Flexible Supercapacitors Based on Stretchable Conducting Polymer Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Flexible Supercapacitor
2.3. Characterizations
3. Results
3.1. Design of Flexible Supercapacitor
3.2. P3MeT and PTh as Active Electrode Materials for Supercapacitor
3.3. Stability of Bare Stretchable Electrode for Supercapacitor
3.4. Stability of Electrode Materials Based on PVA/H2SO4 Gel Electrolyte Protection
3.5. GCD of P3MeT and PTh Electrodes
3.6. Electrochemical Impedance Spectroscopy of P3MeT and PTh Electrodes Based Flexible Supercapacitor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Wang, X.; Lee, S.; Zhang, Q. Enhanced performance of electric double layer micro-supercapacitor based on novel carbon encapsulated cu nanowire network structure as electrode. ACS Appl. Mater. Interfaces 2019, 11, 40481–40489. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yin, Y.; Shen, Y.; Hui, K.; Chun, Y.; Kim, J.; Hui, K.; Zhang, L.; Jun, S. Phosphorus regulated cobalt oxide@nitrogen-doped carbon nanowires for flexible quasi-solid-state supercapacitors. Small 2020, 16, 1906458. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, R.; Tian, Y.; Sun, Z.; Huang, Z.; Wu, X.; Li, B. Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors. Chem. Eng. J. 2020, 384, 123263. [Google Scholar] [CrossRef]
- Song, J.; Li, H.; Li, S.; Zhu, H.; Ge, Y.; Wang, S.; Feng, X.; Liu, Y. Electrochemical synthesis of MnO2 porous nanowires for flexible all-solid-state supercapacitor. New J. Chem. 2017, 41, 3750–3757. [Google Scholar] [CrossRef]
- Ceraolo, M.; Lutzemberger, G.; Poli, D. State-of-charge evaluation of supercapacitors. J. Energy Storage 2017, 11, 211–218. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, W.; Chao, S.; Liang, Y.; Zhao, X.; Liu, C.; Xu, J. Advanced Oxygen-vacancy Ce-doped MoO3 ultrathin nanoflakes anode materials used as asymmetric supercapacitors with ultrahigh energy density. Adv. Energy Mater. 2022, 12, 2200101. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Xing, X.; Zhao, S.; Wang, K.; Liu, S. High-energy-density supercapacitors based on high-areal-specific-capacity Ti3C2Tx and a redox-active organic-molecule hybrid electrode. Adv. Funct. Mater. 2022, 32, 2208403. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, X.; Acauan, L.; Kalfon-Cohen, E.; Ni, X.; Stein, Y.; Gleason, K.; Wardle, B. Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal P3MT on horizontally aligned carbon-nanotube arrays. Adv. Mater. 2019, 31, 1901916. [Google Scholar] [CrossRef]
- Chen, S.; Shi, B.; He, W.; Wu, X.; Zhang, X.; Zhu, Y.; He, S.; Peng, H.; Jiang, Y.; Gao, X.; et al. Quasifractal Networks as Current Collectors for Transparent Flexible Supercapacitors. Adv. Funct. Mater. 2019, 48, 1906618. [Google Scholar] [CrossRef]
- Liang, J.; Tian, B.; Li, S.; Jiang, C.; Wu, W. All-printed MnHCF-MnOx-based high-performance flexible supercapacitors. Adv. Energy Mater. 2020, 12, 2000022. [Google Scholar] [CrossRef]
- Shao, Y.; Li, J.; Li, Y.; Wang, H.; Zhang, Q.; Kaner, R. Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Mater. Horizons 2017, 6, 1145–1150. [Google Scholar] [CrossRef]
- Choi, B.; Chang, S.; Kang, H.; Park, C.; Kim, H.; Hong, W.; Lee, S.; Huh, Y. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. Nanoscale 2012, 416, 4983–4988. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Feng, Y.; Tian, R.; Chen, Q.; Chen, J.; Jia, M.; Yao, J. Free-standing porous carbon foam as the ultralight and flexible supercapacitor electrode. Carbon 2020, 161, 224–230. [Google Scholar] [CrossRef]
- Lee, S.; Choi, K.; Kim, S.; Lee, S. Wearable supercapacitors printed on garments. Adv. Funct. Mater. 2018, 28, 1705571. [Google Scholar] [CrossRef]
- Song, W.; Lee, S.; Song, G.; Son, H.; Han, D.; Jeong, I.; Bang, Y.; Park, S. Recent progress in aqueous based flexible energy storage devices, energy storage mater. Energy Storage Mater. 2020, 30, 260–286. [Google Scholar] [CrossRef]
- Liu, L.; Guo, X.; Lee, C. Promoting smart cities into the 5G era with multi-field internet of things (Iot) applications powered with advanced mechanical energy harvesters. Nano Energy 2021, 88, 106304. [Google Scholar] [CrossRef]
- Arkhangelski, J.; Roncero-Sánchez, P.; Abdou-Tankari, M.; Vázquez, J.; Lefebvre, G. Control and restrictions of a hybrid renewable energy system connected to the grid: A battery and supercapacitor storage case. Energies 2019, 12, 2776. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Yan, J.; Guang, Z.; Huang, Y.; Li, X.; Huang, W. Recent advancements of polyaniline-based nanocomposites for supercapacitors. J. Power Sources 2019, 424, 108–130. [Google Scholar] [CrossRef]
- Asghar, M.; Zahra, S.; Khan, Z.; Ahmed, M.; Nasir, F.; Iqbal, M.; Mohammad, M.; Mahmood, A.; Akinwande, D.; Rizwan, S. Laser-assisted Fabrication of nanostructured substrate supported electrodes for highly active supercapacitors. Front. Mater. 2020, 7, 179. [Google Scholar] [CrossRef]
- Phoosomma, P.; Kasayapanand, N.; Mungkung, N. Combination of supercapacitor and AC power source in storing and supplying energy for computer backup power. J. Electr. Eng. Technol. 2019, 14, 993–1000. [Google Scholar] [CrossRef]
- Wojciechowski, J.; Kolanowski, Ł.; Bund, A.; Lota, G. The influence of current collector corrosion on the performance of electrochemical capacitors. J. Power Sources 2017, 368, 18–29. [Google Scholar] [CrossRef]
- Wang, P.; Sun, Y.; Li, J.; Zhu, G.; Zhang, X.; Yang, H.; Lin, B. Electrode materials for flexible supercapacitor with real-time visual monitoring of potential. Chem. Eng. J. 2022, 446, 137330. [Google Scholar] [CrossRef]
- Huang, Y.; Tao, J.; Meng, W.; Zhu, M.; Huang, Y.; Fu, Y.; Gao, Y.; Zhi, C. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 2015, 11, 518–525. [Google Scholar] [CrossRef]
- Arvani, M.; Keskinen, J.; Lupo, D.; Honkanen, M. Current collectors for low resistance aqueous flexible printed supercapacitors. J. Energy Storage 2020, 29, 101384. [Google Scholar] [CrossRef]
- Chen, W.; Jiang, S.; Xiao, H.; Zhou, X.; Xu, X.; Yang, J.; Siddique, A.; Liu, Z. Graphene Modified Polyaniline-Hydrogel Based Stretchable Supercapacitor with High Capacitance and Excellent Stretching Stability. ChemSusChem 2021, 14, 938–945. [Google Scholar] [CrossRef]
- Liu, T.; Yan, R.; Huang, H.; Pan, L.; Cao, X.; DeMello, A.; Niederberger, M. A micromolding method for transparent and flexible thin-film supercapacitors and hybrid supercapacitors. Adv. Funct. Mater. 2020, 30, 2004410. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Liu, J.; Wang, G.; Pu, F.; Ganesh, A.; Tang, C.; Shi, X.; Qiao, Y.; Chen, Y.; et al. Boosting areal energy density of 3D printed all-solid-state flexible microsupercapacitors via tailoring graphene composition. Energy Storage Mater. 2020, 30, 412–419. [Google Scholar] [CrossRef]
- Pu, X.; Liu, M.; Li, L.; Han, S.; Li, X.; Jiang, C.; Du, C.; Luo, J.; Hu, W.; Wang, Z. Wearable textile-based in-plane microsupercapacitors. Adv. Energy Mater. 2016, 6, 1601254. [Google Scholar] [CrossRef]
- Qin, S.; Seyedin, S.; Zhang, J.; Wang, Z.; Yang, F.; Liu, Y.; Chen, J.; Razal, J. Elastic fiber supercapacitors for wearable energy storage. Macromol. Rapid Commun. 2018, 39, 1800103. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Wang, Q.; Liang, X.; Zhang, D.; Miao, M. Wearable supercapacitors based on conductive cotton yarns. J. Mater. Sci. 2018, 53, 14586–14597. [Google Scholar] [CrossRef]
- Mishra, A.; Shetti, N.; Basu, S.; Reddy, K.R.; Aminabhavi, T. Carbon cloth-based hybrid materials as flexible electrochemical supercapacitors. ChemElectroChem 2019, 6, 5771–5786. [Google Scholar] [CrossRef]
- Sun, T.; Shen, L.; Jiang, Y.; Ma, J.; Lv, F.; Ma, H.; Chen, D.; Zhu, N. Wearable textile supercapacitors for self-powered enzyme-free smartsensors. ACS Appl. Mater. Interfaces 2020, 12, 21779–21787. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, J.; Wu, X.; Zhu, Z. Facile ion-exchange synthesis of silver films as flexible current collectors for micro-supercapacitors. J. Mater. Chem. A 2015, 3, 21009–21015. [Google Scholar] [CrossRef]
- Teng, W.; Zhou, Q.; Wang, X.; Che, H.; Hu, P.; Li, H.; Wang, J. Hierarchically interconnected conducting polymer hybrid fiber with high specific capacitance for flexible fiber-shaped supercapacitor. Chem. Eng. J. 2020, 390, 124569. [Google Scholar] [CrossRef]
- Cui, J.; Xing, F.; Luo, H.; Qin, J.; Li, Y.; Zhong, Y.; Wei, F.; Fu, J.; Jing, C.; Cheng, J.; et al. General synthesis of hollow mesoporous conducting polymers by dual-colloid interface co-assembly for high-energy-density micro-supercapacitors. J. Energy Chem. 2021, 62, 145–152. [Google Scholar] [CrossRef]
- Diao, Y.; Woon, R.; Yang, H.; Chow, A.; Wang, H.; Lu, Y.; D’Arcy, J.M. Kirigami electrodes of conducting polymer nanofibers for wearable humidity dosimeters and stretchable supercapacitors. J. Mater. Chem. A 2021, 9, 9849–9857. [Google Scholar] [CrossRef]
- Lin, K.; Chen, S.; Lu, B.; Xu, J. Hybrid π-conjugated polymers from dibenzo pentacyclic centers: Precursor design, electrosynthesis and electrochromics. Sci. China Chem. 2017, 60, 38–53. [Google Scholar] [CrossRef]
- Jian, N.; Gu, H.; Zhang, S.; Liu, H.; Qu, K.; Chen, S.; Liu, X.; He, Y.; Niu, G.; Tai, S.; et al. Synthesis and electrochromic performances of donor-acceptor-type polymers from chalcogenodiazolo [3,4-c]pyridine and alkyl ProDOTs. Electrochim. Acta 2018, 266, 263–275. [Google Scholar] [CrossRef]
- Gu, H.; Ming, S.; Lin, K.; Chen, S.; Liu, X.; Lu, B.; Xu, J. Isoindigo as an electron−deficient unit for high−performance polymeric electrochromics. Electrochim. Acta 2018, 260, 772–782. [Google Scholar] [CrossRef]
- Tian, F.; Yu, J.; Wang, W.; Zhao, D.; Cao, J.; Zhao, Q.; Wang, F.; Yang, H.; Wu, Z.; Xu, J.; et al. Design of adhesive conducting PEDOT-MeOH:PSS/PDA neural interface via electropolymerization for ultrasmall implantable neural microelectrodes. J. Colloid Interface Sci. 2023, 638, 339. [Google Scholar] [CrossRef]
- Mukkatt, I.; Mohanachandran, A.; Nirmala, A.; Patra, D.; Sukumaran, P.; Pillai, R.; Rakhi, R.; Shankar, S.; Ajayaghosh, A. Tunable capacitive behavior in metallopolymer-based electrochromic thin film supercapacitors. ACS Appl. Mater. Interfaces 2022, 14, 31900–31910. [Google Scholar] [CrossRef]
- Kolathodi, M.; Akbarinejad, A.; Tollemache, C.; Zhang, P.; Travas-Sejdic, J. Highly stretchable and flexible supercapacitors based on electrospun PEDOT:SSEBS electrodes. J. Mater. Chem. A 2022, 10, 21124–21134. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, L.; Jiao, H.; Wu, Z.; Zhao, Q.; Lin, T.; Ma, H.; Zhang, Z.; Xu, X.; Cao, J.; et al. A cost-effective, fast cooling, and efficient anti-inflammatory multilayered topological hydrogel patch for burn wound first aid. Chem. Eng. J. 2023, 455, 140553. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, J.; Wu, Z.; Xu, X.; Ma, H.; Hou, J.; Xu, Q.; Yang, R.; Zhang, K.; Zhang, M.; et al. Robust PEDOT:PSS-based hydrogel for highly efficient interfacial solar water purification. Chem. Eng. J. 2022, 442, 136284. [Google Scholar] [CrossRef]
- Hu, F.; Xue, Y.; Jian, N.; Qu, K.; Lin, K.; Zhu, X.; Wu, T.; Liu, X.; Xu, J.; Lu, B. Pyrazine-EDOT D-A-D type Hybrid Polymer for Patterned Flexible Electrochromic Devices. Electrochim. Acta 2020, 357, 136859. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, Q.; Luo, X.; Ma, H.; Zheng, W.; Yu, J.; Zhang, Z.; Zhang, K.; Qu, K.; Yang, R.; et al. Low-cost fabrication of high-performance fluorinated polythiophene-based vis-NIR electrochromic devices toward deformable display and camouflage. Chem. Mater. 2022, 34, 9923. [Google Scholar] [CrossRef]
- Gu, H.; Wang, K.; Wu, Z.; Jian, N.; Ma, H.; Zhao, Q.; Deng, Y.; Liu, J.; Xu, J.; Wang, X.; et al. Stable low-bandgap isoindigo-bisEDOT copolymer with superior electrochromic performance in NIR window. Electrochim. Acta 2021, 399, 139418. [Google Scholar] [CrossRef]
- Sato, M.; Tanaka, S.; Kaeriyama, K. Electrochemical preparation of conducting poly(3-methylthiophene): Comparison with polythiophene and poly(3-ethylthiophene). Synth. Met. 1986, 14, 279–288. [Google Scholar] [CrossRef]
- Gao, F.; Song, J.; Teng, H.; Luo, X.; Ma, M. All-polymer ultrathin flexible supercapacitors for electronic skin. Chem. Eng. J. 2021, 405, 126915. [Google Scholar] [CrossRef]
- Lu, N.; Na, R.; Li, L.; Zhang, C.; Chen, Z.; Zhang, S.; Luan, J.; Wang, G. Rational design of antifreezing organohydrogel electrolytes for flexible supercapacitors. ACS Appl. Energy Mater. 2020, 3, 1944–1951. [Google Scholar] [CrossRef]
- Li, W.; Gao, F.; Wang, X.; Zhang, N.; Ma, M. Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew. Chem. 2016, 128, 9342–9347. [Google Scholar] [CrossRef]
Electrodes | Stability | |||||
---|---|---|---|---|---|---|
0 | 1th | 10th | 100th | 1000th | 10,000th | |
P3MeT | 100% | 97.4% | 96.2% | 93.3% | 91.8% | 86.9% |
PTh | 100% | 98.5% | 94.7% | 89.2% | 84.2% | 83.3% |
P3MeT (Gel protection) | 100% | 99.6% | 98.1% | 96.7% | 95.6% | 93.0% |
PTh (Gel protection) | 100% | 94.6% | 92.8% | 89.9% | 86.4% | 85.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Cao, J.; Yu, J.; Tian, F.; Luo, X.; Hao, Y.; Huang, J.; Wang, F.; Zhou, W.; Xu, J.; et al. Flexible Supercapacitors Based on Stretchable Conducting Polymer Electrodes. Polymers 2023, 15, 1856. https://doi.org/10.3390/polym15081856
Wang W, Cao J, Yu J, Tian F, Luo X, Hao Y, Huang J, Wang F, Zhou W, Xu J, et al. Flexible Supercapacitors Based on Stretchable Conducting Polymer Electrodes. Polymers. 2023; 15(8):1856. https://doi.org/10.3390/polym15081856
Chicago/Turabian StyleWang, Wen, Jie Cao, Jiawen Yu, Fajuan Tian, Xiaoyu Luo, Yiting Hao, Jiyan Huang, Fucheng Wang, Weiqiang Zhou, Jingkun Xu, and et al. 2023. "Flexible Supercapacitors Based on Stretchable Conducting Polymer Electrodes" Polymers 15, no. 8: 1856. https://doi.org/10.3390/polym15081856
APA StyleWang, W., Cao, J., Yu, J., Tian, F., Luo, X., Hao, Y., Huang, J., Wang, F., Zhou, W., Xu, J., Liu, X., & Yang, H. (2023). Flexible Supercapacitors Based on Stretchable Conducting Polymer Electrodes. Polymers, 15(8), 1856. https://doi.org/10.3390/polym15081856