Exploring the Potential Hormonal Effects of Tire Polymers (TPs) on Different Species Based on a Theoretical Computational Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Characterization
2.2. Characterization of Toxicity of TPs in Different Environmental Media—Molecular-Dynamics Approach
2.3. Comprehensive Toxicity Characterization of TPs in Different Environmental Media—Multilayer Empowerment Method
2.4. Characterization of the Toxicity of SBR in Different Environmental Media—Minimum-Value and Feature-Aggregation Methods
2.5. Characterization of Different Toxicities of SBR to Freshwater Environmental Organisms—Interval-Scaling and Entropy-Weighting Methods
2.6. Characterization of the Toxicity of SBR to Different Freshwater Environmental Organisms—Standard-Deviation Normalization Method
3. Results and Discussion
3.1. Toxicity Features of TPs in Different Environmental Media
3.1.1. Integrated-Toxicity Analysis of TPs Based on Multilevel-Empowerment Model
3.1.2. Toxicity Characterization of SBR in Different Environmental Media
3.2. Mechanism Analysis of Differences in Toxicity of TPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Xi, B.; Wang, B.; Chen, M.; Lee, X.; Zhang, X.; Wang, S.; Yu, Z.; Wu, P. Environmental behaviors and degradation methods of microplastics in different environmental media. Chemosphere 2022, 299, 134354. [Google Scholar] [CrossRef] [PubMed]
- Li, H.X.; Shi, M.; Tian, F.; Lin, L.; Liu, S.; Hou, R.; Peng, J.P.; Xu, X.R. Microplastics contamination in bivalves from the Daya Bay: Species variability and spatio-temporal distribution and human health risks. Sci. Total Environ. 2022, 841, 156749. [Google Scholar] [CrossRef] [PubMed]
- Jarlskog, I.; Stromvall, A.M.; Magnusson, K.; Gustafsson, M.; Polukarova, M.; Galfi, H.; Aronsson, M.; Andersson-Skold, Y. Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater. Sci. Total Environ. 2020, 729, 138950. [Google Scholar] [CrossRef]
- Lange, K.; Magnusson, K.; Viklander, M.; Blecken, G.T. Removal of rubber, bitumen and other microplastic particles from stormwater by a gross pollutant trap—Bioretention treatment train. Water Res. 2021, 202, 117457. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Huffer, T.; Thompson, R.C.; Hassellov, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar]
- Luo, Z.; Zhou, X.; Su, Y.; Wang, H.; Yu, R.; Zhou, S.; Xu, E.G.; Xing, B. Environmental occurrence, fate, impact, and potential solution of tire microplastics: Similarities and differences with tire wear particles. Sci. Total Environ. 2021, 795, 148902. [Google Scholar] [CrossRef]
- Kole, P.J.; Lohr, A.J.; Van Belleghem, F.; Ragas, A.M.J. Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef]
- Wagner, S.; Hüffer, T.; Klöckner, P.; Wehrhahn, M.; Hofmann, T.; Reemtsma, T. Tire wear particles in the aquatic environment—A review on generation, analysis, occurrence, fate and effects. Water Res. 2018, 139, 83–100. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, Z.; Yu, X.; Jia, Z.; Rosso, M.; Dedman, S.; Zhu, J.; Xia, Y.; Zhang, G.; Yang, J.; et al. Can we quantify the aquatic environmental plastic load from aquaculture? Water Res. 2022, 219, 118551. [Google Scholar] [CrossRef]
- Selonen, S.; Dolar, A.; Jemec Kokalj, A.; Sackey, L.N.A.; Skalar, T.; Cruz Fernandes, V.; Rede, D.; Delerue-Matos, C.; Hurley, R.; Nizzetto, L.; et al. Exploring the impacts of microplastics and associated chemicals in the terrestrial environment—Exposure of soil invertebrates to tire particles. Environ. Res. 2021, 201, 111495. [Google Scholar] [CrossRef]
- Wik, A.; Dave, G. Occurrence and effects of tire wear particles in the environment--a critical review and an initial risk assessment. Environ. Pollut. 2009, 157, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Barbin, W.W.; Rodgers, M.B. The Science of Rubber Compounding. In Science and Technology of Rubber, 2nd ed.; Academic Press: Cambridge, MA, USA, 1994; Volume 9, pp. 419–469. [Google Scholar]
- Panko, J.; Hitchcock, K.; Fuller, G.; Green, D. Evaluation of Tire Wear Contribution to PM2.5 in Urban Environments. Atmosphere 2019, 10, 99. [Google Scholar] [CrossRef]
- Rijo, B.; Soares Dias, A.P.; Wojnicki, Ł. Catalyzed pyrolysis of scrap tires rubber. J. Environ. Chem. Eng. 2021, 10, 107037. [Google Scholar] [CrossRef]
- Roy, K.; Debnath, S.C.; Pongwisuthiruchte, A.; Potiyaraj, P. Review on the Conceptual Design of Self-Healable Nitrile Rubber Composites. ACS Omega 2021, 6, 9975–9981. [Google Scholar] [CrossRef]
- Sharma, R.K.; Mohanty, S.; Gupta, V. Advances in butyl rubber synthesis via cationic polymerization: An overview. Polym. Int. 2021, 70, 1165–1175. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, T.; He, M.; Shah, K.J.; You, Z.; Zhang, T.; Zubair, M. Exploring the toxicity of the aged styrene-butadiene rubber microplastics to petroleum hydrocarbon-degrading bacteria under compound pollution system. Ecotoxicol. Environ. Saf. 2021, 227, 112903. [Google Scholar] [CrossRef]
- Rodland, E.S.; Lind, O.C.; Reid, M.; Heier, L.S.; Skogsberg, E.; Snilsberg, B.; Gryteselv, D.; Meland, S. Characterization of tire and road wear microplastic particle contamination in a road tunnel: From surface to release. J. Hazard. Mater. 2022, 435, 129032. [Google Scholar] [CrossRef]
- Halle, L.L.; Palmqvist, A.; Kampmann, K.; Khan, F.R. Ecotoxicology of micronized tire rubber: Past, present and future considerations. Sci. Total Environ. 2020, 706, 135694. [Google Scholar] [CrossRef]
- Yerezhep, D.; Tychengulova, A.; Sokolov, D.; Aldiyarov, A. A Multifaceted Approach for Cryogenic Waste Tire Recycling. Polymers 2021, 13, 2494. [Google Scholar] [CrossRef]
- Hu, Y.; Attia, M.; Tsabet, E.; Mohaddespour, A.; Munir, M.T.; Farag, S. Valorization of waste tire by pyrolysis and hydrothermal liquefaction: A mini-review. J. Mater. Cycles Waste Manag. 2021, 23, 1737–1750. [Google Scholar] [CrossRef]
- Tasalloti, A.; Chiaro, G.; Murali, A.; Banasiak, L.; Palermo, A.; Granello, G. Recycling of End-of-Life Tires (ELTs) for Sustainable Geotechnical Applications: A New Zealand Perspective. Appl. Sci. 2021, 11, 7824. [Google Scholar] [CrossRef]
- Awogbemi, O.; Kallon, D.V.V.; Bello, K.A. Resource Recycling with the Aim of Achieving Zero-Waste Manufacturing. Sustainability 2022, 14, 4503. [Google Scholar] [CrossRef]
- Cheng, Z.; Shi, Q.; Wang, Y.; Zhao, L.; Li, X.; Sun, Z.; Lu, Y.; Liu, N.; Su, G.; Wang, L.; et al. Electronic-Waste-Driven Pollution of Liquid Crystal Monomers: Environmental Occurrence and Human Exposure in Recycling Industrial Parks. Environ. Sci. Technol. 2022, 56, 2248–2257. [Google Scholar] [CrossRef]
- Unice, K.M.; Weeber, M.P.; Abramson, M.M.; Reid, R.C.D.; van Gils, J.A.G.; Markus, A.A.; Vethaak, A.D.; Panko, J.M. Characterizing export of land-based microplastics to the estuary—Part II: Sensitivity analysis of an integrated geospatial microplastic transport modeling assessment of tire and road wear particles. Sci. Total Environ. 2019, 646, 1650–1659. [Google Scholar] [CrossRef]
- Leads, R.R.; Weinstein, J.E. Occurrence of tire wear particles and other microplastics within the tributaries of the Charleston Harbor Estuary, South Carolina, USA. Mar. Pollut. Bull. 2019, 145, 569–582. [Google Scholar] [CrossRef]
- Sieber, R.; Kawecki, D.; Nowack, B. Dynamic probabilistic material flow analysis of rubber release from tires into the environment. Environ. Pollut. 2020, 258, 113573. [Google Scholar] [CrossRef]
- Gossmann, I.; Halbach, M.; Scholz-Bottcher, B.M. Car and truck tire wear particles in complex environmental samples—A quantitative comparison with “traditional” microplastic polymer mass loads. Sci. Total Environ. 2021, 773, 145667. [Google Scholar] [CrossRef]
- Lenaker, P.L.; Baldwin, A.K.; Corsi, S.R.; Mason, S.A.; Reneau, P.C.; Scott, J.W. Vertical Distribution of Microplastics in the Water Column and Surficial Sediment from the Milwaukee River Basin to Lake Michigan. Environ. Sci. Technol. 2019, 53, 12227–12237. [Google Scholar] [CrossRef]
- Muller, A.; Kocher, B.; Altmann, K.; Braun, U. Determination of tire wear markers in soil samples and their distribution in a roadside soil. Chemosphere 2022, 294, 133653. [Google Scholar] [CrossRef]
- Nelms, S.E.; Galloway, T.S.; Godley, B.J.; Jarvis, D.S.; Lindeque, P.K. Investigating microplastic trophic transfer in marine top predators. Environ. Pollut. 2018, 238, 999–1007. [Google Scholar] [CrossRef]
- Pochron, S.T.; Fiorenza, A.; Sperl, C.; Ledda, B.; Lawrence Patterson, C.; Tucker, C.C.; Tucker, W.; Ho, Y.L.; Panico, N. The response of earthworms (Eisenia fetida) and soil microbes to the crumb rubber material used in artificial turf fields. Chemosphere 2017, 173, 557–562. [Google Scholar] [CrossRef]
- Gualtieri, M.; Andrioletti, M.; Vismara, C.; Milani, M.; Camatini, M. Toxicity of tire debris leachates. Environ. Int. 2005, 31, 723–730. [Google Scholar] [CrossRef]
- Cunningham, B.; Harper, B.; Brander, S.; Harper, S. Toxicity of micro and nano tire particles and leachate for model freshwater organisms. J. Hazard. Mater. 2022, 429, 128319. [Google Scholar] [CrossRef]
- Turner, A.; Rice, L. Toxicity of tire wear particle leachate to the marine macroalga, Ulva lactuca. Environ. Pollut. 2010, 158, 3650–3654. [Google Scholar] [CrossRef]
- Capolupo, M.; Sorensen, L.; Jayasena, K.D.R.; Booth, A.M.; Fabbri, E. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Res. 2020, 169, 115270. [Google Scholar] [CrossRef]
- Hong, R.L.; Sommer, R.J. Pristionchus pacificus: A well-rounded nematode. Bioessays 2006, 28, 651–659. [Google Scholar] [CrossRef]
- Alexandrowicz, S.W. Bithynia tentaculata (Linnaeus, 1758) as an indicator of age and deposition environment of quaternary sediments. Assoc. Polish Malacol. 1999, 2, 79–88. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, K.; Zhang, J.; Jia, F.; He, F.; Cui, Y.; Li, M.; Wan, Y. Study on the Production of Pentachloronitrobenzene Monoclonal Antibody and Its ELISA Kit for Rapid Detection. Agric. Biotechnol. 2021, 10, 17–20,44. [Google Scholar]
- Hiki, K.; Asahina, K.; Kato, K.; Yamagishi, T.; Omagari, R.; Iwasaki, Y.; Watanabe, H.; Yamamoto, H. Acute Toxicity of a Tire Rubber-Derived Chemical, 6PPD Quinone, to Freshwater Fish and Crustacean Species. Environ. Sci. Technol. Lett. 2021, 8, 779–784. [Google Scholar] [CrossRef]
- Cunningham, D.; Casey, E.S. Spatiotemporal development of the embryonic nervous system of Saccoglossus kowalevskii. Dev. Biol. 2014, 386, 252–263. [Google Scholar] [CrossRef]
- Capolupo, M.; Gunaalan, K.; Booth, A.M.; Sorensen, L.; Valbonesi, P.; Fabbri, E. The sub-lethal impact of plastic and tire rubber leachates on the Mediterranean mussel Mytilus galloprovincialis. Environ. Pollut. 2021, 283, 117081. [Google Scholar] [CrossRef]
- Goodman, A.J.; McIntyre, J.; Smith, A.; Fulton, L.; Walker, T.R.; Brown, C.J. Retrieval of abandoned, lost, and discarded fishing gear in Southwest Nova Scotia, Canada: Preliminary environmental and economic impacts to the commercial lobster industry. Mar. Pollut. Bull. 2021, 171, 112766. [Google Scholar] [CrossRef]
- Masset, T.; Ferrari, B.J.D.; Oldham, D.; Dudefoi, W.; Minghetti, M.; Schirmer, K.; Bergmann, A.; Vermeirssen, E.; Breider, F. In Vitro Digestion of Tire Particles in a Fish Model (Oncorhynchus mykiss): Solubilization Kinetics of Heavy Metals and Effects of Food Coingestion. Environ. Sci. Technol. 2021, 55, 15788–15796. [Google Scholar] [CrossRef]
- Kim, S.W.; Leifheit, E.F.; Maaß, S.; Rillig, M.C. Time-Dependent Toxicity of Tire Particles on Soil Nematodes. Front. Environ. Sci. 2021, 9, 414. [Google Scholar] [CrossRef]
- Roelofs, D.; Janssens, T.K.; Timmermans, M.J.; Nota, B.; Marien, J.; Bochdanovits, Z.; Ylstra, B.; Van Straalen, N.M. Adaptive differences in gene expression associated with heavy metal tolerance in the soil arthropod Orchesella cincta. Mol. Ecol. 2009, 18, 3227–3239. [Google Scholar] [CrossRef]
- Massicotte, R.; Robidoux, P.Y.; Sauve, S.; Flipo, D.; Mathiot, A.; Fournier, M.; Trottier, B. Immunotoxicological response of the earthworm Lumbricus terrestris following exposure to cement kiln dusts. Ecotoxicol. Environ. Saf. 2004, 59, 10–16. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Dong, Q.L.; Zhu, K.S.; Gao, L.; Chen, X.; Xiang, H. Long-read transcriptomic analysis of orb-weaving spider Araneus ventricosus indicates transcriptional diversity of spidroins. Int. J. Biol. Macromol. 2021, 168, 395–402. [Google Scholar] [CrossRef]
- Papke, R.L. Merging old and new perspectives on nicotinic acetylcholine receptors. Biochem. Pharmacol. 2014, 89, 1–11. [Google Scholar] [CrossRef]
- Gibson, D.A.; Saunders, P.T. Estrogen dependent signaling in reproductive tissues—A role for estrogen receptors and estrogen related receptors. Mol. Cell. Endocrinol. 2012, 348, 361–372. [Google Scholar] [CrossRef]
- Zhang, J.S.; Lazar, M.L. The mechanism of action of thyroid hormones. Annual Reviews 2000, 62, 439–466. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y. Design of environmentally friendly neonicotinoid insecticides with bioconcentration tuning and Bi-directional selective toxic effects. J. Clean. Prod. 2019, 221, 113–121. [Google Scholar] [CrossRef]
- Liu, X.; Liu, T.; Song, J.; Hai, Y.; Luan, F.; Zhang, H.; Yuan, Y.; Li, H.; Zhao, C. Understanding the interaction of single-walled carbon nanotube (SWCNT) on estrogen receptor: A combined molecular dynamics and experimental study. Ecotoxicol. Environ. Saf. 2019, 172, 373–379. [Google Scholar] [CrossRef]
- Wang, W.; Ma, Q.; Ding, X.; Xu, Y.; He, M.; Xu, J.; Liu, J.; Ji, C.; Zhang, J. Developmental toxicity of bromoacetamide via the thyroid hormone receptors-mediated disruption of thyroid hormone homeostasis in zebrafish embryos. Ecotoxicol. Environ. Saf. 2022, 233, 113334. [Google Scholar] [CrossRef]
- Johannessen, C.; Liggio, J.; Zhang, X.; Saini, A.; Harner, T. Composition and transformation chemistry of tire-wear derived organic chemicals and implications for air pollution. Atmos. Pollut. Res. 2022, 13, 101533. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Li, Y. Toxicity inhibition strategy of microplastics to aquatic organisms through molecular docking, molecular dynamics simulation and molecular modification. Ecotoxicol. Environ. Saf. 2021, 226, 112870. [Google Scholar] [CrossRef]
- Canepari, S.; Castellano, P.; Astolfi, M.L.; Materazzi, S.; Ferrante, R.; Fiorini, D.; Curini, R. Release of particles, organic compounds, and metals from crumb rubber used in synthetic turf under chemical and physical stress. Environ. Sci. Pollut. Res. Int. 2018, 25, 1448–1459. [Google Scholar] [CrossRef]
- Kim, L.; Cui, R.; Il Kwak, J.; An, Y.J. Trophic transfer of nanoplastics through a microalgae-crustacean-small yellow croaker food chain: Inhibition of digestive enzyme activity in fish. J. Hazard. Mater. 2022, 440, 129715. [Google Scholar] [CrossRef]
- Zhao, Y.; Hou, Y.; Li, Y. Multi-directional selective toxicity effects on farmland ecosystems: A novel design of green substitutes for neonicotinoid insecticides. J. Clean. Prod. 2020, 272, 122715. [Google Scholar] [CrossRef]
- Van Asselt, J.; Nian, Y.; Soh, M.; Morgan, S.; Gao, Z. Do plastic warning labels reduce consumers’ willingness to pay for plastic egg packaging?—Evidence from a choice experiment. Ecol. Econ. 2022, 198, 107460. [Google Scholar]
- Li, X.; Zhao, Y.; Chen, B.; Zhu, Z.; Kang, Q.; Husain, T.; Zhang, B. Inhalation and ingestion of Synthetic musks in pregnant women: In silico spontaneous abortion risk evaluation and control. Environ. Int. 2022, 158, 106911. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y. Modified neonicotinoid insecticide with bi-directional selective toxicity and drug resistance. Ecotoxicol. Environ. Saf. 2018, 164, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Aho, N.; Buslaev, P.; Jansen, A.; Bauer, P.; Groenhof, G.; Hess, B. Scalable Constant pH Molecular Dynamics in GROMACS. J. Chem. Theory Comput. 2022, 18, 6148–6160. [Google Scholar] [CrossRef]
- Sarkar, A.; Santoro, J.; Di Biasi, L.; Marrafino, F.; Piotto, S. YAMACS: A graphical interface for GROMACS. Bioinformatics 2022, 38, 4645–4646. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Li, X.; Cai, D.; Zhao, Y.; Li, Q.; Wang, J.; Gu, W.; Li, Y. In-silico study of reducing human health risk of POP residues’ direct (from tea) or indirect exposure (from tea garden soil): Improved rhizosphere microbial degradation, toxicity control, and mechanism analysis. Ecotoxicol. Environ. Saf. 2022, 242, 113910. [Google Scholar] [CrossRef]
- Fu, L.; Mao, S.; Chen, F.; Zhao, S.; Su, W.; Lai, G.; Yu, A.; Lin, C.T. Graphene-based electrochemical sensors for antibiotic detection in water, food and soil: A scientometric analysis in CiteSpace (2011-2021). Chemosphere 2022, 297, 134127. [Google Scholar] [CrossRef]
- Gewers, F.L.; Ferreira, G.R.; Arruda, H.F.D.; Silva, F.N.; Comin, C.H.; Amancio, D.R.; Costa, L.D.F. Principal Component Analysis. ACM Comput. Surv. 2022, 54, 1–34. [Google Scholar] [CrossRef]
- Xiong, Q.; Xiong, H.; Kong, Q.; Ni, X.; Li, Y.; Yuan, C. Machine learning-driven seismic failure mode identification of reinforced concrete shear walls based on PCA feature extraction. Structures 2022, 44, 1429–1442. [Google Scholar] [CrossRef]
- Dobriban, E. Permutation methods for factor analysis and PCA. Ann. Stat. 2020, 48, 2824–2847. [Google Scholar] [CrossRef]
- Rosenbaum, P.R. Imposing Minimax and Quantile Constraints on Optimal Matching in Observational Studies. J. Comput. Graph. Stat. 2017, 26, 66–78. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, X.; Hoi, S.C.H.; Zhu, J. Feature agglomeration networks for single stage face detection. Neurocomputing 2020, 380, 180–189. [Google Scholar] [CrossRef]
- Buhyoff, G.J.; Arndt, L.K.; Propst, D.B. Interval scaling of landscape preference by direct- and indirect-measurement methods. Landsc. Plan. 1981, 8, 257–267. [Google Scholar] [CrossRef]
- Jin, X.; Zhao, Y.; Ren, Z.; Wang, P.; Li, Y. Bio-Enhanced Degradation Strategies for Fluoroquinolones in the Sewage Sludge Composting Stage: Molecular Modification and Resistance Gene Regulation. Int. J. Environ. Res. Public Health 2022, 19, 7766. [Google Scholar] [CrossRef]
- Cheadle, C.; Vawter, M.P.; Freed, W.J.; Becker, K.G. Analysis of Microarray Data Using Z Score Transformation. J. Mol. Diagn. 2003, 5, 73–81. [Google Scholar] [CrossRef]
- Fu, R.; Li, X.; Zhao, Y.; Pu, Q.; Li, Y.; Gu, W. Efficient and synergistic degradation of fluoroquinolones by bacteria and microalgae: Design of environmentally friendly substitutes, risk regulation and mechanism analysis. J. Hazard. Mater. 2022, 437, 129384. [Google Scholar] [CrossRef]
- Li, X.; Gu, W.; Zhang, B.; Xin, X.; Kang, Q.; Yang, M.; Chen, B.; Li, Y. Insights into toxicity of polychlorinated naphthalenes to multiple human endocrine receptors: Mechanism and health risk analysis. Environ. Int. 2022, 165, 107291. [Google Scholar] [CrossRef]
- Barnes, D.K.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef]
- Kaur, H.; Rawat, D.; Poria, P.; Sharma, U.; Gibert, Y.; Ethayathulla, A.S.; Dumee, L.F.; Sharma, R.S.; Mishra, V. Ecotoxic effects of microplastics and contaminated microplastics—Emerging evidence and perspective. Sci. Total Environ. 2022, 841, 156593. [Google Scholar] [CrossRef]
- Syberg, K.; Khan, F.R.; Selck, H.; Palmqvist, A.; Banta, G.T.; Daley, J.; Sano, L.; Duhaime, M.B. Microplastics: Addressing ecological risk through lessons learned. Environ. Toxicol. Chem. 2015, 34, 945–953. [Google Scholar] [CrossRef]
- Potapov, A.M.; Beaulieu, F.; Birkhofer, K.; Bluhm, S.L.; Degtyarev, M.I.; Devetter, M.; Goncharov, A.A.; Gongalsky, K.B.; Klarner, B.; Korobushkin, D.I.; et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev. Camb. Philos. Soc. 2022, 97, 1057–1117. [Google Scholar] [CrossRef]
- Farías, A.; Uriarte, I.; Hernández, J.; Pino, S.; Pascual, C.; Caamal, C.; Domíngues, P.; Rosas, C. How size relates to oxygen consumption, ammonia excretion, and ingestion rates in cold (Enteroctopus megalocyathus) and tropical (Octopus maya) octopus species. Mar. Biol. 2009, 156, 1547–1558. [Google Scholar] [CrossRef]
- Zuev, A.; Heidemann, K.; Leonov, V.; Schaefer, I.; Scheu, S.; Tanasevitch, A.; Tiunov, A.; Tsurikov, S.; Potapov, A. Different groups of ground-dwelling spiders share similar trophic niches in temperate forests. Ecol. Entomol. 2020, 45, 1346–1356. [Google Scholar] [CrossRef]
- Unice, K.M.; Weeber, M.P.; Abramson, M.M.; Reid, R.C.D.; van Gils, J.A.G.; Markus, A.A.; Vethaak, A.D.; Panko, J.M. Characterizing export of land-based microplastics to the estuary—Part I: Application of integrated geospatial microplastic transport models to assess tire and road wear particles in the Seine watershed. Sci. Total Environ. 2019, 646, 1639–1649. [Google Scholar] [CrossRef]
- Song, P.; Wu, X.; Wang, S. Effect of styrene butadiene rubber on the light pyrolysis of the natural rubber. Polym. Degrad. Stab. 2018, 147, 168–176. [Google Scholar] [CrossRef]
- Baensch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and road wear particles (TRWP)—A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 2020, 733, 137823. [Google Scholar] [CrossRef]
- Kogel, T.; Bjoroy, O.; Toto, B.; Bienfait, A.M.; Sanden, M. Micro- and nanoplastic toxicity on aquatic life: Determining factors. Sci. Total Environ. 2020, 709, 136050. [Google Scholar] [CrossRef]
- Cverenkarova, K.; Valachovicova, M.; Mackulak, T.; Zemlicka, L.; Birosova, L. Microplastics in the Food Chain. Life 2021, 11, 1349. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Xu, Y.; Ren, L.; Yang, L.; Liu, X.; Dai, Y.; Zhao, J.; Yue, T. Distinguishing the nanoplastic–cell membrane interface by polymer type and aging properties: Translocation, transformation and perturbation. Environ. Sci. Nano 2023, 10, 440–453. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Li, Y. Combined HQSAR method and molecular docking study on genotoxicity mechanism of quinolones with higher genotoxicity. Environ. Sci. Pollut. Res. Int. 2019, 26, 34830–34853. [Google Scholar] [CrossRef]
- Li, X.; Hou, Y.; Li, Q.; Gu, W.; Li, Y. Molecular design of high-efficacy and high drug safety Fluoroquinolones suitable for a variety of aerobic biodegradation bacteria. J. Environ. Manag. 2021, 299, 113628. [Google Scholar] [CrossRef]
- Van Lommel, R.; Bettens, T.; Barlow, T.M.A.; Bertouille, J.; Ballet, S.; De Proft, F. A Quantum Chemical Deep-Dive into the pi-pi Interactions of 3-Methylindole and Its Halogenated Derivatives-Towards an Improved Ligand Design and Tryptophan Stacking. Pharmaceuticals 2022, 15, 935. [Google Scholar] [CrossRef]
- Pu, Q.; Han, Z.; Li, X.; Li, Q.; Li, Y. Designing and screening of fluoroquinolone substitutes using combined in silico approaches: Biological metabolism–bioconcentration bilateral selection and their mechanism analyses. Green Chem. 2022, 24, 3778–3793. [Google Scholar] [CrossRef]
Rubber | Antioxidant | Plasticizer | Flame Retardant | Light Stabilizer | Heat Stabilizer | Lubricant |
---|---|---|---|---|---|---|
NR | DTBHQ | Naphthenic oil | Triphenyl phosphate | Tinuvin 326 | Zinc stearate | Pentaerythrityl tetrastearate |
SBR | TMQ | Naphthenic oil | Decabromodiphenyl oxide | Tinuvin 770 | PA6 | N,N′-ethylenedi (stearamide) |
BR | Antioxidant -1520 | DBP | Decabromodiphenyl oxide | UV-531 | 4,4-bis (α, α-dimethylbenzyl) diphenylamine | N,N′-ethylenebisoleamide |
NBR | Antioxidant -2246 | Diisooctyl adipate | Bisphenol A | Tinuvin 765 | Triphenyl phosphite | Oleamide |
IIR | Antioxidant-BHT | Chlorinated paraffins | Tris(1-Chloro-2-Propyl) Phosphate | Tinuvin 622 | Calcium stearate | Propanal |
Environmental Media | Species | Neurotoxic-Receptor Number and Source (Acetylcholine) | Developmental-Toxicity-Receptor Number and Source (Thyroid Hormone) | Reproductive-Toxicity-Receptor Number and Source (Estrogen) | |||
---|---|---|---|---|---|---|---|
Freshwater environment | Freshwater nematodes | A0A2A6D033 | UniProt | A0A2A6BEU0 | UniProt | A0A2A6CC73 | UniProt |
Snails | A0A8F1SZL8 | UniProt | A0A182YVU7 | UniProt | W8SMZ8 | UniProt | |
Shrimp | A0A3R7MHH7 | UniProt | A0A3R7QNK1 | UniProt | A0A423TCB3 | UniProt | |
Freshwater fish | BAH11081.1 | NCBI | Q766D2 | NCBI | P50241 | UniProt | |
Marine environment | Marine nematodes | A0A0U2IDR0 | UniProt | D2XNK4 | NCBI | B5THM8 | UniProt |
Mussels | A0A8B6HK24 | UniProt | A0A4Y5MV01 | UniProt | A0A8B6H7D5 | UniProt | |
Crabs | A0A6B9F3J7 | UniProt | MPC23433.1 | NCBI | A0A097C257 | UniProt | |
Marine fish | 2ACE | PDB | Q9W6I9 | NCBI | P16058 | UniProt | |
Soil environment | Soil nematodes | Q65XS8 | UniProt | F11A1.3a | NCBI | T01B10.4a | NCBI |
Springtails | A0A1D2NK24 | UniProt | A0A1D2N3W7 | UniProt | A0A1D2NKF5 | UniProt | |
Earthworms | Q34946 | UniProt | A0A2I7YV05 | UniProt | QCI03097.1 | NCBI | |
Spiders | A0A4Y2A8I0 | UniProt | A0A2L2YDA1 | UniProt | A0A087U0Z5 | UniProt |
Environmental Media | Species | Toxic Types | Rubber Types | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NR | SBR | IIR | NBR | BR | ||||||||
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | |||
Marine environment | Marine nematodes | Neurotoxic | −85.814 | ±11.435 | −134.724 | ±13.936 | −103.666 | ±13.190 | −56.265 | ±13.899 | −109.635 | ±10.219 |
Developmental toxicity | −190.042 | ±9.203 | −114.182 | ±23.364 | −157.660 | ±5.620 | −130.506 | ±11.160 | −125.605 | ±8.270 | ||
Reproductive toxicity | −127.508 | ±12.039 | −136.188 | ±9.322 | −107.039 | ±8.367 | −49.666 | ±8.429 | −80.121 | ±14.786 | ||
Mussels | Neurotoxic | −120.140 | ±14.242 | −105.094 | ±11.984 | −102.452 | ±10.648 | −85.575 | ±6.831 | −60.038 | ±8.120 | |
Developmental toxicity | −109.222 | ±7.781 | −84.286 | ±15.886 | −83.981 | ±11.494 | −68.699 | ±41.885 | −137.881 | ±10.332 | ||
Reproductive toxicity | −99.354 | ±11.658 | −130.416 | ±17.688 | −129.412 | ±18.393 | −66.284 | ±11.621 | −120.806 | ±6.779 | ||
Crabs | Neurotoxic | −134.735 | ±19.536 | −138.866 | ±10.444 | −103.575 | ±13.660 | −42.803 | ±14.144 | −153.636 | ±15.710 | |
Developmental toxicity | −103.470 | ±9.381 | −119.700 | ±26.069 | −97.682 | ±10.828 | −82.711 | ±10.619 | −92.112 | ±6.798 | ||
Reproductive toxicity | −102.930 | ±11.120 | −100.485 | ±18.488 | −107.063 | ±6.739 | −58.793 | ±11.303 | −61.894 | ±19.045 | ||
Marine fish | Neurotoxic | −143.640 | ±9.761 | −227.859 | ±16.971 | −130.112 | ±10.762 | −80.107 | ±13.503 | −121.493 | ±11.758 | |
Developmental toxicity | −170.626 | ±9.586 | −97.698 | ±7.362 | −130.174 | ±8.017 | −116.101 | ±7.980 | −107.314 | ±11.222 | ||
Reproductive toxicity | −150.872 | ±6.363 | −130.131 | ±13.778 | −86.038 | ±6.615 | −23.478 | ±3.563 | −74.073 | ±10.225 | ||
Freshwater environment | Freshwater nematodes | Neurotoxic | −73.776 | ±21.276 | −102.638 | ±14.695 | −88.644 | ±8.896 | −42.805 | ±11.989 | −62.687 | ±8.654 |
Developmental toxicity | −148.863 | ±12.367 | −85.244 | ±20.565 | −149.897 | ±6.213 | −118.048 | ±9.788 | −80.690 | ±15.844 | ||
Reproductive toxicity | −132.451 | ±7.113 | −122.946 | ±15.471 | −104.044 | ±10.566 | −35.948 | ±9.672 | −85.521 | ±9.082 | ||
Snails | Neurotoxic | −175.723 | ±9.204 | −209.514 | ±18.150 | −130.063 | ±12.114 | −107.159 | ±5.265 | −145.993 | ±12.572 | |
Developmental toxicity | −138.244 | ±12.237 | −157.761 | ±8.950 | −81.125 | ±7.704 | −70.769 | ±7.796 | −139.429 | ±12.300 | ||
Reproductive toxicity | −99.302 | ±10.569 | −156.511 | ±12.364 | −165.297 | ±10.441 | −110.16 | ±6.964 | −176.979 | ±8.330 | ||
Shrimp | Neurotoxic | −134.723 | ±8.166 | −214.905 | ±13.311 | −112.634 | ±7.695 | −92.276 | ±12.793 | −105.606 | ±12.873 | |
Developmental toxicity | −136.396 | ±11.802 | −159.702 | ±11.972 | −105.391 | ±9.955 | −121.405 | ±9.431 | −135.354 | ±8.712 | ||
Reproductive toxicity | −152.165 | ±9.279 | −193.319 | ±7.826 | −155.344 | ±5.892 | −127.642 | ±5.432 | −149.849 | ±6.892 | ||
Freshwater fish | Neurotoxic | −142.027 | ±9.472 | −101.777 | ±11.450 | −132.187 | ±10.865 | −142.093 | ±9.638 | −145.136 | ±5.879 | |
Developmental toxicity | −129.466 | ±6.924 | −105.937 | ±12.416 | −134.523 | ±4.840 | −141.062 | ±9.207 | −139.252 | ±7.332 | ||
Reproductive toxicity | −126.803 | ±19.028 | −96.850 | ±14.008 | −160.789 | ±7.737 | −115.327 | ±12.091 | −146.603 | ±7.914 | ||
Soil environment | Soil nematodes | Neurotoxic | −140.318 | ±12.305 | −142.906 | ±15.985 | −119.421 | ±9.168 | −69.341 | ±15.983 | −119.106 | ±11.630 |
Developmental toxicity | −156.208 | ±12.194 | −103.652 | ±12.223 | −127.39 | ±6.012 | −91.232 | ±11.483 | −141.282 | ±10.433 | ||
Reproductive toxicity | −97.488 | ±9.695 | −132.416 | ±8.421 | −88.463 | ±7.693 | −42.997 | ±10.314 | −76.235 | ±6.726 | ||
Springtails | Neurotoxic | −144.001 | ±8.558 | −120.260 | ±10.905 | −127.982 | ±7.483 | −74.308 | ±8.581 | −117.241 | ±6.535 | |
Developmental toxicity | −81.106 | ±15.388 | −108.633 | ±19.151 | −64.389 | ±12.405 | −40.046 | ±15.481 | −94.386 | ±9.940 | ||
Reproductive toxicity | −158.757 | ±6.618 | −167.882 | ±11.916 | −132.001 | ±9.169 | −42.883 | ±5.863 | −73.710 | ±5.269 | ||
Earthworms | Neurotoxic | −166.664 | ±7.439 | −191.017 | ±8.843 | −120.004 | ±4.587 | −100.327 | ±10.718 | −134.435 | ±10.697 | |
Developmental toxicity | −100.351 | ±8.859 | −90.403 | ±15.463 | −89.585 | ±12.078 | −28.353 | ±3.654 | −79.751 | ±15.741 | ||
Reproductive toxicity | −112.308 | ±11.928 | −119.241 | ±9.449 | −62.444 | ±21.694 | −73.724 | ±15.030 | −67.075 | ±28.081 | ||
Spiders | Neurotoxic | −140.385 | ±8.686 | −170.018 | ±13.283 | −103.673 | ±6.816 | −71.195 | ±11.000 | −113.221 | ±6.736 | |
Developmental toxicity | −74.140 | ±12.342 | −113.069 | ±16.365 | −95.061 | ±10.149 | −39.851 | ±8.307 | −101.452 | ±12.796 | ||
Reproductive toxicity | −91.384 | ±8.882 | −102.088 | ±19.800 | −140.865 | ±9.881 | −114.247 | ±10.824 | −148.510 | ±6.519 |
Environmental Media | Species | Toxic Type | Rubber Types | ||||
---|---|---|---|---|---|---|---|
NR | SBR | IIR | NBR | BR | |||
Marine environment | Marine nematodes | Neurotoxic | −0.088 | −0.138 | −0.106 | −0.058 | −0.112 |
Developmental toxicity | −0.213 | −0.128 | −0.177 | −0.147 | −0.141 | ||
Reproductive toxicity | −0.141 | −0.151 | −0.119 | −0.055 | −0.089 | ||
Mussels | Neurotoxic | −0.123 | −0.108 | −0.105 | −0.088 | −0.062 | |
Developmental toxicity | −0.123 | −0.095 | −0.094 | −0.077 | −0.155 | ||
Reproductive toxicity | −0.110 | −0.145 | −0.143 | −0.073 | −0.134 | ||
Crabs | Neurotoxic | −0.138 | −0.142 | −0.106 | −0.044 | −0.158 | |
Developmental toxicity | −0.116 | −0.134 | −0.110 | −0.093 | −0.103 | ||
Reproductive toxicity | −0.114 | −0.111 | −0.119 | −0.065 | −0.069 | ||
Marine fish | Neurotoxic | −0.147 | −0.234 | −0.133 | −0.082 | −0.125 | |
Developmental toxicity | −0.192 | −0.110 | −0.146 | −0.130 | −0.120 | ||
Reproductive toxicity | −0.167 | −0.144 | −0.095 | −0.053 | −0.082 | ||
Freshwater environment | Freshwater nematodes | Neurotoxic | −0.076 | −0.105 | −0.091 | −0.044 | −0.064 |
Developmental toxicity | −0.167 | −0.096 | −0.168 | −0.133 | −0.091 | ||
Reproductive toxicity | −0.147 | −0.136 | −0.115 | −0.040 | −0.095 | ||
Snails | Neurotoxic | −0.180 | −0.215 | −0.133 | −0.110 | −0.150 | |
Developmental toxicity | −0.155 | −0.177 | −0.091 | −0.079 | −0.157 | ||
Reproductive toxicity | −0.110 | −0.173 | −0.183 | −0.122 | −0.196 | ||
Shrimp | Neurotoxic | −0.138 | −0.220 | −0.116 | −0.095 | −0.108 | |
Developmental toxicity | −0.153 | −0.179 | −0.118 | −0.136 | −0.152 | ||
Reproductive toxicity | −0.169 | −0.214 | −0.172 | −0.141 | −0.166 | ||
Freshwater fish | Neurotoxic | −0.146 | −0.104 | −0.136 | −0.146 | −0.149 | |
Developmental toxicity | −0.145 | −0.119 | −0.151 | −0.158 | −0.156 | ||
Reproductive toxicity | −0.141 | −0.107 | −0.178 | −0.128 | −0.163 | ||
Soil environment | Soil nematodes | Neurotoxic | −0.144 | −0.147 | −0.122 | −0.071 | −0.122 |
Developmental toxicity | −0.175 | −0.116 | −0.143 | −0.102 | −0.159 | ||
Reproductive toxicity | −0.108 | −0.147 | −0.098 | −0.048 | −0.085 | ||
Springtails | Neurotoxic | −0.148 | −0.123 | −0.131 | −0.076 | −0.120 | |
Developmental toxicity | −0.091 | −0.122 | −0.072 | −0.045 | −0.106 | ||
Reproductive toxicity | −0.176 | −0.186 | −0.146 | −0.048 | −0.082 | ||
Earthworms | Neurotoxic | −0.171 | −0.196 | −0.123 | −0.103 | −0.138 | |
Developmental toxicity | −0.113 | −0.101 | −0.101 | −0.032 | −0.090 | ||
Reproductive toxicity | −0.124 | −0.132 | −0.069 | −0.082 | −0.074 | ||
Spiders | Neurotoxic | −0.144 | −0.174 | −0.106 | −0.073 | −0.116 | |
Developmental toxicity | −0.083 | −0.127 | −0.107 | −0.045 | −0.114 | ||
Reproductive toxicity | −0.101 | −0.113 | −0.156 | −0.127 | −0.165 |
Components | Initial Features | Extract Features | ||||
---|---|---|---|---|---|---|
Eigenvalue | Variance Contribution | Cumulative Contribution | Eigenvalue | Variance Contribution | Cumulative Contribution | |
1 | 0.058 | 58.11% | 58.11% | 0.058 | 58.11% | 58.11% |
2 | 0.041 | 41.88% | 99.99% | 0.041 | 41.88% | 99.99% |
3 | 1.441 × 10−31 | 1.44 × 10−29% | 100% |
Toxic Type | Two-Dimensional Features | Features Weights | ck | Weights | ||
---|---|---|---|---|---|---|
ai1 | ai2 | bi1 | bi2 | |||
Neurotoxic | −0.144 | −0.138 | 0.339 | 0.394 | 0.733 | 0.366 |
Developmental toxicity | 0.213 | −0.037 | 0.500 | 0.106 | 0.606 | 0.303 |
Reproductive toxicity | −0.069 | 0.175 | 0.161 | 0.500 | 0.661 | 0.331 |
Environmental Media | Species | Rubber Types | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NR | SBR | IIR | NBR | BR | |||||||
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | ||
Marine environment | Marine nematodes | −131.163 | ±10.616 | −128.988 | ±14.847 | −121.131 | ±8.904 | −76.563 | ±10.842 | −104.710 | ±10.834 |
Mussels | −109.960 | ±11.002 | −107.168 | ±14.695 | −105.775 | ±13.148 | −74.085 | ±18.833 | −103.706 | ±8.103 | |
Crabs | −114.749 | ±13.087 | −120.369 | ±17.528 | −102.944 | ±10.101 | −60.175 | ±11.711 | −104.665 | ±13.642 | |
Marine fish | −154.203 | ±8.290 | −156.125 | ±12.493 | −115.554 | ±8.235 | −80.411 | ±8.134 | −101.517 | ±10.735 | |
Freshwater environment | Freshwater nematodes | −115.918 | ±13.250 | −104.087 | ±16.290 | −112.285 | ±8.369 | −63.321 | ±10.196 | −75.690 | ±10.715 |
Snails | −139.100 | ±10.299 | −176.314 | ±12.903 | −126.897 | ±9.861 | −97.133 | ±6.436 | −154.253 | ±10.708 | |
Shrimp | −140.998 | ±9.391 | −191.051 | ±10.690 | −124.566 | ±7.552 | −112.793 | ±8.954 | −129.246 | ±9.246 | |
Freshwater fish | −133.189 | ±11.579 | −101.407 | ±12.246 | −142.354 | ±7.678 | −132.929 | ±10.030 | −143.839 | ±6.816 | |
Soil environment | Soil nematodes | −130.965 | ±11.038 | −127.551 | ±11.862 | −111.595 | ±7.448 | −67.257 | ±12.264 | −111.642 | ±9.295 |
Springtails | −129.837 | ±9.729 | −132.489 | ±13.411 | −110.055 | ±9.308 | −53.540 | ±9.515 | −95.924 | ±6.952 | |
Earthworms | −128.608 | ±9.132 | −136.813 | ±10.784 | −91.757 | ±12.382 | −69.735 | ±9.683 | −95.599 | ±17.659 | |
Spiders | −104.120 | ±9.598 | −130.308 | ±15.975 | −113.366 | ±8.636 | −75.942 | ±9.796 | −121.328 | ±8.298 |
Environmental Media | Rubber Types | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
NR | SBR | IIR | NBR | BR | ||||||
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | |
Marine environment | −131.214 | ±10.504 | −132.893 | ±14.679 | −110.373 | ±9.844 | −72.690 | ±11.618 | −103.219 | ±11.091 |
Freshwater environment | −134.987 | ±10.834 | −143.550 | ±12.315 | −130.919 | ±8.146 | −112.768 | ±9.005 | −134.729 | ±8.714 |
Soil environment | −119.294 | ±9.628 | −132.420 | ±13.494 | −106.044 | ±9.775 | −68.731 | ±9.953 | −107.560 | ±10.937 |
Environmental Media | Species | Toxicity | ||
---|---|---|---|---|
Neurotoxic | Developmental Toxicity | Reproductive Toxicity | ||
Marine environment | Marine nematodes | 1.598 | 1.355 | 1.616 |
Mussels | 1.247 | 1.000 | 1.547 | |
Crabs | 1.648 | 1.420 | 1.192 | |
Marine fish | 2.703 | 1.159 | 1.544 | |
Freshwater environment | Freshwater nematodes | 1.218 | 1.011 | 1.459 |
Snails | 2.486 | 1.872 | 1.857 | |
Shrimp | 2.550 | 1.895 | 2.294 | |
Freshwater fish | 1.208 | 1.257 | 1.149 | |
Soil environment | Soil nematodes | 1.695 | 1.230 | 1.571 |
Springtails | 1.427 | 1.289 | 1.992 | |
Earthworms | 2.266 | 1.073 | 1.415 | |
Spiders | 2.017 | 1.341 | 1.211 |
Species | Toxic Type | Weights | ||
---|---|---|---|---|
Neurotoxic | Developmental Toxicity | Reproductive Toxicity | ||
Freshwater nematodes | 0.461 | 0.000 | 1.000 | 0.202 |
Snails | 1.000 | 0.024 | 0.000 | 0.421 |
Shrimp | 1.000 | 0.000 | 0.609 | 0.185 |
Freshwater fish | 0.542 | 1.000 | 0.000 | 0.192 |
Species | Toxic Type | ||
---|---|---|---|
Neurotoxic | Developmental Toxicity | Reproductive Toxicity | |
Freshwater nematodes | −0.992 | −1.293 | −0.537 |
Snails | 0.950 | 0.944 | 0.390 |
Shrimp | 1.048 | 1.004 | 1.406 |
Freshwater fish | −1.007 | −0.655 | −1.258 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, H.; He, W.; Sun, P.; Zhao, W.; Liu, M. Exploring the Potential Hormonal Effects of Tire Polymers (TPs) on Different Species Based on a Theoretical Computational Approach. Polymers 2023, 15, 1719. https://doi.org/10.3390/polym15071719
Wang Y, Yang H, He W, Sun P, Zhao W, Liu M. Exploring the Potential Hormonal Effects of Tire Polymers (TPs) on Different Species Based on a Theoretical Computational Approach. Polymers. 2023; 15(7):1719. https://doi.org/10.3390/polym15071719
Chicago/Turabian StyleWang, Yu, Hao Yang, Wei He, Peixuan Sun, Wenjin Zhao, and Miao Liu. 2023. "Exploring the Potential Hormonal Effects of Tire Polymers (TPs) on Different Species Based on a Theoretical Computational Approach" Polymers 15, no. 7: 1719. https://doi.org/10.3390/polym15071719
APA StyleWang, Y., Yang, H., He, W., Sun, P., Zhao, W., & Liu, M. (2023). Exploring the Potential Hormonal Effects of Tire Polymers (TPs) on Different Species Based on a Theoretical Computational Approach. Polymers, 15(7), 1719. https://doi.org/10.3390/polym15071719