Bond Strength of Sandblasted PEEK with Dental Methyl Methacrylate-Based Cement or Composite-Based Resin Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Tensile Bond Strength (TBS) Test
2.3. Statistical Analysis
3. Results
Preparation of the Alumina-Sandblasted PEEK
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Senra, M.R.; Marques, M.F.V.; Monteiro, S.N. Poly (Ether-Ether-Ketone) for Biomedical Applications: From Enhancing Bioactivity to Reinforced-Bioactive Composites-An Overview. Polymers 2023, 15, 373. [Google Scholar] [CrossRef]
- Han, X.; Gao, W.; Zhou, Z.; Yang, S.; Wang, J.; Shi, R.; Li, Y.; Jiao, J.; Qi, Y.; Zhao, J. Application of biomolecules modification strategies on PEEK and its composites for osteogenesis and antibacterial properties. Colloids Surf. B Biointerfaces 2022, 215, 112492. [Google Scholar] [CrossRef] [PubMed]
- Chokaree, P.; Poovarodom, P.; Chaijareenont, P.; Yavirach, A.; Rungsiyakull, P. Biomaterials and Clinical Applications of Customized Healing Abutment-A Narrative Review. J. Funct. Biomater. 2022, 13, 291. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fang, M.; Zhao, R.; Liu, H.; Li, K.; Tian, M.; Niu, L.; Xie, R.; Bai, S. Clinical Applications of Polyetheretherketone in Removable Dental Prostheses: Accuracy, Characteristics, and Performance. Polymers 2022, 14, 4615. [Google Scholar] [CrossRef]
- Kimura, H.; Morita, K.; Nishio, F.; Abekura, H.; Tsuga, K. Clinical report of six-month follow-up after cementing PEEK crown on molars. Sci. Rep. 2022, 12, 19070. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Huang, M.; Dang, P.; Xie, J.; Zhang, X.; Yan, X. PEEK in Fixed Dental Prostheses: Application and Adhesion Improvement. Polymers 2022, 14, 2323. [Google Scholar] [CrossRef]
- Gama, L.T.; Bezerra, A.P.; Schimmel, M.; Rodrigues Garcia, R.C.M.; de Luca Canto, G.; Goncalves, T. Clinical performance of polymer frameworks in dental prostheses: A systematic review. J. Prosthet. Dent. 2022. [Google Scholar] [CrossRef]
- Qin, L.; Yao, S.; Zhao, J.; Zhou, C.; Oates, T.W.; Weir, M.D.; Wu, J.; Xu, H.H.K. Review on Development and Dental Applications of Polyetheretherketone-Based Biomaterials and Restorations. Materials 2021, 14, 408. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Ye, H.; Zhao, W.; Liu, Y.; Zhou, Y. Preliminary clinical evaluation of traditional and a new digital PEEK occlusal splints for the management of sleep bruxism. J. Oral Rehabil. 2020, 47, 1530–1537. [Google Scholar] [CrossRef]
- Rosentritt, M.; Preis, V.; Behr, M.; Sereno, N.; Kolbeck, C. Shear bond strength between veneering composite and PEEK after different surface modifications. Clin. Oral Investig. 2015, 19, 739–744. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Taufall, S.; Roos, M.; Schmidlin, P.R.; Lumkemann, N. Bonding of composite resins to PEEK: The influence of adhesive systems and air-abrasion parameters. Clin. Oral Investig. 2018, 22, 763–771. [Google Scholar] [CrossRef]
- Caglar, I.; Ates, S.M.; Yesil Duymus, Z. An In Vitro Evaluation of the Effect of Various Adhesives and Surface Treatments on Bond Strength of Resin Cement to Polyetheretherketone. J. Prosthodont. 2019, 28, e342–e349. [Google Scholar] [CrossRef] [Green Version]
- Schwitalla, A.D.; Botel, F.; Zimmermann, T.; Sutel, M.; Muller, W.D. The impact of argon/oxygen low-pressure plasma on shear bond strength between a veneering composite and different PEEK materials. Dent. Mater. 2017, 33, 990–994. [Google Scholar] [CrossRef] [PubMed]
- Younis, M.; Unkovskiy, A.; ElAyouti, A.; Geis-Gerstorfer, J.; Spintzyk, S. The Effect of Various Plasma Gases on the Shear Bond Strength between Unfilled Polyetheretherketone (PEEK) and Veneering Composite Following Artificial Aging. Materials 2019, 12, 1447. [Google Scholar] [CrossRef] [Green Version]
- Taha, D.; Safwat, F.; Wahsh, M. Effect of combining different surface treatments on the surface characteristics of polyetheretherketone-based core materials and shear bond strength to a veneering composite resin. J. Prosthet. Dent. 2022, 127, 599.e1–599.e7. [Google Scholar] [CrossRef]
- Jahandideh, Y.; Falahchai, M.; Pourkhalili, H. Effect of Surface Treatment with Er: YAG and CO2 Lasers on Shear Bond Strength of Polyether Ether Ketone to Composite Resin Veneers. J. Lasers Med. Sci. 2020, 11, 153–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuka, H.; Morita, K.; Kato, K.; Kimura, H.; Abekura, H.; Hirata, I.; Kato, K.; Tsuga, K. Effect of laser groove treatment on shear bond strength of resin-based luting agent to polyetheretherketone (PEEK). J. Prosthodont. Res. 2019, 63, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Tsuka, H.; Morita, K.; Hirata, I.; Nishio, F.; Abekura, H.; Doi, K.; Tsuga, K. Nd: YVO(4) laser groove treatment can improve the shear bond strength between dental PEEK and adhesive resin cement with an adhesive system. Dent. Mater. J. 2022, 41, 382–391. [Google Scholar] [CrossRef]
- Zhou, L.; Qian, Y.; Zhu, Y.; Liu, H.; Gan, K.; Guo, J. The effect of different surface treatments on the bond strength of PEEK composite materials. Dent. Mater. 2014, 30, e209–e215. [Google Scholar] [CrossRef] [PubMed]
- Keul, C.; Liebermann, A.; Schmidlin, P.R.; Roos, M.; Sener, B.; Stawarczyk, B. Influence of PEEK surface modification on surface properties and bond strength to veneering resin composites. J. Adhes. Dent. 2014, 16, 383–392. [Google Scholar] [CrossRef]
- Chaijareenont, P.; Prakhamsai, S.; Silthampitag, P.; Takahashi, H.; Arksornnukit, M. Effects of different sulfuric acid etching concentrations on PEEK surface bonding to resin composite. Dent. Mater. J. 2018, 37, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yi, Y.; Wang, C.; Ding, L.; Wang, R.; Wu, G. Effect of Acid-Etching Duration on the Adhesive Performance of Printed Polyetheretherketone to Veneering Resin. Polymers 2021, 13, 3509. [Google Scholar] [CrossRef]
- Adem, N.; Bal, B.; Kazazoglu, E. Comparative Study of Chemical and Mechanical Surface Treatment Effects on The Shear Bond Strength of Polyether-Ether-Ketone to Veneering Resin. Int. J. Prosthodont. 2022, 35, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Soares Machado, P.; Cadore Rodrigues, A.C.; Chaves, E.T.; Susin, A.H.; Valandro, L.F.; Pereira, G.K.R.; Rippe, M.P. Surface Treatments and Adhesives Used to Increase the Bond Strength Between Polyetheretherketone and Resin-based Dental Materials: A Scoping Review. J. Adhes. Dent. 2022, 24, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wong, H.M.; Wang, W.; Li, P.; Xu, Z.; Chong, E.Y.; Yan, C.H.; Yeung, K.W.; Chu, P.K. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Biomaterials 2013, 34, 9264–9277. [Google Scholar] [CrossRef]
- Ma, R.; Wang, J.; Li, C.; Ma, K.; Wei, J.; Yang, P.; Guo, D.; Wang, K.; Wang, W. Effects of different sulfonation times and post-treatment methods on the characterization and cytocompatibility of sulfonated PEEK. J. Biomater. Appl. 2020, 35, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Liu, Y.; Peng, B.; Chen, M.; Liu, Z.; Li, Z.; Kuang, H.; Gong, B.; Li, Z.; Sun, H. PEEK for Oral Applications: Recent Advances in Mechanical and Adhesive Properties. Polymers 2023, 15, 386. [Google Scholar] [CrossRef] [PubMed]
- Gama, L.T.; Duque, T.M.; Ozcan, M.; Philippi, A.G.; Mezzomo, L.A.M.; Goncalves, T. Adhesion to high-performance polymers applied in dentistry: A systematic review. Dent. Mater. 2020, 36, e93–e108. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Keul, C.; Beuer, F.; Roos, M.; Schmidlin, P.R. Tensile bond strength of veneering resins to PEEK: Impact of different adhesives. Dent. Mater. J. 2013, 32, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Stawarczyk, B.; Bahr, N.; Beuer, F.; Wimmer, T.; Eichberger, M.; Gernet, W.; Jahn, D.; Schmidlin, P.R. Influence of plasma pretreatment on shear bond strength of self-adhesive resin cements to polyetheretherketone. Clin. Oral Investig. 2014, 18, 163–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhrenbacher, J.; Schmidlin, P.R.; Keul, C.; Eichberger, M.; Roos, M.; Gernet, W.; Stawarczyk, B. The effect of surface modification on the retention strength of polyetheretherketone crowns adhesively bonded to dentin abutments. J. Prosthet. Dent. 2014, 112, 1489–1497. [Google Scholar] [CrossRef]
- Ikeda, H.; Karntiang, P.; Nagamatsu, Y.; Shimizu, H. Data on bond strength of methyl methacrylate-based resin cement to dental restorative materials. Data Brief 2020, 33, 106426. [Google Scholar] [CrossRef] [PubMed]
- Galea, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Cadenaro, M.; Josic, U.; Maravic, T.; Mazzitelli, C.; Marchesi, G.; Mancuso, E.; Breschi, L.; Mazzoni, A. Progress in Dental Adhesive Materials. J. Dent. Res. 2023, 102, 254–262. [Google Scholar] [CrossRef]
- Carvalho, P.C.K.; Almeida, C.; Souza, R.O.A.; Tango, R.N. The Effect of a 10-MDP-Based Dentin Adhesive as Alternative for Bonding to Implant Abutment Materials. Materials 2022, 15, 5449. [Google Scholar] [CrossRef] [PubMed]
- Matinlinna, J.P.; Lung, C.Y.K.; Tsoi, J.K.H. Silane adhesion mechanism in dental applications and surface treatments: A review. Dent. Mater. 2018, 34, 13–28. [Google Scholar] [CrossRef]
- Givan, D.A.; Fitchie, J.G.; Anderson, L.; Zardiackas, L.D. Tensile fatigue of 4-META cement bonding three base metal alloys to enamel and comparison to other resin cements. J. Prosthet. Dent. 1995, 73, 377–385. [Google Scholar] [CrossRef]
- Shimizu, H.; Takahashi, Y. Review of adhesive techniques used in removable prosthodontic practice. J. Oral Sci. 2012, 54, 205–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallmann, L.; Mehl, A.; Sereno, N.; Hämmerle, C.H.F. The improvement of adhesive properties of PEEK through different pre-treatments. Appl. Surf. Sci. 2012, 258, 7213–7218. [Google Scholar] [CrossRef]
- Vallittu, P.K. Interpenetrating polymer networks (IPNs) in dental polymers and composites. J. Adhes. Sci. Technol. 2009, 23, 961–972. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Lassila, L.V.; Tokue, A.; Takahashi, Y.; Vallittu, P.K. Influence of molecular weight of polymethyl(methacrylate) beads on the properties and structure of cross-linked denture base polymer. J. Mech. Behav. Biomed. Mater. 2011, 4, 1846–1851. [Google Scholar] [CrossRef] [PubMed]
- Munshi, N.; Rosenblum, M.; Jiang, S.; Flinton, R. In Vitro Wear Resistance of Nano-Hybrid Composite Denture Teeth. J. Prosthodont. 2017, 26, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Hatta, M.; Shinya, A.; Gomi, H.; Vallittu, P.K.; Sailynoja, E.; Lassila, L.V.J. Effect of Interpenetrating Polymer Network (IPN) Thermoplastic Resin on Flexural Strength of Fibre-Reinforced Composite and the Penetration of Bonding Resin into Semi-IPN FRC Post. Polymers 2021, 13, 3200. [Google Scholar] [CrossRef] [PubMed]
Material Type | Product Name | Manufacturer | Composition |
---|---|---|---|
PEEK block | SHOFU PEEK | Shofu, Kyoto, Japan | Poly-ether-ether-ketone |
MMA-based resin cement | Super-Bond EX * | Sunmedical, Moriyama, Japa | MMA, PMMA, 4-META, TBB-O |
MULTIBOND II | Tokuyama Dental, Tokyo, Japan | PMMA, co-activator, MMA, UDMA, HEMA, MTU-6, borate catalyst. | |
Composite-based resin cement | Block HC Cem | Shofu, Kyoto, Japan | UDMA, TEGDMA, silica powder, fine particulate silica, zirconium silicate, colorant. |
RelyX Universal Resin Cement | 3M, Saint Paul, USA | Methacrylate, silica, glass powder, co-activator. | |
G-CEM LinkForce | GC, Tokyo, Japan | UDMA, dimethacrylate, stabilizer. | |
Panavia V5 | Kuraray Noritake Dental, Tokyo, Japan | Bis-GMA, TEGDMA, titanium dioxide. | |
Multilink Automix | Ivoclar Vivadent, Schaan, Liechtenstein | Ytterbium trifluoride, ethyoxylated Bis-GMA, Bis-GMA, HEMA, 2-dimethylaminoethyl methacrylate. | |
Adhesive primer | M&C Primer | Sunmedical, Moriyama, Japan | Primer A: MDP, VTD, MMA, acetone; Primer B: γ-MPTS, MMA. |
BONDMER Lightless | Tokuyama Dental, Tokyo, Japan | Primer A: MDP, MTU-6, Bis-GMA, TEGDMA, HEMA, acetone; Primer B: γ-MPTS, isopropanol, water, initiators, acetone. | |
MULTIBOND II Primer | Tokuyama Dental, Tokyo, Japan | Phosphoric acid monomer, water, acetone, UDMA, co-activator. | |
HC Primer | Shofu, Kyoto, Japan | UDMA, MMA, photo-initiator, acetone, and others. | |
Scotchbond Universal Plus Adhesive | 3M, Saint Paul, USA | Phosphoric acid ester monomer, methacrylate, co-activator, ethanol. | |
G-Multi PRIMER | GC, Tokyo, Japa | Ethanol, phosphoric acid ester monomer, dimethacrylate component. | |
CERAMIC PRIMER PLUS | Kurary Noritake Dental, Tokyo, Japan | Ethanol, γ-MPTS, MDP. | |
Monobond Plus | Ivoclar Vivadent, Schaan, Liechtenstein | Ethanol, methacrylated phosphoric acid ester. |
Adhesive System | Resin Cement | Primer | Group |
---|---|---|---|
MMA-based resin cement | Super-Bond EX | M&C Primer | SB |
MULTIBOND II | BONDMER Lightless and MULTIBOND II primer | MB | |
Composite-based resin cement | Block HC Cem | HC Primer | BH |
RelyX Universal Resin Cement | Scotchbond Universal Plus Adhesive | RU | |
G-CEM LinkForce | G-Multi PRIMER | GL | |
Panavia V5 | CERAMIC PRIMER PLUS | PV | |
Multilink Automix | Monobond Plus | MA |
Sum of Square | Df | F Value | p Value | |
---|---|---|---|---|
Resin cement | 2767.59 | 6 | 146.5685 | <0.001 |
Thermocycling | 51.36 | 1 | 16.3213 | <0.001 |
Resin cement * thermocycling | 88.60 | 6 | 4.6921 | <0.001 |
Adhesive/Mixed/Cohesive * | ||
---|---|---|
Group | TC0 | TC20,000 |
SB | 2/8/0 | 0/10/0 |
MB | 9/1/0 | 6/4/0 |
BH | 8/2/0 | 8/2/0 |
RU | 10/0/0 | 10/0/0 |
GL | 10/0/0 | 10/0/0 |
PV | 10/0/0 | 10/0/0 |
MA | 10/0/0 | 10/0/0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hata, K.; Komagata, Y.; Nagamatsu, Y.; Masaki, C.; Hosokawa, R.; Ikeda, H. Bond Strength of Sandblasted PEEK with Dental Methyl Methacrylate-Based Cement or Composite-Based Resin Cement. Polymers 2023, 15, 1830. https://doi.org/10.3390/polym15081830
Hata K, Komagata Y, Nagamatsu Y, Masaki C, Hosokawa R, Ikeda H. Bond Strength of Sandblasted PEEK with Dental Methyl Methacrylate-Based Cement or Composite-Based Resin Cement. Polymers. 2023; 15(8):1830. https://doi.org/10.3390/polym15081830
Chicago/Turabian StyleHata, Kentaro, Yuya Komagata, Yuki Nagamatsu, Chihiro Masaki, Ryuji Hosokawa, and Hiroshi Ikeda. 2023. "Bond Strength of Sandblasted PEEK with Dental Methyl Methacrylate-Based Cement or Composite-Based Resin Cement" Polymers 15, no. 8: 1830. https://doi.org/10.3390/polym15081830
APA StyleHata, K., Komagata, Y., Nagamatsu, Y., Masaki, C., Hosokawa, R., & Ikeda, H. (2023). Bond Strength of Sandblasted PEEK with Dental Methyl Methacrylate-Based Cement or Composite-Based Resin Cement. Polymers, 15(8), 1830. https://doi.org/10.3390/polym15081830