Magnetic Field Effects on the Structure, Dielectric and Energy Storage Properties of High-Entropy Spinel Ferrite (La0.14Ce0.14Mn0.14Zr0.14Cu0.14Ca0.14Ni0.14)Fe2O4/PVDF Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of High-Entropy Spinel Ferrite (La0.14Ce0.14Mn0.14Zr0.14Cu0.14Ca0.14Ni0.14)Fe2O4 Nanofibers
2.3. Fabrication of 7FO/PVDF Nanocomposite Film Materials
2.4. Characterization
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Zhang, T.; Feng, M.; Cui, Y.; Zhang, T.; Zhang, Y.; Feng, Y.; Zhang, Y.; Chi, Q.; Liu, X. Significantly Improved Energy Storage Performance of PVDF Ferroelectric Films by Blending PMMA and Filling PCBM. ACS Sustain. Chem. Eng. 2021, 9, 16291–16303. [Google Scholar] [CrossRef]
- Behera, R.; Elanseralathan, K. A review on polyvinylidene fluoride polymer based nanocomposites for energy storage applications. J. Energy Storage 2022, 48, 103788. [Google Scholar] [CrossRef]
- Shen, Z.H.; Liu, H.X.; Shen, Y.; Hu, J.M.; Chen, L.Q.; Nan, C.W. Machine learning in energy storage materials. Interdiscip. Mater. 2022, 1, 175–195. [Google Scholar] [CrossRef]
- Chen, J.; Li, B.W.; Sun, Y.; Zhang, P.; Shen, Z.; Zhang, X.; Nan, C.W.; Zhang, S. Greatly enhanced breakdown strength and energy density in ultraviolet-irradiated polypropylene. IET Nanodielectr. 2021, 4, 223–228. [Google Scholar] [CrossRef]
- Chen, L.; Boulanger, M.E.; Wang, Z.C.; Tafti, F.; Taillefer, L. Large phonon thermal Hall conductivity in the antiferromagnetic insulator Cu3TeO6. Proc. Natl. Acad. Sci. USA 2022, 119, e2208016119. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.; Lin, Y.H.; Nan, C.W. An overview of linear dielectric polymers and their nanocomposites for energy storage. Molecules 2021, 26, 6148. [Google Scholar] [CrossRef]
- Yang, L.; Kong, X.; Li, F.; Hao, H.; Cheng, Z.; Liu, H.; Li, J.F.; Zhang, S. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 2019, 102, 72–108. [Google Scholar] [CrossRef]
- Marmolejo-Tejada, J.M.; Roll, J.E.; Poudel, S.P.; Barraza-Lopez, S.; Mosquera, M.A. Slippery Paraelectric Transition-Metal Dichalcogenide Bilayers. Nano Lett. 2022, 22, 7984–7991. [Google Scholar] [CrossRef] [PubMed]
- Aghayari, S. PVDF composite nanofibers applications. Heliyon 2022, 8, e11620. [Google Scholar] [CrossRef]
- Yan, J.; Wang, J.; Zeng, J.; Shen, Z.; Li, B.; Zhang, X.; Zhang, S. Modulating the charge trapping characteristics of PEI/BNNPs dilute nanocomposite for improved high-temperature energy storage performance. J. Mater. Chem. C 2022, 10, 13157–13166. [Google Scholar] [CrossRef]
- Zhang, M.H.; Qi, J.L.; Liu, Y.Q.; Lan, S.; Luo, Z.X.; Pan, H.; Lin, Y.H. High energy storage capability of perovskite relaxor ferroelectrics via hierarchical optimization. Rare Met. 2022, 41, 730–744. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, M.; Shen, Z.; Zhang, X.; Pan, H.; Lin, Y.H. Ferroelectric polymers and their nanocomposites for dielectric energy storage applications. APL Mater. 2021, 9, 020905. [Google Scholar] [CrossRef]
- Pan, H.; Li, F.; Liu, Y.; Zhang, Q.; Wang, M.; Lan, S.; Zheng, Y.; Ma, J.; Gu, L.; Shen, Y.; et al. Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019, 365, 578–582. [Google Scholar] [CrossRef]
- Xu, S.; Shi, X.; Pan, H.; Gao, R.; Wang, J.; Lin, Y.; Huang, H. Strain engineering of energy storage performance in relaxor ferroelectric thin film capacitors. Adv. Theory Simul. 2022, 5, 2100324. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Pan, H.; Cheng, X.; Hong, Z.; Xu, B.; Chen, L.Q.; Nan, C.W.; Lin, Y.H. Phase-Field Simulations of Tunable Polar Topologies in Lead-Free Ferroelectric/Paraelectric Multilayers with Ultrahigh Energy-Storage Performance. Adv. Mater. 2022, 34, 2108772. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Dong, M.; Wu, W.; Nejat, R.; Tran, D.K.; Pradhan, N.; Raghavan, D.; Douglas, J.F.; Wooley, K.L.; Karim, A. Enhanced Dielectric Strength and Capacitive Energy Density of Cyclic Polystyrene Films. ACS Polym. Au 2022, 2, 324–332. [Google Scholar] [CrossRef]
- Kim, J.; Saremi, S.; Acharya, M.; Velarde, G.; Parsonnet, E.; Donahue, P.; Qualls, A.; Garcia, D.; Martin, L.W. Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 2020, 369, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Dan, Z.; Ren, W.; Guo, M.; Shen, Z.; Zhang, T.; Jiang, J.; Nan, C.; Shen, Y. Structure design boosts concomitant enhancement of permittivity, breakdown strength, discharged energy density and efficiency in all-organic dielectrics. IET Nanodielectr. 2020, 3, 147–155. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, Y.; Gao, R.; Li, X.; Shen, Z.; Li, B.W.; Zhang, Q.; Zhang, S.; Nan, C.W. Tuning ferroelectricity of polymer blends for flexible electrical energy storage applications. Sci. China Mater. 2021. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, W.; Zhou, Y.; Chen, J.; Wang, Z.; Du, W.; Wen, J.; Cao, J.; Zhang, D. Enhanced dielectric constant and breakdown strength in dielectric composites using TiO2@ HfO2 nanowires with gradient dielectric constant. Ceram. Int. 2022, 48, 12483–12489. [Google Scholar] [CrossRef]
- Shang, Y.; Feng, Y.; Zhang, C.; Zhang, T.; Lei, Q.; Chi, Q. Double gradient composite dielectric with high energy density and efficiency. J. Mater. Chem. A 2022, 10, 15183–15195. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Feng, Y.; Zhang, T.; Chen, Q.; Chi, Q.; Liu, L.; Li, G.; Cui, Y.; Wang, X.; et al. Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy 2019, 56, 138–150. [Google Scholar] [CrossRef]
- Chen, L.; Deng, S.; Liu, H.; Wu, J.; Qi, H.; Chen, J. Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nat. Commun. 2022, 13, 3089. [Google Scholar] [CrossRef]
- Sarkar, A.; Wang, Q.; Schiele, A.; Chellali, M.R.; Bhattacharya, S.S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B. High-entropy oxides: Fundamental aspects and electrochemical properties. Adv. Mater. 2019, 31, 1806236. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Y.; Pan, H.; Si, W.; Zhang, Q.; Shen, Z.; Yu, Y.; Lan, S.; Meng, F.; Liu, Y.; et al. High-entropy enhanced capacitive energy storage. Nat. Mater. 2022, 21, 1074–1080. [Google Scholar] [CrossRef]
- Lei, Z.; Liu, X.; Wang, H.; Wu, Y.; Jiang, S.; Lu, Z. Development of advanced materials via entropy engineering. Scr. Mater. 2019, 165, 164–169. [Google Scholar] [CrossRef]
- Rost, C.M.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E.C.; Hou, D.; Jones, J.L.; Curtarolo, S.; Maria, J.P. Entropy-stabilized oxides. Nat. Commun. 2015, 6, 8485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, W.; Zhang, H.; Cao, S.; Gao, F.; Svec, P.; Dusza, J.; Reece, M.J.; Yan, H. Low-loss high entropy relaxor-like ferroelectrics with A-site disorder. J. Eur. Ceram. Soc. 2021, 41, 2979–2985. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, X.; Yue, Y.; Palma, M.; Reece, M.J.; Yan, H. Multi elements substituted Aurivillius phase relaxor ferroelectrics using high entropy design concept. Mater. Des. 2021, 200, 109447. [Google Scholar] [CrossRef]
- Xiang, H.; Xing, Y.; Dai, F.z.; Wang, H.; Su, L.; Miao, L.; Zhang, G.; Wang, Y.; Qi, X.; Yao, L.; et al. High-entropy ceramics: Present status, challenges, and a look forward. J. Adv. Ceram. 2021, 10, 385–441. [Google Scholar] [CrossRef]
- Sarker, P.; Harrington, T.; Toher, C.; Oses, C.; Samiee, M.; Maria, J.P.; Brenner, D.W.; Vecchio, K.S.; Curtarolo, S. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 2018, 9, 4980. [Google Scholar] [CrossRef] [Green Version]
- Zang, H.; Yan, L.; Li, M.; He, L.; Gai, Z.; Ivanov, I.; Wang, M.; Chiang, L.; Urbas, A.; Hu, B. Magneto-Dielectric Effects Induced by Optically-Generated Intermolecular Charge-Transfer States in Organic Semiconducting Materials. Sci. Rep. 2013, 3, 2812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Yi, C.; Liu, C.; Hu, X.; Chuang, S.; Gong, X. Effects of Magnetic Nanoparticles and External Magnetostatic Field on the Bulk Heterojunction Polymer Solar Cells. Sci. Rep. 2015, 5, 9265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, M.; Faccio, R.; Tumelero, M.A.; Pasa, A.A.; Mombrú, A.W. The structural and organic magnetoresistance response of poly(9-vinyl carbazole) using low applied magnetic fields and magnetic nanoparticle addition. J. Mater. Chem. C. Mater. Opt. Electron. Devices 2017, 5, 3779–3787. [Google Scholar] [CrossRef]
- Xu, K. Magnetic field effects on excited states, charge transport, and electrical polarization in organic semiconductors in spin and orbital regimes. Adv. Phys. 2019, 68, 49–121. [Google Scholar] [CrossRef]
- Petrovicova, B.; Xu, W.; Musolino, M.G.; Panto, F.; Patane, S.; Pinna, N.; Santangelo, S.; Triolo, C. High-Entropy Spinel Oxides Produced via Sol-Gel and Electrospinning and Their Evaluation as Anodes in Li-Ion Batteries. Appl. Sci. 2022, 12, 5965. [Google Scholar] [CrossRef]
- Xing, Y.; Dan, W.; Fan, Y.; Li, X. Low temperature synthesis of high-entropy (Y0.2Yb0.2Sm0.2Eu0.2Er0.2)2O3 nanofibers by a novel electrospinning method. J. Mater. Sci. Technol. 2022, 103, 215–220. [Google Scholar] [CrossRef]
- Wei, M.; Xu, J.; Yang, R.; Zhu, J.; Meng, X.; Yang, J.; Gao, F. Synthesis of ultra-fine rare-earth-zirconate high-entropy ceramic fibers via electrospinning. J. Am. Ceram. Soc. 2022, 105, 4449–4456. [Google Scholar] [CrossRef]
- Wang, H.Q.; Wang, J.W.; Wang, X.Z.; Gao, X.H.; Zhuang, G.C.; Yang, J.B.; Ren, H. Dielectric properties and energy storage performance of PVDF-based composites with MoS2@ MXene nanofiller. Chem. Eng. J. 2022, 437, 135431. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, Y.; Zhang, W.; Yan, X.; Huang, B. Improved battery performance contributed by the optimized phase ratio of β and α of PVDF. RSC Adv. 2019, 9, 29760–29764. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Cong, X.; Zhang, C.; Feng, Y.; Zhang, Y.; Zhang, T.; Chi, Q.; Wang, X.; Lei, Q. Interesting influence of different inorganic particles on the energy storage performance of a polyethersulfone-based dielectric composite. ACS Appl. Energy Mater. 2022, 5, 3545–3557. [Google Scholar] [CrossRef]
- Xie, X.; Tian, J.; Cao, X.; Li, X.; Zhang, J.; Wang, Z.; Ren, K. Ultralow-Content (Bi0.5Na0.5) TiO3-NaNbO3/PVDF-HFP Nanocomposites for Ultrahigh-Energy-Density Capacitor Applications. ACS Appl. Energy Mater. 2022, 5, 7651–7660. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, D.; Liu, Z.; Leung, C.M.; Chen, J.; Zeng, M.; Lu, X.; Gao, X.; Liu, J.M. Superior energy storage of sandwiched PVDF films by separate introduction of core-shell Ag@ BT nanoparticles and 2D MXene nanosheets. Ceram. Int. 2022, 48, 19274–19282. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X.; Hu, Z.; Jiang, P.; Li, S.; Tanaka, T. Large dielectric constant and high thermal conductivity in poly (vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Appl. Mater. Interfaces 2011, 3, 4396–4403. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Singh, D.P. Significantly improved dielectric and energy storage behavior of the surface functionalized CaCu3Ti4O12 nanoparticles in PVDF-CaCu3Ti4O12 nanocomposites. J. Alloys Compd. 2022, 918, 165500. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, D.P. On the structural, dielectric and energy storage behaviour of PVDF-CaCu3Ti4O12 nanocomposite films. Mater. Chem. Phys. 2020, 239, 122301. [Google Scholar] [CrossRef]
- Fröhlich, E.H. On the theory of dielectric breakdown in solids. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1947, 188, 521–532. [Google Scholar]
Number | hkl | FWHM | D/(Å = 0.1 nm) |
---|---|---|---|
1 | 220 | 0.629 | 132 |
2 | 311 | 0.818 | 103 |
3 | 400 | 0.651 | 133 |
4 | 511 | 0.583 | 158 |
5 | 440 | 0.810 | 116 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, J.; Mu, H.; Liu, C.; Liu, Z. Magnetic Field Effects on the Structure, Dielectric and Energy Storage Properties of High-Entropy Spinel Ferrite (La0.14Ce0.14Mn0.14Zr0.14Cu0.14Ca0.14Ni0.14)Fe2O4/PVDF Nanocomposites. Polymers 2023, 15, 1842. https://doi.org/10.3390/polym15081842
Qiao J, Mu H, Liu C, Liu Z. Magnetic Field Effects on the Structure, Dielectric and Energy Storage Properties of High-Entropy Spinel Ferrite (La0.14Ce0.14Mn0.14Zr0.14Cu0.14Ca0.14Ni0.14)Fe2O4/PVDF Nanocomposites. Polymers. 2023; 15(8):1842. https://doi.org/10.3390/polym15081842
Chicago/Turabian StyleQiao, Jiale, Haiwei Mu, Chao Liu, and Zhaoting Liu. 2023. "Magnetic Field Effects on the Structure, Dielectric and Energy Storage Properties of High-Entropy Spinel Ferrite (La0.14Ce0.14Mn0.14Zr0.14Cu0.14Ca0.14Ni0.14)Fe2O4/PVDF Nanocomposites" Polymers 15, no. 8: 1842. https://doi.org/10.3390/polym15081842
APA StyleQiao, J., Mu, H., Liu, C., & Liu, Z. (2023). Magnetic Field Effects on the Structure, Dielectric and Energy Storage Properties of High-Entropy Spinel Ferrite (La0.14Ce0.14Mn0.14Zr0.14Cu0.14Ca0.14Ni0.14)Fe2O4/PVDF Nanocomposites. Polymers, 15(8), 1842. https://doi.org/10.3390/polym15081842