Nanostructured Polyaniline Films Functionalized through Auxiliary Nitrogen Addition in Atmospheric Pressure Plasma Polymerization
Abstract
:1. Introduction
2. Materials and Methods
2.1. AP Plasma Polymerization System
2.2. AP Plasma Reactor with Added Auxiliary Gas
2.3. Electrical and Optical Characterization of Generated Plasma
2.4. Analysis and Characterization of Nanostructured PANI Films
2.5. Iodine Doping of PANI Films for the Electrical Conductivity Test
3. Results and Discussion
3.1. Changes in Glow Discharge and PANI Films Due to Auxiliary Gas Addition during AP Plasma Polymerization
3.2. Electrical and Optical Characteristics during AP Plasma Polymerization
3.3. Changes in the Film Properties of PANI Nanostructures by Nitrogen Addition
3.4. Electrical Properties of Conductive PANI Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Laha, S.; Luthy, R.G. Oxidation of aniline and other primary aromatic amines by manganese dioxide. Environ. Sci. Technol. 1990, 24, 363–373. [Google Scholar] [CrossRef]
- Zare, E.N.; Makvandi, P.; Ashtari, B.; Rossi, F.; Motahari, A.; Perale, G. Progress in conductive polyaniline-based nanocomposites for biomedical applications: A review. J. Med. Chem. 2020, 63, 1–22. [Google Scholar] [CrossRef]
- Lawal, A.T.; Wallace, G.G. Vapor phase polymerization of conducting and non-conducting polymers: A review. Talanta 2014, 119, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Travaglini, L.; Micolich, A.P.; Cazorla, C.; Zeglio, E.; Lauto, A.; Mawad, D. Single-material OECT-based flexible complementary circuits featuring polyaniline in both conducting channels. Adv. Funct. Mater. 2021, 31, 2007205. [Google Scholar] [CrossRef]
- Gao, F.; Mu, J.; Bi, Z.; Wang, S.; Li, Z. Recent advances of polyaniline composites in anticorrosive coatings: A review. Prog. Organ. Coat. 2021, 151, 106071. [Google Scholar] [CrossRef]
- Ćirić-Marjanović, G. Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth. Met. 2013, 177, 1–47. [Google Scholar] [CrossRef]
- Sapurina, I.; Stejskal, J. The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym. Int. 2008, 57, 1295–1325. [Google Scholar] [CrossRef]
- Bhadra, S.; Khastgir, D.; Singha, N.K.; Lee, J.H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 2009, 34, 783–810. [Google Scholar] [CrossRef]
- Udum, Y.A.; Pekmez, K.; Yıldız, A. Electrochemical preparation of a soluble conducting aniline–thiophene copolymer. Eur. Polym. J. 2005, 41, 1136–1142. [Google Scholar] [CrossRef]
- Scholtz, V.; Pazlarova, J.; Souskova, H.; Khun, J.; Julak, J. Nonthermal plasma—A tool for decontamination and disinfection. Biotechnol. Adv. 2015, 33, 1108–1119. [Google Scholar] [CrossRef]
- Khelifa, F.; Ershov, S.; Habibi, Y.; Snyders, R.; Dubois, P. Free-radical-induced grafting from plasma polymer surfaces. Chem. Rev. 2016, 116, 3975–4005. [Google Scholar] [CrossRef] [PubMed]
- Bárdos, L.; Baránková, H. Cold atmospheric plasma: Sources, processes, and applications. Thin Solid Film 2010, 518, 6705–6713. [Google Scholar] [CrossRef]
- Pandiyaraj, K.N.; Ramkumar, M.C.; Kumar, A.A.; Vasu, D.; Padmanabhan, P.V.A.; Tabaei, P.S.E.; Cools, P.; Geyter, N.D.; Morent, R.; Jaganathan, S.K. Development of phosphor containing functional coatings via cold atmospheric pressure plasma jet—Study of various operating parameters. Appl. Surf. Sci. 2019, 488, 343–350. [Google Scholar] [CrossRef]
- Yang, J.; Pu, Y.; Miao, D.; Ning, X. Fabrication of durably superhydrophobic cotton fabrics by atmospheric pressure plasma treatment with a siloxane precursor. Polymers 2018, 10, 460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-Y.; Jang, H.-J.; Jung, E.; Bae, G.; Lee, S.; Park, C.-S.; Shin, B.; Tae, H.-S. Improvement of the uniformity and electrical properties of polyaniline nanocomposite film by addition of auxiliary gases during atmospheric pressure plasma polymerization. Nanomaterials 2021, 11, 2315. [Google Scholar] [CrossRef] [PubMed]
- Vazirinasab, E.; Jafari, R.; Momen, G. Evaluation of atmospheric-pressure plasma parameters to achieve superhydrophobic and self-cleaning HTV silicone rubber surfaces via a single-step, eco-friendly approach. Surf. Coat. Technol. 2019, 375, 100–111. [Google Scholar] [CrossRef]
- Peran, J.; Ražić, S.E. Application of atmospheric pressure plasma technology for textile surface modification. Text. Res. J. 2020, 90, 1174–1197. [Google Scholar] [CrossRef]
- Hegemann, D.; Hossain, M.M.; Körner, E.; Balazs, D.J. Macroscopic description of plasma polymerization. Plasma Process. Polym. 2007, 4, 229–238. [Google Scholar] [CrossRef]
- Deynse, A.V.; Cools, P.; Leys, C.; Geyter, N.D.; Morent, R. Surface activation of polyethylene with an argon atmospheric pressure plasma jet: Influence of applied power and flow rate. Appl. Surf. Sci. 2015, 328, 269–278. [Google Scholar] [CrossRef]
- Morent, R.; Geyter, N.D.; Jacobs, T.; Vlierberghe, S.V.; Dubruel, P.; Leys, C.; Schacht, E. Plasma-polymerization of HMDSO using an atmospheric pressure dielectric barrier discharge. Plasma Process. Polym. 2009, 6, S537–S542. [Google Scholar] [CrossRef]
- Bashir, M.; Rees, J.M.; Zimmerman, W.B. Plasma polymerization in a microcapillary using an atmospheric pressure dielectric barrier discharge. Surf. Coat. Technol. 2013, 234, 82–91. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, J.; Guo, Y. Synthesis of intrinsic fluorescent polypyrrole nanoparticles by atmospheric pressure plasma polymerization. Appl. Surf. Sci. 2009, 255, 6927–6929. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, S.-Y.; Choi, J.; Lee, S.; Jo, S.M.; Joo, J.; Lee, H.-S. Two step microwave plasma carbonization including low plasma power pre-carbonization for polyacrylonitrile based carbon fiber. Polymer 2015, 69, 123–128. [Google Scholar] [CrossRef]
- McQuade, D.T.; Pullen, A.E.; Swager, T.M. Conjugated polymer-based chemical sensors. Chem. Rev. 2000, 100, 2537–2574. [Google Scholar] [CrossRef]
- Smela, E. Conjugated polymer actuators for biomedical applications. Adv. Mater. 2003, 15, 481–494. [Google Scholar] [CrossRef]
- Choukourov, A.; Pleskunov, P.; Nikitin, D.; Titov, V.; Shelemin, A.; Vaidulych, M.; Kuzminova, A.; Solař, P.; Hanuš, J.; Kousal, J.; et al. Advances and challenges in the field of plasma polymer nanoparticles. Beilstein J. Nanotechnol. 2017, 8, 2002–2014. [Google Scholar] [CrossRef]
- Hegemann, D.; Nisol, B.; Watson, S.; Wertheimer, M.R. Energy conversion efficiency in plasma polymerization—A comparison of low- and atmospheric-pressure processes. Plasma Process. Polym. 2016, 13, 834–842. [Google Scholar] [CrossRef]
- Malinowski, S.; Herbert, P.A.F.; Rogalski, J.; Jaroszyńska-Wolińska, J. Laccase enzyme polymerization by soft plasma jet for durable bioactive coatings. Polymers 2018, 10, 532. [Google Scholar] [CrossRef] [Green Version]
- Jalaber, V.; Del Frari, D.; De Winter, J.; Mehennaoui, K.; Planchon, S.; Choquet, P.; Detrembleur, C.; Moreno-Couranjou, M. Atmospheric aerosol assisted pulsed plasma polymerization: An environmentally friendly technique for tunable catechol-bearing thin films. Front. Chem. 2019, 7, 183. [Google Scholar] [CrossRef]
- Park, C.-S.; Kim, D.H.; Shin, B.J.; Tae, H.-S. Synthesis and characterization of nanofibrous polyaniline thin film prepared by novel atmospheric pressure plasma polymerization technique. Materials 2016, 9, 39. [Google Scholar] [CrossRef] [Green Version]
- Zaplotnik, R.; Primc, G.; Vesel, A. Optical emission spectroscopy as a diagnostic tool for characterization of atmospheric plasma jets. Appl. Sci. 2021, 11, 2275. [Google Scholar] [CrossRef]
- Naz, M.Y.; Shukrullah, S.; Rehman, S.U.; Khan, Y.; Al-Arainy, A.A.; Meer, R. Optical characterization of non-thermal plasma jet energy carriers for effective catalytic processing of industrial wastewaters. Sci. Rep. 2021, 11, 2896. [Google Scholar] [CrossRef] [PubMed]
- Ayad, M.; Zaghlol, S. Nanostructured crosslinked polyaniline with high surface area: Synthesis, characterization and adsorption for organic dye. Chem. Eng. J. 2012, 204–206, 79–86. [Google Scholar] [CrossRef]
- Wang, X.; Deng, J.; Duan, X.; Liu, D.; Guo, J.; Liu, P. Crosslinked polyaniline nanorods with improved electrochemical performance as electrode material for supercapacitors. J. Mater. Chem. A 2014, 2, 12323. [Google Scholar] [CrossRef]
- Lv, X.; Wang, Y.; Wang, Y.-A.; Lin, X.; Ni, Y. Crosslinked polyaniline nanorods coupled with molybdenum disulfide on functionalized carbon cloth for excellent electrochemical performance. J. Solid State Electrochem. 2021, 25, 1871–1880. [Google Scholar] [CrossRef]
- Sharma, A.K.; Bhardwaj, P.; Dhawan, S.K.; Sharma, Y. Oxidative synthesis and electrochemical studies of poly(aniline-co-pyrrole)-hybrid carbon nanostructured composite electrode materials for supercapacitor. Adv. Mater. Lett. 2015, 6, 414–420. [Google Scholar] [CrossRef]
- Srinivasan, P.; Gottam, R. Infrared Spectra: Useful technique to identify the conductivity level of emeraldine form of polyaniline and indication of conductivity measurement either two or four probe technique. Mat. Sci. Res. India 2018, 15, 209–217. [Google Scholar] [CrossRef]
- Golczak, S.; Kanciurzewska, A.; Fahlman, M.; Langer, K.; Langer, J.J. Comparative XPS surface study of polyaniline thin films. Solid State Ion. 2008, 179, 2234–2239. [Google Scholar] [CrossRef]
- Elmas, S.; Beelders, W.; Nash, J.; Macdonald, T.J.; Jasieniak, M.; Griessera, H.J.; Nann, T. Photo-doping of plasma-deposited polyaniline (PAni). RSC Adv. 2016, 6, 70691. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Silva, R.; Romero-García, J.; Angulo-Sáncheza, J.L.; Flores-Loyola, E.; Farías, M.H.; Castillón, F.F.; Díaz, J.A. Comparative study of polyaniline cast films prepared from enzymatically and chemically synthesized polyaniline. Polymer 2004, 45, 4711–4717. [Google Scholar] [CrossRef]
- Lee, Y.M.; Kim, J.H.; Kang, J.S.; Ha, S.Y. Annealing effects of dilute polyaniline/NMP solution. Macromolecules 2000, 33, 7431–7439. [Google Scholar] [CrossRef]
- Bhadra, S.; Singha, N.K.; Khastgir, D. Polyaniline by new miniemulsion polymerization and the effect of reducing agent on conductivity. Synth. Met. 2006, 156, 1148–1154. [Google Scholar] [CrossRef]
- Li, Z.F.; Kang, E.T.; Neoh, K.G.; Tan, K.L. Effect of thermal processing conditions on the intrinsic oxidation states and mechanical properties of polyaniline films. Synth. Met. 1997, 87, 45–52. [Google Scholar] [CrossRef]
- Pron, A.; Rannou, P. Processible conjugated polymers: From organic semiconductors to organic metals and superconductors. Prog. Polym. Sci. 2002, 27, 135–190. [Google Scholar] [CrossRef]
- Lee, Y.W.; Do, K.; Lee, T.H.; Jeon, S.S.; Yoon, W.J.; Kim, C.; Ko, J.; Im, S.S. Iodine vapor doped polyaniline nanoparticles counter electrodes for dye-sensitized solar cells. Synth. Met. 2013, 174, 6–13. [Google Scholar] [CrossRef]
- Fan, L.; Xu, X. A simple strategy to enhance electrical conductivity of nanotube-conjugate polymer composites via iodine-doping. RSC Adv. 2015, 5, 78104–78108. [Google Scholar] [CrossRef]
- Wang, J.; Neoh, K.G.; Kang, E.T. Comparative study of chemically synthesized and plasma polymerized pyrrole and thiophene thin films. Thin Solid Films 2004, 446, 205–217. [Google Scholar] [CrossRef]
- Silverstein, M.S.; Visoly-Fisher, I. Plasma polymerized thiophene: Molecular structure and electrical properties. Polymer 2002, 43, 11–20. [Google Scholar] [CrossRef]
Conditions | C 1s (%) | N 1s (%) | O 1s (%) | C/N |
---|---|---|---|---|
Ar addition | 76.8 | 11.3 | 11.9 | 6.80 |
N2 addition | 76.4 | 11.9 | 11.7 | 6.42 |
Group | Binding Energy (eV) | Composition (%) | ||
---|---|---|---|---|
Ar Addition | N2 Addition | |||
C 1s | C=C | 284.6 | 12.8 | 21.3 |
C–C/C–H | 285.5 | 52.7 | 43.0 | |
C–N | 286.5 | 15.9 | 24.1 | |
C–O | 287.2 | 11.5 | 6.4 | |
C=O | 288.1 | 5.2 | 3.7 | |
O–C=O | 289.1 | 1.9 | 1.5 | |
N 1s | –N= | 399.0 | 17.2 | 14.4 |
–NH– | 400.0 | 60.1 | 79.7 | |
N+ | 401.2 | 22.7 | 5.9 | |
(–N=)/(–NH–) | - | 0.29 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.Y.; Jang, H.; Lee, Y.R.; Kim, K.; Suleiman, H.O.; Park, C.-S.; Shin, B.J.; Jung, E.Y.; Tae, H.-S. Nanostructured Polyaniline Films Functionalized through Auxiliary Nitrogen Addition in Atmospheric Pressure Plasma Polymerization. Polymers 2023, 15, 1626. https://doi.org/10.3390/polym15071626
Kim JY, Jang H, Lee YR, Kim K, Suleiman HO, Park C-S, Shin BJ, Jung EY, Tae H-S. Nanostructured Polyaniline Films Functionalized through Auxiliary Nitrogen Addition in Atmospheric Pressure Plasma Polymerization. Polymers. 2023; 15(7):1626. https://doi.org/10.3390/polym15071626
Chicago/Turabian StyleKim, Jae Young, Hyojun Jang, Ye Rin Lee, Kangmin Kim, Habeeb Olaitan Suleiman, Choon-Sang Park, Bhum Jae Shin, Eun Young Jung, and Heung-Sik Tae. 2023. "Nanostructured Polyaniline Films Functionalized through Auxiliary Nitrogen Addition in Atmospheric Pressure Plasma Polymerization" Polymers 15, no. 7: 1626. https://doi.org/10.3390/polym15071626
APA StyleKim, J. Y., Jang, H., Lee, Y. R., Kim, K., Suleiman, H. O., Park, C. -S., Shin, B. J., Jung, E. Y., & Tae, H. -S. (2023). Nanostructured Polyaniline Films Functionalized through Auxiliary Nitrogen Addition in Atmospheric Pressure Plasma Polymerization. Polymers, 15(7), 1626. https://doi.org/10.3390/polym15071626