhong, C.; Liu, T.; Fan, B.; Huo, L.; Li, Y.; Jiang, W.; Choi, H.; Kim, T. High-performance solution-processed non-fullerene organic solar cells based on selenophene-containing perylene bisimide acceptor. J. Am. Chem. Soc. 2016, 138, 375–380. [Google Scholar] [CrossRef]
- Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.F.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, M.; Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef]
- Grätzel, M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 2004, 164, 3–14. [Google Scholar] [CrossRef]
- Mishra, A.; Fischer, M.K.; Bäuerle, P. Metal-free organic dyes for dye-sensitized solar cells: From structure: Property relationships to design rules. Angew. Chem. Int. Ed. 2009, 48, 2474–2499. [Google Scholar] [CrossRef]
- Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 2009, 109, 5868–5923. [Google Scholar] [CrossRef]
- Lin, Y.; Li, Y.; Zhan, X. Small molecule semiconductors for high-efficiency organic photovoltaics. Chem. Soc. Rev. 2012, 41, 4245–4272. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Chen, Z.; Lu, G.; Yu, N.; Li, C.; Gao, J.; Gu, X.; Hao, X.; Lu, G.; Tang, Z. Binary organic solar cells breaking 19% via manipulating the vertical component distribution. Adv. Mater. 2022, 34, 2204718. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, M.R. Fullerenes as photosensitizers in photodynamic therapy: Pros and cons. Photochem. Photobiol. Sci. 2018, 17, 1515–1533. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 2016, 1, 15027. [Google Scholar] [CrossRef]
- Ran, N.A.; Love, J.A.; Takacs, C.J.; Sadhanala, A.; Beavers, J.K.; Collins, S.D.; Huang, Y.; Wang, M.; Friend, R.H.; Bazan, G.C. Harvesting the full potential of photons with organic solar cells. Adv. Mater. 2016, 28, 1482–1488. [Google Scholar] [CrossRef]
- Liu, J.; Chen, S.; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.; Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 2016, 1, 16089. [Google Scholar] [CrossRef]
- Li, Y. Molecular design of photovoltaic materials for polymer solar cells: Toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 2012, 45, 723–733. [Google Scholar] [CrossRef]
- Chen, J.; Cao, Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc. Chem. Res. 2009, 42, 1709–1718. [Google Scholar] [CrossRef] [PubMed]
- Wielopolski, M.; Kim, J.-H.; Jung, Y.-S.; Yu, Y.-J.; Kay, K.-Y.; Holcombe, T.W.; Zakeeruddin, S.M.; Grätzel, M.; Moser, J.-E. Position-dependent extension of π-conjugation in D-π-A dye sensitizers and the impact on the charge-transfer properties. J. Phys. Chem. C 2013, 117, 13805–13815. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.U.; Khalid, M.; Shafiq, I.; Khera, R.A.; Shafiq, Z.; Jawaria, R.; Shafiq, M.; Alam, M.M.; Braga, A.A.C.; Imran, M. Theoretical investigation of nonlinear optical behavior for rod and T-Shaped phenothiazine based D-π-A organic compounds and their derivatives. J. Saudi Chem. Soc. 2021, 25, 101339. [Google Scholar] [CrossRef]
- Yan, T.; Song, W.; Huang, J.; Peng, R.; Huang, L.; Ge, Z. 16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy. Adv. Mater. 2019, 31, 1902210. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Fan, B.; Du, X.; Liu, F.; Zhong, W.; Ying, L.; Xie, R.; Tang, X.; An, K.; Xin, J.; Li, N. Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics. Nat. Energy 2018, 3, 1051–1058. [Google Scholar] [CrossRef]
- Clarke, T.M.; Durrant, J.R. Charge photogeneration in organic solar cells. Chem. Rev. 2010, 110, 6736–6767. [Google Scholar] [CrossRef]
- Che, X.; Li, Y.; Qu, Y.; Forrest, S.R. High fabrication yield organic tandem photovoltaics combining vacuum-and solution-processed subcells with 15% efficiency. Nat. Energy 2018, 3, 422–427. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, L.; Zuo, C.; Xiao, Z.; Yuan, Y.; Yang, S.; Hao, F.; Cheng, M.; Sun, K.; Bao, Q. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J. Semicond. 2021, 42, 010501. [Google Scholar] [CrossRef]
- Peters, C.H.; Sachs-Quintana, I.T.; Kastrop, J.P.; Beaupre, S.; Leclerc, M.; McGehee, M.D. High efficiency polymer solar cells with long operating lifetimes. Adv. Energy Mater. 2011, 1, 491–494. [Google Scholar] [CrossRef]
- Jørgensen, M.; Norrman, K.; Gevorgyan, S.A.; Tromholt, T.; Andreasen, B.; Krebs, F.C. Stability of polymer solar cells. Adv. Mater. 2012, 24, 580–612. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zeng, D.; Gao, X.; Li, P.; Zhang, Q.; Peng, X. Non-fullerene polymer acceptors based on perylene diimides in all-polymer solar cells. Sol. Energy Mater. Sol. Cells 2019, 189, 103–117. [Google Scholar] [CrossRef]
- Li, S.; Ye, L.; Zhao, W.; Yan, H.; Yang, B.; Liu, D.; Li, W.; Ade, H.; Hou, J. A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J. Am. Chem. Soc. 2018, 140, 7159–7167. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv. Mater. 2016, 28, 9423–9429. [Google Scholar] [CrossRef]
- Zhao, F.; Dai, S.; Wu, Y.; Zhang, Q.; Wang, J.; Jiang, L.; Ling, Q.; Wei, Z.; Ma, W.; You, W. Single-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency. Adv. Mater. 2017, 29, 1700144. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Jiang, K.; Yang, G.; Lai, J.Y.L.; Ma, T.; Zhao, J.; Ma, W.; Yan, H. Donor polymer design enables efficient non-fullerene organic solar cells. Nat. Commun. 2016, 7, 13094. [Google Scholar] [CrossRef] [Green Version]
- Khalid, A.; Khera, R.A.; Saeed, A.; Khalid, M.; Iqbal, S.; Iqbal, J. Designing benzothiadiazole based non-fullerene acceptors with high open circuit voltage and higher LUMO level to increase the efficiency of organic solar cells. Optik 2021, 228, 166138. [Google Scholar] [CrossRef]
- Kroon, R.; Lenes, M.; Hummelen, J.C.; Blom, P.W.; De Boer, B. Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polym. Rev. 2008, 48, 531–582. [Google Scholar] [CrossRef]
- Roncali, J. Synthetic principles for bandgap control in linear π-conjugated systems. Chem. Rev. 1997, 97, 173–206. [Google Scholar] [CrossRef]
- Fichou, D.; Watanabe, T.; Takeda, T.; Miyata, S.; Goto, Y.; Nakayama, M. Influence of the ring-substitution on the second harmonic generation of chalcone derivatives. Jpn. J. Appl. Phys. 1988, 27, L4291988. [Google Scholar] [CrossRef]
- Li, S.; Zhan, L.; Liu, F.; Ren, J.; Shi, M.; Li, C.-Z.; Russell, T.P.; Chen, H. An unfused-core-based nonfullerene acceptor enables high-efficiency organic solar cells with excellent morphological stability at high temperatures. Adv. Mater. 2018, 30, 1705208. [Google Scholar] [CrossRef]
- Khalid, M.; Ahmed, R.; Arshad, M.; Asghar, M.A.; Munawar, K.S.; Imran, M.; Braga, A.A. First theoretical framework for highly efficient photovoltaic parameters by structural modification with benzothiophene-incorporated acceptors in dithiophene based chromophores. Sci. Rep. 2022, 12, 20148. [Google Scholar] [CrossRef]
- Kim, B.; Yeom, H.R.; Yun, M.H.; Kim, J.Y.; Yang, C. A selenophene analogue of PCDTBT: Selective fine-tuning of lumo to lower of the bandgap for efficient polymer solar cells. Macromolecules 2012, 45, 8658–8664. [Google Scholar] [CrossRef]
- Kranthiraja, K.; Gunasekar, K.; Cho, W.; Park, Y.G.; Lee, J.Y.; Shin, Y.; Kang, I.-N.; Song, M.; Chae, K.H.; Kim, B. Influential effects of π-spacers, alkyl side chains, and various processing conditions on the photovoltaic properties of alkylselenyl substituted benzodithiophene based polymers. J. Mater. Chem. C 2015, 3, 796–808. [Google Scholar] [CrossRef]
- Chang, S.-L.; Hung, K.-E.; Cao, F.-Y.; Huang, K.-H.; Hsu, C.-S.; Liao, C.-Y.; Lee, C.-H.; Cheng, Y.-J. Isomerically Pure Benzothiophene-Incorporated Acceptor: Achieving Improved V OC and J SC of Nonfullerene Organic Solar Cells via End Group Manipulation. ACS Appl. Mater. Interfaces 2019, 11, 33179–33187. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. Gaussian 09, revision D. 01. 2009. Available online: https://gaussian.com/g09citation (accessed on 17 February 2023).
- Dennington, R.D.; Keith, T.A.; Millam, J.M. GaussView 5.0; Gaussian, Inc.: Wallingford, UK, 2008; p. 20. [Google Scholar]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- O’boyle, N.M.; Tenderholt, A.L.; Langner, K.M. Cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 2008, 29, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Zhurko, G.A. Chemcraft. Available online: http://www.chemcraftprog.com (accessed on 22 October 2022).
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Cclib: A library for Package-Independent Computational Chemistry Algorithms—O’boyle—2008—Journal of Computational Chemistry—Wiley Online Library, (n.d.). Available online: https://onlinelibrary.wiley.com/doi/10.1002/jcc.20823 (accessed on 26 October 2022).
- Stevenson, K.J. Review of originpro 8.5. J. Am. Chem. Soc. 2011, 133, 5621. [Google Scholar] [CrossRef]
- Li, G.; Budiawan, W.; Wang, P.C.; Chu, C.W. Conjugated Polymer-Based Solar Cells. In Encyclopedia of Modern Optics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 256–269. [Google Scholar] [CrossRef]
- Kesavan, A.V.; Ramamurthy, P.C. Photo-Active Polymer Nanocomposite Layer for Energy Applications. In Polymer-Based Advanced Functional Composites for Optoelectronic and Energy Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 135–156. [Google Scholar] [CrossRef]
- Kulhánek, J.; Bureš, F. Imidazole as a parent π-conjugated backbone in charge-transfer chromophores. Beilstein J. Org. Chem. 2012, 8, 25–49. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.; Wijsboom, Y.H.; Leitus, G.; Bendikov, M. Tuning the band gap of low-band-gap polyselenophenes and polythiophenes: The effect of the heteroatom. Chem. Mater. 2011, 23, 896–906. [Google Scholar] [CrossRef]
- Asogwa, F.C.; Louis, H.; Ameuru, U.S.; Unimuke, T.O.; Adekoge, K.A.; Magu, T.O.; Agwamba, E.C. Experimental and theoretical studies of the influence of alkyl groups on the photovoltaic properties of (E)-6-((2, 3-dihydroxylnaphthalene) diazenyl)-1H-benzoisoquinoline-1, 3-dione-based organic solar cell. J. Mol. Model. 2022, 28, 1–18. [Google Scholar] [CrossRef]
- Srnec, M.; Solomon, E.I. Frontier molecular orbital contributions to chlorination versus hydroxylation selectivity in the non-heme iron halogenase SyrB2. J. Am. Chem. Soc. 2017, 139, 2396–2407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.U.; Iqbal, J.; Khalid, M.; Hussain, R.; Braga, A.A.C.; Hussain, M.; Muhammad, S. Designing triazatruxene-based donor materials with promising photovoltaic parameters for organic solar cells. RSC Adv. 2019, 9, 26402–26418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalid, M.; Khan, M.U.; Shafiq, I.; Hussain, R.; Ali, A.; Imran, M.; Braga, A.A.; Rehman, M.F.U.; Akram, M.S. Structural modulation of π-conjugated linkers in D–π–A dyes based on triphenylamine dicyanovinylene framework to explore the NLO properties. R. Soc. Open Sci. 2021, 8, 210570. [Google Scholar] [CrossRef]
- Kandemirli, F.; Sagdinc, S. Theoretical study of corrosion inhibition of amides and thiosemicarbazones. Corros. Sci. 2007, 49, 2118–2130. [Google Scholar] [CrossRef]
- Mahmood, A.; Abdullah, M.I.; Khan, S.U.-D. Enhancement of nonlinear optical (NLO) properties of indigo through modification of auxiliary donor, donor and acceptor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 139, 425–430. [Google Scholar] [CrossRef]
- Mahmood, A.; Khan, S.U.-D.; Rana, U.A.; Janjua, M.R.S.A.; Tahir, M.H.; Nazar, M.F.; Song, Y. Effect of thiophene rings on UV/visible spectra and non-linear optical (NLO) properties of triphenylamine based dyes: A quantum chemical perspective. J. Phys. Org. Chem. 2015, 28, 418–422. [Google Scholar] [CrossRef]
- Khalid, M.; Imran, M.; Braga, A.A.C.; Akram, M.S. Molecular engineering of indenoindene-3-ethylrodanine acceptors with A2-A1-D-A1-A2 architecture for promising fullerene-free organic solar cells. Sci. Rep. 2021, 11, 20320. [Google Scholar] [CrossRef]
- Hussain, S.; Hussain, R.; Mehboob, M.Y.; Chatha, S.A.S.; Hussain, A.I.; Umar, A.; Khan, M.U.; Ahmed, M.; Adnan, M.; Ayub, K. Adsorption of phosgene gas on pristine and copper-decorated B12N12 nanocages: A comparative DFT study. ACS Omega 2020, 5, 7641–7650. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Chatha, S.A.S.; Hussain, A.I.; Hussain, R.; Mehboob, M.Y.; Muhammad, S.; Ahmad, Z.; Ayub, K. Zinc-doped boron phosphide nanocluster as efficient sensor for SO2. J. Chem. 2020, 2020, 2629596. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, A.; HussainTahir, M.; Irfan, A.; Khalid, B.; Al-Sehemi, A.G. Computational designing of triphenylamine dyes with broad and red-shifted absorption spectra for dye-sensitized solar cells using multi-thiophene rings in π-spacer. Bull. Korean Chem. Soc. 2015, 36, 2615–2620. [Google Scholar] [CrossRef]
- Khalid, M. First principles study of electronic and nonlinear optical properties of A–D–π–A and D–A–D–π–A configured compounds containing novel quinoline–carbazole derivatives. RSC Adv. 2020, 10, 22273–22283. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Fukui, K. Role of frontier orbitals in chemical reactions. Science 1982, 218, 747–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chattaraj, P.K. Electrophilicity Index. Chem. Rev. 2011, 111, PR43–PR75. [Google Scholar] [CrossRef]
- Parr, R.G.; Donnelly, R.A.; Levy, M.; Palke, W.E. Electronegativity: The density functional viewpoint. J. Chem. Phys. 1978, 68, 3801–3807. [Google Scholar] [CrossRef]
- Kovačević, N.; Kokalj, A. Analysis of molecular electronic structure of imidazole-and benzimidazole-based inhibitors: A simple recipe for qualitative estimation of chemical hardness. Corros. Sci. 2011, 53, 909–921. [Google Scholar] [CrossRef]
- Koopmans, T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1934, 1, 104–113. [Google Scholar] [CrossRef]
- He, S.; Tan, Y.; Xiao, X.; Zhu, L.; Guo, Y.; Li, M.; Tian, A.; Pu, X.; Wong, N.-B. Substituent effects on electronic character of the CN group and trans/cis isomerization in the C-substituted imine derivatives: A computational study. J. Mol. Struct. Theochem. 2010, 951, 7–13. [Google Scholar] [CrossRef]
- Tahir, M.N.; Khalid, M.; Islam, A.; Mashhadi, S.M.A.; Braga, A.A. Facile synthesis, single crystal analysis, and computational studies of sulfanilamide derivatives. J. Mol. Struct. 2017, 1127, 766–776. [Google Scholar] [CrossRef]
- Khalid, M.; Lodhi, H.M.; Khan, M.U.; Imran, M. Structural parameter-modulated nonlinear optical amplitude of acceptor–π–D–π–donor-configured pyrene derivatives: A DFT approach. RSC Adv. 2021, 11, 14237–14250. [Google Scholar] [CrossRef]
- Shehzad, R.A.; Iqbal, J.; Khan, M.U.; Hussain, R.; Javed, H.M.A.; Rehman, A.U.; Alvi, M.U.; Khalid, M. Designing of benzothiazole based non-fullerene acceptor (NFA) molecules for highly efficient organic solar cells. Comput. Theor. Chem. 2020, 1181, 112833. [Google Scholar] [CrossRef]
- Khan, M.U.; Mehboob, M.Y.; Hussain, R.; Afzal, Z.; Khalid, M.; Adnan, M. Designing spirobifullerene core based three-dimensional cross shape acceptor materials with promising photovoltaic properties for high-efficiency organic solar cells. Int. J. Quantum Chem. 2020, 120, e263772020. [Google Scholar] [CrossRef]
- Ans, M.; Ayub, K.; Bhatti, I.A.; Iqbal, J. Designing indacenodithiophene based non-fullerene acceptors with a donor–acceptor combined bridge for organic solar cells. RSC Adv. 2019, 9, 3605–3617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmood, A.; Irfan, A.; Ahmad, F.; Janjua, M.R.S.A. Quantum chemical analysis and molecular dynamics simulations to study the impact of electron-deficient substituents on electronic behavior of small molecule acceptors. Comput. Theor. Chem. 2021, 1204, 113387. [Google Scholar] [CrossRef]
- Li, Y.; Ullrich, C.A. Time-dependent transition density matrix. Chem. Phys. 2011, 391, 157–163. [Google Scholar] [CrossRef]
- Khalid, M.; Khan, M.; Shafiq, I.; Mahmood, K.; Akhtar, M.N.; Iqbal, J.; Al-Sadoon, M.K.; Zaman, W.; Braga, A.A.C. Role of donors in triggering second order non-linear optical properties of non-fullerene FCO-2FR1 based derivatives: A theoretical perspective. Heliyon 2023, 9, e130332023. [Google Scholar] [CrossRef]
- Arshad, M.N.; Shafiq, I.; Khalid, M.; Asiri, A.M. Exploration of the Intriguing Photovoltaic Behavior for Fused Indacenodithiophene-Based A–D–A Conjugated Systems: A DFT Model Study. ACS Omega 2022, 7, 11606–11617. [Google Scholar] [CrossRef]
- Hussain, R.; Hassan, F.; Khan, M.U.; Mehboob, M.Y.; Fatima, R.; Khalid, M.; Mahmood, K.; Tariq, C.J.; Akhtar, M.N. Molecular engineering of A–D–C–D–A configured small molecular acceptors (SMAs) with promising photovoltaic properties for high-efficiency fullerene-free organic solar cells. Opt. Quantum Electron. 2020, 52, 364. [Google Scholar] [CrossRef]
- Khan, M.U.; Mehboob, M.Y.; Hussain, R.; Fatima, R.; Tahir, M.S.; Khalid, M.; Braga, A.A.C. Molecular designing of high-performance 3D star-shaped electron acceptors containing a truxene core for nonfullerene organic solar cells. J. Phys. Org. Chem. 2021, 34, e4119. [Google Scholar] [CrossRef]
- Irfan, M.; Iqbal, J.; Sadaf, S.; Eliasson, B.; Rana, U.A.; Khan, S.U.-D.; Ayub, K. Design of donor-acceptor-donor (D-A-D) type small molecule donor materials with efficient photovoltaic parameters: IRFAN et al. Int. J. Quantum Chem. 2017, 117, e253632017. [Google Scholar] [CrossRef]
- Khalid, M.; Shafiq, I.; Zhu, M.; Khan, M.U.; Shafiq, Z.; Iqbal, J.; Alam, M.M.; Braga, A.A.C.; Imran, M. Efficient tuning of small acceptor chromophores with A1-π-A2-π-A1 configuration for high efficacy of organic solar cells via end group manipulation. J. Saudi Chem. Soc. 2021, 25, 101305. [Google Scholar] [CrossRef]
- Mahmood, A. Photovoltaic and charge transport behavior of diketopyrrolopyrrole based compounds with A–D–A–D–A skeleton. J. Clust. Sci. 2019, 30, 1123–1130. [Google Scholar] [CrossRef]
- Bai, H.; Wang, Y.; Cheng, P.; Li, Y.; Zhu, D.; Zhan, X. Acceptor–Donor–Acceptor Small Molecules Based on Indacenodithiophene for Efficient Organic Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 8426–8433. [Google Scholar] [CrossRef] [PubMed]
- Scharber, M.C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A.J.; Brabec, C.J. Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10% Energy-Conversion Efficiency. Adv. Mater 2006, 18, 789–794. [Google Scholar] [CrossRef]
- Khalid, M.; Khan, M.U.; Razia, E.; Shafiq, Z.; Alam, M.M.; Imran, M.; Akram, M.S. Exploration of efficient electron acceptors for organic solar cells: Rational design of indacenodithiophene based non-fullerene compounds. Sci. Rep. 2021, 11, 19931. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, F.; Zhang, B.; Zhou, E. Synthesis of 1-formyl-3-bromo-thieno [3, 4-c] pyrrole-4, 6-dione and the application in A2–A1–D–A1–A2 type non-fullerene acceptor. J. Phys. Chem. C 2020, 124, 9795–9801. [Google Scholar] [CrossRef]
- Tang, A.; Zhang, Q.; Du, M.; Li, G.; Geng, Y.; Zhang, J.; Wei, Z.; Sun, X.; Zhou, E. Molecular engineering of D-π–A copolymers based on 4, 8-bis (4-chlorothiophen-2-yl) benzo [1, 2-b: 4, 5-b′] dithiophene (BDT-T-Cl) for high-performance fullerene-free organic solar cells. Macromolecules 2019, 52, 6227–6233. [Google Scholar] [CrossRef]
- Tang, A.; Song, W.; Xiao, B.; Guo, J.; Min, J.; Ge, Z.; Zhang, J.; Wei, Z.; Zhou, E. Benzotriazole-based acceptor and donors, coupled with chlorination, achieve a high V OC of 1.24 V and an efficiency of 10.5% in fullerene-free organic solar cells. Chem. Mater. 2019, 31, 3941–3947. [Google Scholar] [CrossRef]
Chromophores | EHOMO | ELUMO | |
---|---|---|---|
D1 | −5.845 | −3.380 | 2.465 |
D2 | −5.744 | −3.345 | 2.399 |
D3 | −5.636 | −3.329 | 2.307 |
D5 | −5.472 | −3.305 | 2.167 |
D7 | −5.361 | −3.297 | 2.064 |
Compounds | DFT λ (nm) | E (eV) | fos | MO Contributions |
---|---|---|---|---|
D1 | 596.393 | 2.078 | 1.872 | H→L (91%) |
D2 | 613.722 | 2.020 | 2.750 | H→L (90%) |
D3 | 635.490 | 1.951 | 3.075 | H→L (88%) |
D5 | 668.702 | 1.854 | 3.524 | H→L (84%) |
D7 | 691.953 | 1.791 | 3.708 | H→L (77%) |
Compounds | DFT λ(nm) | E (eV) | fos | MO Contributions |
---|---|---|---|---|
D1 | 639.390 | 1.939 | 1.879 | H→L (86%) |
D2 | 655.480 | 1.891 | 2.674 | H→L (85%) |
D3 | 676.474 | 1.832 | 3.0738 | H→L (82%) |
D5 | 708.521 | 1.749 | 3.395 | H→L (80%) |
D7 | 728.376 | 1.702 | 3.409 | H→L (75%) |
Compounds | IP | EA | X | η | μ | ω | σ |
---|---|---|---|---|---|---|---|
D1 | 5.845 | 3.380 | 4.613 | 1.233 | −4.613 | 8.631 | 0.406 |
D2 | 5.744 | 3.345 | 4.545 | 1.199 | −4.545 | 8.609 | 0.417 |
D3 | 5.636 | 3.329 | 4.483 | 1.154 | −4.483 | 8.709 | 0.434 |
D5 | 5.472 | 3.305 | 4.389 | 1.084 | −4.389 | 8.888 | 0.461 |
D7 | 5.631 | 3.297 | 4.464 | 1.167 | −4.464 | 8.538 | 0.428 |
Chromophores | EH-L | Eopt | Eb |
---|---|---|---|
D1 | 2.465 | 1.939 | 0.526 |
D2 | 2.399 | 1.891 | 0.508 |
D3 | 2.307 | 1.832 | 0.475 |
D5 | 2.167 | 1.749 | 0.418 |
D7 | 2.064 | 1.702 | 0.362 |
Chromophores | µx | µy | µz | µtotal |
---|---|---|---|---|
D1 | 0.7967 | 1.9193 | −0.6419 | 2.1750 |
D2 | 3.8529 | 5.4304 | 5.1333 | 8.4074 |
D3 | −1.5910 | 8.3120 | −5.2673 | 9.9682 |
D5 | −3.8684 | −5.9795 | 1.6921 | 7.3200 |
D7 | −1.7431 | 3.5215 | −3.9342 | 5.5604 |
Chromophores | VOC (V) | |
---|---|---|
D1 | 1.549 | 1.849 |
D2 | 1.584 | 1.884 |
D3 | 1.600 | 1.900 |
D5 | 1.624 | 1.924 |
D7 | 1.632 | 1.932 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arshad, M.N.; Shafiq, I.; Khalid, M.; Asad, M.; Asiri, A.M.; Alotaibi, M.M.; Braga, A.A.C.; Khan, A.; Alamry, K.A. Enhancing the Photovoltaic Properties via Incorporation of Selenophene Units in Organic Chromophores with A2-π2-A1-π1-A2 Configuration: A DFT-Based Exploration. Polymers 2023, 15, 1508. https://doi.org/10.3390/polym15061508
Arshad MN, Shafiq I, Khalid M, Asad M, Asiri AM, Alotaibi MM, Braga AAC, Khan A, Alamry KA. Enhancing the Photovoltaic Properties via Incorporation of Selenophene Units in Organic Chromophores with A2-π2-A1-π1-A2 Configuration: A DFT-Based Exploration. Polymers. 2023; 15(6):1508. https://doi.org/10.3390/polym15061508
Chicago/Turabian StyleArshad, Muhammad Nadeem, Iqra Shafiq, Muhammad Khalid, Mohammad Asad, Abdullah M. Asiri, Maha M. Alotaibi, Ataualpa A. C. Braga, Anish Khan, and Khalid A. Alamry. 2023. "Enhancing the Photovoltaic Properties via Incorporation of Selenophene Units in Organic Chromophores with A2-π2-A1-π1-A2 Configuration: A DFT-Based Exploration" Polymers 15, no. 6: 1508. https://doi.org/10.3390/polym15061508
APA StyleArshad, M. N., Shafiq, I., Khalid, M., Asad, M., Asiri, A. M., Alotaibi, M. M., Braga, A. A. C., Khan, A., & Alamry, K. A. (2023). Enhancing the Photovoltaic Properties via Incorporation of Selenophene Units in Organic Chromophores with A2-π2-A1-π1-A2 Configuration: A DFT-Based Exploration. Polymers, 15(6), 1508. https://doi.org/10.3390/polym15061508