Bio-Based Polyurethane Foams for the Removal of Petroleum-Derived Pollutants: Sorption in Batch and in Continuous-Flow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Bio-Oil and Cellulose Citrate from Microcrystalline Cellulose
2.3. Bio-Oil Reduction into Polyol Chain Extender
2.4. Prepolymer Synthesis
2.5. Synthesis of PU1 and PU2
2.6. Sorption Capacity Test in Batch Using Oil/Water System
2.7. Sorption Capacity Test in Continuous-Flow Using Oil/Water System
3. Results and Discussion
3.1. Total Sorption Capacity of PU1 and PU2 in Gasoline/Water and Diesel/Water Systems in Batch
3.2. Sorption Kinetics of PU1 and PU2 in Gasoline/Water and Diesel/Water Systems in Batch
3.3. Adsorption Isotherms in Gasoline/Water and Diesel/Water Systems in Batch
3.4. Comparison of the Total Sorption Capacity with Literature Data
3.5. Total Sorption Capacity of PU1 and PU2 in Gasoline/Water and Diesel/Water Systems in Continuous-Flow
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martins, F.; Felgueiras, C.; Smitkova, M.; Caetano, N. Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. Energies 2019, 12, 964. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yu, Y.; Ma, T.; Zhang, C.; Wang, Q. Evolution of energy and metal demand driven by industrial revolutions and its trend analysis. CJPRE 2021, 19, 256. [Google Scholar] [CrossRef]
- Armaroli, N.; Balzani, V. The legacy of fossil fuels. Chem. Asian J. 2011, 6, 768. [Google Scholar] [CrossRef] [PubMed]
- Chudy-Laskowska, K.; Pisula, T. An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation. Energies 2022, 15, 7369. [Google Scholar] [CrossRef]
- Aziz Al-Majed, A.; Adebayo, A.R.; Hossain, M.E. A sustainable approach to controlling oil spills. J. Environ. Manag. 2012, 113, 213. [Google Scholar] [CrossRef] [PubMed]
- Mason, O.U.; Hazen, T.; Borglin, S.; Chain, P.; Dubinsky, E.; Fortney, J.L.; Han, J.; Holman, H.-Y.N.; Hultman, J.; Lamendella, R.; et al. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISMEJ 2012, 6, 1715. [Google Scholar] [CrossRef]
- Al-Baldawi, I.A.; Sheikh Abdullah, S.R.; Anuar, N.; Suja, F.; Mushrifah, I. Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus. Ecol. Eng. 2015, 74, 463. [Google Scholar] [CrossRef]
- Dongil, A.B.; Bachiller-Baeza, B.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I.; Martínez-Alonso, A.; Tascón, J.M.D. Surface chemical modifications induced on high surface area graphite and carbon nanofibers using different oxidation and functionalization treatments. J. Colloid Interface Sci. 2011, 355, 179. [Google Scholar] [CrossRef]
- D’Lamare Maia de Medeiros, A.; Galdino da Silva Junior, C.J.; Pedrosa de Amorim, J.D.; Batista Durval, I.J.; Fernanda de Santana Costa, A.; Sarubbo, L.A. Oily wastewater treatment: Methods, challenges, and trends. Processes 2022, 10, 743. [Google Scholar] [CrossRef]
- Zioui, D.; Salazar, H.; Aoudjit, L.; Martins, P.M.; Lanceros-Méndez, S. Polymer-Based Membranes for Oily Wastewater Remediation. Polymers 2020, 12, 42. [Google Scholar] [CrossRef] [Green Version]
- Olivito, F.; Jagdale, P. New Technologies to Decontaminate Pollutants in Water: A Report about the State of the Art. Toxics 2022, 10, 128. [Google Scholar] [CrossRef]
- Floros, I.N.; Kouvelos, E.P.; Pilatos, G.I.; Hadjigeorgiou, E.P.; Gotzias, A.D.; Favvas, E.P.; Sapalidis, A.A. Enhancement of Flux Performance in PTFE Membranes for Direct Contact Membrane Distillation. Polymers 2020, 12, 345. [Google Scholar] [CrossRef] [Green Version]
- Pires, J.R.A.; Souza, V.G.L.; Fuciños, P.; Pastrana, L.; Fernando, A.L. Methodologies to Assess the Biodegradability of Bio-Based Polymers—Current Knowledge and Existing Gaps. Polymers 2022, 14, 1359. [Google Scholar] [CrossRef]
- Bezhin, N.A.; Frolova, M.A.; Kozlovskaia, O.N.; Slizchenko, E.V.; Shibetskaia, I.G.; Tananaev, I.G. Physical and Chemical Regularities of Phosphorus and Beryllium Recovery by the Sorbents Based on Acrylic Fiber Impregnated by Iron Hydroxide (III). Processes 2022, 10, 2010. [Google Scholar] [CrossRef]
- Zamparas, M.; Tzivras, D.; Dracopoulos, V.; Ioannides, T. Application of Sorbents for Oil Spill Cleanup Focusing on Natural-Based Modified Materials: A Review. Molecules 2020, 25, 4522. [Google Scholar] [CrossRef]
- Mardiyati, Y.; Fauza, A.N.; Rachman, O.A.; Steven, S.; Santosa, S.P. A Silica–Lignin Hybrid Filler in a Natural Rubber Foam Composite as a Green Oil Spill Absorbent. Polymers 2022, 14, 2930. [Google Scholar] [CrossRef]
- Baidurah, S. Methods of Analyses for Biodegradable Polymers: A Review. Polymers 2022, 14, 4928. [Google Scholar] [CrossRef]
- Hernández-García, E.; Vargas, M.; Chiralt, A. Active Starch-Polyester Bilayer Films with Surface-Incorporated Ferulic Acid. Membranes 2022, 12, 976. [Google Scholar] [CrossRef]
- Bezhin, N.A.; Frolova, M.A.; Dovhyi, I.I.; Kozlovskaia, O.N.; Slizchenko, E.V.; Shibetskaia, I.G.; Khlystov, V.A.; Tokar’, E.A.; Tananaev, I.G. The Sorbents Based on Acrylic Fiber Impregnated by Iron Hydroxide (III): Production Methods, Properties, Application in Oceanographic Research. Water 2022, 14, 2303. [Google Scholar] [CrossRef]
- Exarhopoulos, S.; Goulas, A.; Dimitreli, G. Biodegradable Films from Kefiran-Based Cryogel Systems. Macromol 2022, 2, 324–345. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, J.; Shen, D.; Xue, J.; Guan, S.; Gu, S.; Luo, K.H. Catalytic Oxidation of Lignin in Solvent Systems for Production of Renewable Chemicals: A Review. Polymers 2017, 9, 240. [Google Scholar] [CrossRef] [Green Version]
- Olivito, F.; Amodio, N.; Di Gioia, M.L.; Nardi, M.; Oliverio, M.; Juli, G.; Tassone, P.; Procopio, A. Synthesis and preliminary evaluation of the anti-cancer activity on A549 lung cancer cells of a series of unsaturated disulfides. Med. Chem. Commun. 2019, 10, 116. [Google Scholar] [CrossRef]
- Li, G.; Zhao, M.; Xu, F.; Yang, B.; Li, X.; Meng, X.; Teng, L.; Sun, F.; Li, Y. Synthesis and Biological Application of Polylactic Acid. Molecules 2020, 25, 5023. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Zuhri, M.Y.M.; Norrrahim, M.N.F.; Misenan, M.S.M.; Jenol, M.A.; Samsudin, S.A.; Nurazzi, N.M.; Asyraf, M.R.M.; Supian, A.B.M.; Bangar, S.P.; et al. Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applications. Polymers 2022, 14, 182. [Google Scholar] [CrossRef]
- Szymańska, E.; Winnicka, K. Stability of Chitosan—A Challenge for Pharmaceutical and Biomedical Applications. Mar. Drugs 2015, 13, 1819. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Rayung, M.; Norrrahim, M.N.F.; Shazleen, S.S.; Rani, M.S.A.; Shafi, A.R.; Aisyah, H.A.; Radzi, M.H.M.; Sabaruddin, F.A.; et al. Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polymers 2021, 13, 2710. [Google Scholar] [CrossRef]
- De Nino, A.; Tallarida, M.A.; Algieri, V.; Olivito, F.; Costanzo, P.; De Filpo, G.; Maiuolo, L. Sulfonated Cellulose-Based Magnetic Composite as Useful Media for Water Remediation from Amine Pollutants. Appl. Sci. 2020, 10, 8155. [Google Scholar] [CrossRef]
- Olivito, F.; Algieri, V.; Jiritano, A.; Tallarida, M.A.; Tursi, A.; Costanzo, P.; Maiuolo, L.; De Nino, A. Cellulose citrate: A convenient and reusable bioadsorbent for effective removal of methylene blue dye from artificially contaminated Water. RSC Adv. 2021, 11, 34309. [Google Scholar] [CrossRef]
- Tursi, A.; Gallizzi, V.; Olivito, F.; Algieri, V.; De Nino, A.; Maiuolo, L.; Beneduci, A. Selective and efficient mercury(II) removal from water by adsorption with a cellulose citrate biopolymer. JHM Lett. 2022, 3, 100060. [Google Scholar] [CrossRef]
- Shaghaleh, H.; Xu, X.; Wang, S. Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Adv. 2018, 8, 825. [Google Scholar] [CrossRef] [Green Version]
- Chandra, S.; Jagdale, P.; Medha, I.; Tiwari, A.K.; Bartoli, M.; Nino, A.D.; Olivito, F. Biochar-Supported TiO2-Based Nanocomposites for the Photocatalytic Degradation of Sulfamethoxazole in Water—A Review. Toxics 2021, 9, 313. [Google Scholar] [CrossRef]
- Reichert, C.L.; Bugnicourt, E.; Coltelli, M.-B.; Cinelli, P.; Lazzeri, A.; Canesi, I.; Braca, F.; Martínez, B.M.; Alonso, R.; Agostinis, L.; et al. Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability. Polymers 2020, 12, 1558. [Google Scholar] [CrossRef]
- Nukala, S.G.; Kong, I.; Patel, V.I.; Kakarla, A.B.; Kong, W.; Buddrick, O. Development of Biodegradable Composites Using Polycaprolactone and Bamboo Powder. Polymers 2022, 14, 4169. [Google Scholar] [CrossRef]
- Maiuolo, L.; Olivito, F.; Ponte, F.; Algieri, V.; Tallarida, M.A.; Tursi, A.; Chidichimo, G.; Sicilia, E.; De Nino, A. A novel catalytic two-step process for the preparation of rigid polyurethane foams: Synthesis, mechanism and computational studies. React. Chem. Eng. 2021, 6, 1238. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Meng, X.; Pu, Y.; Ragauskas, A.J. Recent Advances in the Application of Functionalized Lignin in Value-Added Polymeric Materials. Polymers 2020, 12, 2277. [Google Scholar] [CrossRef]
- Möhl, C.; Weimer, T.; Caliskan, M.; Hager, T.; Baz, S.; Bauder, H.-J.; Stegmaier, T.; Wunderlich, W.; Gresser, G.T. Flax Fibre Yarn Coated with Lignin from Renewable Sources for Composites. Polymers 2022, 14, 4060. [Google Scholar] [CrossRef]
- Furtwengler, P.; Avérous, A. Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polym. Chem. 2018, 9, 4258. [Google Scholar] [CrossRef]
- Nisha, M.; Zahra, M.; Parveen, K.S.; David, B.L. Microbial and Enzymatic Degradation of Synthetic Plastics. Front. Microbiol. 2020, 11, 580709. [Google Scholar]
- Webb, H.K.; Arnott, J.; Crawford, R.J.; Ivanova, E.P. Plastic Degradation and Its Environmental Implications with Special Reference to Poly(ethylene terephthalate). Polymers 2013, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Romeo, I.; Olivito, F.; Tursi, A.; Algieri, V.; Beneduci, A.; Chidichimo, G.; Maiuolo, L.; Sicilia, E.; De Nino, A. Totally green cellulose conversion into bio-oil and cellulose citrate using molten citric acid in an open system: Synthesis, characterization and computational investigation of reaction mechanisms. RSC Adv. 2020, 10, 34738. [Google Scholar] [CrossRef]
- Maiuolo, L.; Olivito, F.; Algieri, V.; Costanzo, P.; Jiritano, A.; Tallarida, M.A.; Tursi, A.; Sposato, C.; Feo, A.; De Nino, A. Synthesis, Characterization and Mechanical Properties of Novel Bio-Based Polyurethane Foams Using Cellulose-Derived Polyol for Chain Extension and Cellulose Citrate as a Thickener Additive. Polymers 2021, 13, 2802. [Google Scholar] [CrossRef]
- Li, H.; Liu, L.; Yang, F. Hydrophobic modification of polyurethane foam for oil spill cleanup. Mar. Pollut. Bull. 2012, 64, 1648–1653. [Google Scholar] [CrossRef]
- Revellame, E.D.; Lord Fortela, D.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Chem. Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Rubio-Clemente, A.; Chica, E.; Peñuela, G.A. Optimization Method to Determine the Kinetic Rate Constants for the Removal of Benzo[a]pyrene and Anthracene in Water through the Fenton Process. Water 2022, 14, 3381. [Google Scholar] [CrossRef]
- De Nino, A.; Olivito, F.; Algieri, V.; Costanzo, P.; Jiritano, A.; Tallarida, M.A.; Maiuolo, L. Efficient and Fast Removal of Oils from Water Surfaces via Highly Oleophilic Polyurethane Composites. Toxics 2021, 9, 186. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Cheng, G.; Li, L.; Liu, X.; Huang, Q. Preparation and Recognition Properties of Molecularly Imprinted Nanofiber Membrane of Chrysin. Polymers 2022, 14, 2398. [Google Scholar] [CrossRef]
- Akhmetzhan, A.; Abeu, N.; Longinos, S.N.; Tashenov, A.; Myrzakhmetova, N.; Amangeldi, N.; Kuanyshova, Z.; Ospanova, Z.; Toktarbay, Z. Synthesis and Heavy-Metal Sorption Studies of N,N-Dimethylacrylamide-Based Hydrogels. Polymers 2021, 13, 3084. [Google Scholar] [CrossRef]
- Shen, X.; Gao, P.; Jin, T.; Ding, Y.; Bao, C. An Investigation into the Adsorption Mechanism of Organic Anions on a New Spandex. Polymers 2022, 14, 3108. [Google Scholar] [CrossRef]
- Chowdhury, S.; Saha, P. Adsorption Kinetic Modeling of Safranin onto Rice Husk Biomatrix Using Pseudo-first- and Pseudo-second-order Kinetic Models: Comparison of Linear and Non-linear Methods. Clean Soil Air Water 2011, 39, 274. [Google Scholar] [CrossRef]
- Hussin, M.H.; Pohan, N.A.; Garba, Z.N.; Kassim, M.J.; Rahim, A.A.; Brosse, N.; Yemloul, M.; Fazita, M.R.N.; Haafiz, M.K.M. Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents. Int. J. Biol. Macromol. 2016, 92, 11. [Google Scholar] [CrossRef]
- Weber, T.W.; Chakravorti, R.K. Pore and solid diffusion models for fixed-bed adsorbers. AIChE J. 1974, 20, 228. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. J. Chem. Eng. 2010, 156, 2. [Google Scholar] [CrossRef]
- Chen, X. Modeling of Experimental Adsorption Isotherm Data. Information 2015, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Kumari, S.; Chauhan, G.S.; Ahn, J.-H. Novel cellulose nanowhiskers-based polyurethane foam for rapid and persistent removal of methylene blue from its aqueous solutions. Chem. Eng. 2016, 304, 728. [Google Scholar] [CrossRef]
- Martins, L.S.; Zanini, N.C.; Maia, L.S.; Souza, A.G.; Barbosa, R.F.S.; Rosa, D.S.; Mulinari, D.R. Crude oil and S500 diesel removal from seawater by polyurethane composites reinforced with palm fiber residues. Chemosphere 2021, 267, 129288. [Google Scholar] [CrossRef]
- Zhang, T.; Xiao, C.; Zhao, J.; Liu, X.; Huang, Y.; Ji, D. Graphite powder coated polyurethane sponge hollow tube as a highefficiency and cost-effective oil-removal materials for continuous oil collection from water surface. J. Appl. Polym. Sci. 2020, 137, 48921. [Google Scholar] [CrossRef]
- Sarup, R.; Sharma, M.; Behl, K.; Kumar Avasthi, D.; Kumar, P.; Ojha, S.; Nigam, S.; Joshi, M. Fabrication of superhydrophobic polyurethane sponge coated with oil sorbent derived from textile sludge for oily wastewater remediation. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100675. [Google Scholar] [CrossRef]
- Li, B.; Liu, X.; Zhang, X.; Zou, J.; Chaia, W.; Louc, Y. Rapid adsorption for oil using superhydrophobic and superoleophilic polyurethane sponge. J. Chem. Technol. Biotechnol. 2015, 90, 2106. [Google Scholar] [CrossRef]
- Zhu, Q.; Chu, Y.; Wang, Z.; Chen, N.; Lin, L.; Liu, F.; Pan, Q. Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J. Mater. Chem. A 2013, 1, 5386. [Google Scholar] [CrossRef]
- Bidgoli, H.; Mortazavi, Y.; Khodadadi, A.A. A functionalized nano-structured cellulosic sorbent aerogel for oil spill cleanup: Synthesis and characterization. J. Hazard. Mater. 2019, 366, 229. [Google Scholar] [CrossRef]
PU | Anisotropy Index a | Number of Cell/(mm2) | Average Cell Area (mm2) |
---|---|---|---|
PU1 | 1.07 ± 0.06 | 10 ± 2 | 0.513 ± 0.063 |
PU2 | 1.14 ± 0.09 | 14 ± 2 | 0.361 ± 0.052 |
PU1 | Gasoline | Diesel | |
qe (g/g)experimental | 49.8 | 62.1 | |
Pseudo first-order | R2 | 0.9563 | 0.9462 |
qe (g/g) | 1.23 | 1.15 | |
k1 | 0.0599 | 0.0673 | |
Pseudo second-order | R2 | 0.9902 | 0.9928 |
qe (g/g) | 64.5 | 67.6 | |
k1 | 0.0155 | 0.0148 | |
Intraparticle diffusion | R2 | 0.7273 | 0.8402 |
Ci | 18.5 | 13.8 | |
ki | 7.9 | 5.0 | |
PU2 | Gasoline | Diesel | |
qe (g/g)experimental | 51.9 | 65.2 | |
Pseudo first-order | R2 | 0.9556 | 0.9545 |
qe (g/g) | 1.12 | 1.20 | |
k1 | 0.0593 | 0.0602 | |
Pseudo second-order | R2 | 0.9924 | 0.9936 |
qe (g/g) | 60.9 | 69.9 | |
k2 | 0.0164 | 0.0143 | |
Intraparticle diffusion | R2 | 0.8136 | 0.868 |
Ci | 14.3 | 13.9 | |
Ki | 4.8 | 4.9 |
Gasoline/Water | PU1 | PU2 | |
Isotherm | |||
Langmuir model | KL | 0.33 | 0.38 |
qm (g/g) | 47.3 | 49.7 | |
R2 | 0.9995 | 0.9975 | |
Freundlich model | KF | 17.39 | 15.44 |
N | 3.83 | 3.24 | |
R2 | 0.8756 | 0.9284 | |
Redlich–Peterson model | A (L/g) | 4.172 | 4.383 |
B (L/g)β | 0.077 | 0.081 | |
Β | 1.124 | 1.125 | |
R2 | 0.9998 | 0.9909 | |
Diesel/water | PU1 | PU2 | |
Isotherm | |||
Langmuir model | KL | 0.60 | 0.96 |
qm (g/g) | 59.5 | 63.3 | |
R2 | 0.9981 | 0.9971 | |
Freundlich model | KF | 20.29 | 19.99 |
N | 2.79 | 2.68 | |
R2 | 0.9698 | 0.9407 | |
Redlich–Peterson model | A (L/g) | 5.248 | 5.583 |
B (L/g)β | 0.097 | 0.103 | |
Β | 1.135 | 1.136 | |
R2 | 0.9963 | 0.9942 |
Material | Oil | Sorption Capacity (g/g) | Reference |
---|---|---|---|
PU-LMA microsphere | Diesel | 28.39 | [42] |
PU-g-LMA | Diesel | 37.64 | [42] |
PU-ac | Diesel | 32.5 | [45] |
Gasoline | 32.0 | ||
PU-palm fiber | Diesel | 28.9 | [55] |
PU-graphite | Diesel | 20.0 | [56] |
Biochar-PDMS nanohybrid embedded PU sponge | Diesel | 26.88 | [57] |
ZnO-PA sponge | Diesel | 33 | [58] |
3D PU | Gasoline | 15 | [59] |
Cellulosic aerogel | SF crude oil | 57 | [60] |
PU1 | Gasoline | 49.8 | This study |
Diesel | 62.1 | ||
PU2 | Gasoline | 51.9 | This study |
Diesel | 65.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivito, F.; Algieri, V.; Jiritano, A.; Tallarida, M.A.; Costanzo, P.; Maiuolo, L.; De Nino, A. Bio-Based Polyurethane Foams for the Removal of Petroleum-Derived Pollutants: Sorption in Batch and in Continuous-Flow. Polymers 2023, 15, 1785. https://doi.org/10.3390/polym15071785
Olivito F, Algieri V, Jiritano A, Tallarida MA, Costanzo P, Maiuolo L, De Nino A. Bio-Based Polyurethane Foams for the Removal of Petroleum-Derived Pollutants: Sorption in Batch and in Continuous-Flow. Polymers. 2023; 15(7):1785. https://doi.org/10.3390/polym15071785
Chicago/Turabian StyleOlivito, Fabrizio, Vincenzo Algieri, Antonio Jiritano, Matteo Antonio Tallarida, Paola Costanzo, Loredana Maiuolo, and Antonio De Nino. 2023. "Bio-Based Polyurethane Foams for the Removal of Petroleum-Derived Pollutants: Sorption in Batch and in Continuous-Flow" Polymers 15, no. 7: 1785. https://doi.org/10.3390/polym15071785
APA StyleOlivito, F., Algieri, V., Jiritano, A., Tallarida, M. A., Costanzo, P., Maiuolo, L., & De Nino, A. (2023). Bio-Based Polyurethane Foams for the Removal of Petroleum-Derived Pollutants: Sorption in Batch and in Continuous-Flow. Polymers, 15(7), 1785. https://doi.org/10.3390/polym15071785