Green Preparation of Lightweight, High-Strength Cellulose-Based Foam and Evaluation of Its Adsorption Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Devices
2.3. Preparation of Cellulose-Based Foam
2.4. Field-Emission Scanning Electron Microscopy (FESEM)
2.5. X-ray Computed Tomography (Micro-CT)
2.6. Pore-Size Distribution
2.7. X-ray Diffraction (XRD)
2.8. Compression Testing
2.9. Adsorption Cycle Capacity Test
3. Results and Discussion
3.1. Morphological Characteristics of the Cellulose-Based Foam
3.2. Pore Size Distribution of the Cellulose-Based Foam
3.3. Crystal Structure of the Cellulose-Based Foam
3.4. Mechanical Properties of the Cellulose-Based Foam
3.5. Adsorption and Cycle Performance of the Cellulose-Based Foam
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gokana, S.; Rani, M.; Pathania, D.; Abhimanyu; Umapathi, R.; Rustagi, S.; Huh, Y.S.; Gupta, V.K.; Kaushik, A.; Chaudhary, V. Agro-waste to sustainable energy: A green strategy of converting agricultural waste to nano-enabled energy applications. Sci. Total Environ. 2023, 875, 162667. [Google Scholar]
- Al-Qararah, A.M.; Ekman, A.; Hjelt, T.; Kiiskinen, H.; Timonen, J.; Ketoja, J.A. Porous structure of fibre networks formed by a foaming process: A comparative study of different characterization techniques. J. Microsc. 2016, 264, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, J.; Mishra, H.; Mishra, P.K.; Wimmer, R.; Ahmad, F.J.; Talegaonkar, S. Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery. Int. J. Nanomed. 2017, 12, 2021–2031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervin, N.T.; Aulin, C.; Larsson, P.T.; Wågberg, L. Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 2012, 19, 401–410. [Google Scholar] [CrossRef]
- Chen, B.; Zheng, Q.F.; Zhu, J.L.; Li, J.; Cai, Z.; Chen, L.; Gong, S. Mechanically strong fully biobased anisotropic cellulose aerogels. Rsc. Adv. 2016, 6, 96518–96526. [Google Scholar] [CrossRef]
- de Oliveira, J.P.; Bruni, G.P.; El Halal, S.L.M.; Bertoldi, F.C.; Dias, A.R.G.; Zavareze, E.D.R. Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging. Int. J. Biol. Macromol. 2019, 124, 175–184. [Google Scholar] [CrossRef]
- Fan, X.; Li, Y.; Li, X.; Wu, Y.; Tang, K.; Liu, J.; Zheng, X.; Wan, G. Injectable antibacterial cellulose nanofiber/chitosan aerogel with rapid shape recovery for noncompressible hemorrhage. Int. J. Biol. Macromol. 2020, 154, 1185–1193. [Google Scholar] [CrossRef]
- Cervin, N.T.; Johansson, E.; Larsson, P.A.; Wågberg, L. Strong, Water-Durable, and Wet-Resilient Cellulose Nanofibril-Stabilized Foams from Oven Drying. Acs Appl. Mater. Interfaces 2016, 8, 11682–11689. [Google Scholar] [CrossRef]
- Arabkhani, P.; Asfaram, A. Development of a novel three-dimensional magnetic polymer aerogel as an efficient adsorbent for malachite green removal. J. Hazard. Mater. 2020, 384, 121394. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, M.; Nie, J.; Tan, J.; Song, S.; Luo, Y. Lightweight and porous cellulose-based foams with high loadings of zeolitic imidazolate frameworks-8 for adsorption applications. Carbohydr. Polym. 2019, 208, 328–335. [Google Scholar] [CrossRef]
- Zhou, G.; Luo, J.; Liu, C.; Chu, L.; Ma, J.; Tang, Y.; Zeng, Z.; Luo, S. A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent. Water Res. 2016, 89, 151–160. [Google Scholar] [CrossRef]
- Mo, L.; Pang, H.; Lu, Y.; Li, Z.; Kang, H.; Wang, M.; Zhang, S.; Li, J. Wood-inspired nanocellulose aerogel adsorbents with excellent selective pollutants capture. superfast adsorption, and easy regeneration. J. Hazard. Mater. 2021, 415, 125612. [Google Scholar] [CrossRef] [PubMed]
- Xu, T. Preparation and Properties of Sugarcane Cellulose Filament Porous Materials. Master’s Thesis, Guangxi University, Nanning, China, 2018. [Google Scholar]
- Klemm, D.; Heublein, B.; Fink, H.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Bhat, A.H.; Khan, I.; Usmani, M.A.; Umapathi, R.; Al-Kindy, S.M.Z. Cellulose an ageless renewable green nanomaterial for medical applications: An overview of ionic liquids in extraction, separation and dissolution of cellulose. Int. J. Biol. Macromol. 2019, 129, 750–777. [Google Scholar] [CrossRef] [PubMed]
- Taha, M.; Silva, F.A.; Quental, M.V.; Ventura, S.P.M.; Freire, M.G.; Coutinho, J.A.P. Good’s buffers as a basis for developing self-buffering and biocompatible ionic liquids for biological research. Green Chem. 2014, 16, 3149–3159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, I.; Kurnia, K.A.; Sintra, T.E.; Saraiva, J.A.; Pinho, S.P.; Coutinho, J.A.P. Assessing the activity coefficients of water in cholinium-based ionic liquids: Experimental measurements and COSMO-RS modeling. Fluid Phase Equilib. 2014, 361, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Froschauer, C.; Hummel, M.; Iakovlev, M.; Roselli, A.; Schottenberger, H.; Sixta, H. Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid cosolvent systems. Biomacromolecules 2013, 14, 1741–1750. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, K.; Du, Q.; Bai, G.; Wang, C.; Chen, Y.; Wang, J. Hydrolysis of cellulose catalyzed by novel acidic ionic liquids. Carbohydr. Polym. 2015, 115, 49–53. [Google Scholar] [CrossRef]
- Ren, Q. Research on the Solubility Property of Cellulose in Ionic Liquid. Master’s Thesis, University of Aeronautics & Astronautics, Beijing, China, 2003. [Google Scholar]
- Feng, L.; Chen, Z.-L. Research progress on dissolution and functional modification of cellulose in ionic liquids. J. Mol. Liq. 2008, 142, 1–5. [Google Scholar] [CrossRef]
- Hou, Q.P. Basic Research on Application of Foam Forming. Master’s Thesis, South China University of Technology, Guangzhou, China, 2018. [Google Scholar]
- Xiang, W.; Preisig, N.; Ketola, A.; Tardy, B.L.; Bai, L.; Ketoja, J.A.; Stubenrauch, C.; Rojas, O.J. How Cellulose Nanofibrils Affect Bulk, Surface, and Foam Properties of Anionic Surfactant Solutions. Biomacromolecules 2019, 20, 4361–4369. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Zou, L.; Zhang, X.; Dong, Y.; Tang, J.; McClements, D.J.; Liu, W. Plant-Based Nanoparticles Prepared from Proteins and Phospholipids Consisting of a Core-Multilayer-Shell Structure: Fabrication, Stability, and Foamability. J. Agric. Food Chem. 2019, 67, 6574–6584. [Google Scholar] [CrossRef] [PubMed]
- Nechita, P.; Nastac, S.M. Overview on Foam Forming Cellulose Materials for Cushioning Packaging Applications. Polymers 2022, 14, 1963. [Google Scholar] [CrossRef]
- Du, X.; Zhao, L.; Xiao, H.; Liang, F.; Chen, H.; Wang, X.; Wang, J.; Qu, W.; Lei, Z. Stability and shear thixotropy of multilayered film foam. Colloid Polym. Sci. 2014, 292, 2745–2751. [Google Scholar] [CrossRef]
- Jiang, Q.; Bismarck, A. A perspective: Is viscosity the key to open the next door for foam templating. React. Funct. Polym. 2021, 162, 104877. [Google Scholar] [CrossRef]
- Chen, S.Y.; Liu, H.J.; Yang, J.J. Bulk foam stability and rheological behavior of aqueous foams prepared by clay particles and alpha olefin sulfonate. J. Mol. Liq. 2019, 291, 111250. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, P.; Xiao, H.; Heydarifard, S.; Wang, S. Novel aqueous spongy foams made of three-dimensionally dispersed wood-fiber: Entrapment and stabilization with NFC/MFC within capillary foams. Cellulose 2017, 24, 241–251. [Google Scholar] [CrossRef]
- Swerin, A. Rheological properties of cellulosic fibre suspensions flocculated by cationic polyacrylamides. Colloids Surf. A-Physicochem. Eng. Asp. 1998, 133, 279–294. [Google Scholar] [CrossRef]
- Al-Qararah, A.M.; Hjelt, T.; Koponen, A.; Harlin, A.; Ketoja, J.A. Bubble size and air content of wet fibre foams in axial mixing with macro-instabilities. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436, 1130–1139. [Google Scholar] [CrossRef]
- Lappalainen, L.; Lehmonen, J. Determinations of bubble size distribution of foam-fibre mixture using circular hough transform. Nord. Pulp Pap. Res. J. 2012, 27, 930–939. [Google Scholar] [CrossRef]
- Koponen, A.I.; Oleg, T.; Ari, J.H.; Kiiskinen, H. Drainage of high-consistency fiber-laden aqueous foams. Cellulose 2020, 27, 9637–9652. [Google Scholar] [CrossRef]
- Li, H. Study on the Construction and Flow Behavior of Nano-Cellulose Reinforced Foam System. Master’s Thesis, Southwest University of Petroleum, Chengdu, China, 2018. [Google Scholar]
- Szopa, D.; Mielczarek, M.; Skrzypczak, D.; Izydorczyk, G.; Mikula, K.; Chojnacka, K.; Witek-Krowiak, A. Encapsulation efficiency and survival of plant growth-promoting microorganisms in an alginate-based matrix-A systematic review and protocol for a practical approach. Ind. Crops Prod. 2022, 181, 114846. [Google Scholar] [CrossRef]
- Huprikar, S.; Usgaonkar, S.; Lele, A.K.; Orpe, A.V. Microstructure and yielding of capillary force induced gel. Rheol. Acta 2020, 59, 291–306. [Google Scholar] [CrossRef]
- Dittmann, J.; Koos, E.; Willenbacher, N. Ceramic Capillary Suspensions: Novel Processing Route for Macroporous Ceramic Materials. J. Am. Ceram. Soc. 2013, 96, 391–397. [Google Scholar] [CrossRef]
- Ishigami, T.; Tokishige, C.; Fukasawa, T.; Fukui, K.; Kihara, S. Semiphenomenological model to predict hardening of solid-liquid-liquid systems by liquid bridges. Granul. Matter 2019, 21, 103. [Google Scholar] [CrossRef]
- Xue, R.; Zhao, H.; An, Z.W.; Wu, W.; Jiang, Y.; Li, P.; Huang, C.X.; Shi, D.; Li, R.; Hu, G.H.; et al. Self-healable, solvent response cellulose nanocrystal/waterborne polyurethane nanocomposites with encryption capability. ACS Nano. 2023, 17, 5653–5662. [Google Scholar] [CrossRef]
- An, Z.W.; Ye, K.; Xue, R.; Zhao, H.; Liu, Y.; Li, P.; Chen, Z.; Huang, C.; Hu, G.H. Recent advances in self-healing polyurethane based on dynamic covalent bonds combined with other self-healing methods. Nanosacle 2023. [Google Scholar] [CrossRef]
- Domenech, T.; Velankar, S.S. On the rheology of pendular gels and morphological developments in paste-like ternary systems based on capillary attraction. Soft Matter. 2015, 11, 1500–1516. [Google Scholar] [CrossRef]
- Cervin, N.T.; Andersson, L.; Ng, J.B.; Olin, P.; Bergström, L.; Wågberg, L. Lightweight and Strong Cellulose Materials Made from Aqueous Foams Stabilized by Nanofibrillated Cellulose. Biomacromolecules 2013, 14, 503–511. [Google Scholar] [CrossRef]
- Ferreira, E.S.; Cranston, E.D.; Rezende, C.A. Naturally Hydrophobic Foams from Lignocellulosic Fibers Prepared by Oven-Drying. Acs Sustain. Chem. Eng. 2020, 8, 8267–8278. [Google Scholar] [CrossRef]
- Wang, P.; Aliheidari, N.; Zhang, X.; Ameli, A. Strong ultralight foams based on nanocrystalline cellulose for high-performance insulation. Carbohydr. Polym. 2019, 218, 103–111. [Google Scholar] [CrossRef]
- Yao, M.Z.; Liu, Y.; Qing, C.N.; Hui, Z.; Huang, Q.X. Effect of hemicellulose content on structure and properties of bagasse fiber-based membrane. J. Packag. Eng. 2020, 41, 60–66. [Google Scholar]
- Zhu, H.G. Preparation of Functionalized Micro-Nano Composite Based on Graphene and Its Application in Water Purification. Ph.D. Thesis, Suzhou University, Suzhou, China, 2018. [Google Scholar]
- Wang, L.W. High Strength Microfibrillated Cellulose/Gelatin Composite Hydrogel with Controllable Network Structure. Ph.D. Thesis, Zhengzhou University, Zhengzhou, China, 2018. [Google Scholar]
- Guo, L.; Chen, Z.; Lyu, S.; Fu, F.; Wang, S. Highly flexible cross-linked cellulose nanofibril sponge-like aerogels with improved mechanical property and enhanced flame retardancy. Carbohydr. Polym. 2018, 179, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, Z.; Xie, F.; Huang, J.; Ning, D.; Zhang, M. Highly compressible, heat-insulating and self-extinguishing cellulose nanofiber/aramid nanofiber nanocomposite foams. Carbohydr. Polym. 2021, 261, 117837. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q. Study on Pore Structure Regulation Technology of Nano-Cellulose-Based Foam Material. Ph.D. Thesis, Shanxi University of Science and Technology, Xianyang, China, 2017. [Google Scholar]
- Ji, Z.L. Studies on the Compatibility and Phase Behavior of Gelatin/Hydroxypropyl Methylcellulose Blends. Ph.D. Thesis, South China University of Technology, Guangzhou, China, 2020. [Google Scholar]
- Wang, J.R. Preparation and Properties of Gelatin-Based High-Strength Hydrogel. Ph.D. Thesis, Zhengzhou University, Zhengzhou, China, 2020. [Google Scholar]
- Lu, Y.X. Preparation and Performance Study of Friction Nano-Generator Based on Cellulose Nanofiber Composites. Ph.D. Thesis, Guangxi University, Nanning, China, 2020. [Google Scholar]
- Lavoine, N.; Bergstrom, L. Nanocellulose-based foams and aerogels: Processing, properties, and applications. J. Mater. Chem. 2017, 5, 16105–16117. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Cranston, E.D. Chemically Cross-Linked Cellulose Nanocrystal Aerogels with Shape Recovery and Superabsorbent Properties. Chem. Mater. 2014, 26, 6016–6025. [Google Scholar] [CrossRef]
- Qin, C.; Yao, M.; Liu, Y.; Yang, Y.; Zong, Y.; Zhao, H. MFC/NFC-Based Foam/Aerogel for Production of Porous Materials: Preparation, Properties and Applications. Materials 2020, 13, 5568. [Google Scholar] [CrossRef]
- Aulin, C.; Netrval, J.; Wagberg, L.; Lindström, T. Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter. 2010, 6, 3298–3305. [Google Scholar] [CrossRef]
- Zheng, Z.; Sèbe, G.; Rentsch, D.; Zimmermann, T.; Tingaut, P. Ultralightweight and Flexible Silylated Nanocellulose Sponges for the Selective Removal of Oil from Water. Chem. Mater. 2014, 26, 2659–2668. [Google Scholar] [CrossRef]
- Antonini, C.; Wu, T.; Zimmermann, T.; Kherbeche, A.; Thoraval, M.J.; Nyström, G.; Geiger, T. Ultra-Porous Nanocellulose Foams: A Facile and Scalable Fabrication Approach. Nanomaterials 2019, 9, 1142. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Saito, T.; Isogai, A. Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew. Chem. Int. Ed. 2015, 53, 10253. [Google Scholar] [CrossRef] [Green Version]
- Poehler, T.; Jetsu, P.; Isomoisio, H. Benchmarking new wood fibre-based sound absorbing material made with a foam-forming technique. Build. Acoust. 2016, 23, 131–143. [Google Scholar] [CrossRef]
- Martoia, F.; Cochereau, T.; Dumont, P.J.J.; Orgéas, L.; Terrien, M.; Belgacem, M.N. Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Mater. Des. 2016, 104, 376–391. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, F.; Grénman, H.; Spoljaric, S.; Seppälä, J.; Eriksson, J.; Willför, S.; Xu, C. Development of nanocellulose scaffolds with tunable structures to support 3D cell culture. Carbohydr. Polym. Sci. Technol. Asp. Ind. Important Polysacch. 2016, 145, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-H.; Shang, J.-P.; Su, X.; Zhao, S.; Peng, Y.; Li, Y.-B. Fabrication of Superhydrophobic/Superoleophilic Bamboo Cellulose Foam for Oil/Water Separation. Polymers 2022, 14, 5162. [Google Scholar] [CrossRef] [PubMed]
Sample | Density (g/cm3) | Porosity (%) |
---|---|---|
NPB | 0.0108 ± 0.0012 | 99.30 ± 0.05 |
NPGB-1.2 | 0.0155 ± 0.0030 | 98.95 ± 0.15 |
NPGB-1.6 | 0.0145 ± 0.0050 | 99.03 ± 0.05 |
NPGB-2.4 | 0.0175 ± 0.0050 | 98.84 ± 0.03 |
NPGB-3.2 | 0.0173 ± 0.0034 | 98.86 ± 0.23 |
Material | Density (g/cm3) | Porosity (%) | Mechanical Strength (kPa) | References |
---|---|---|---|---|
Novel cellulose foam | 0.096–0.0175 | ≥98% | 55.746 (60%) | |
NFC/MFC foam | 0.010–0.060 | 90.0 | 13.78 | [29] |
NFC aerogels | <0.030 | 99.7 | 13.78 | [57] |
Silanized NFC sponge | 0.017 | 99.0 | 27.70 (50%) | [58] |
NFC foam | 0.010 | 99.4 | 12.00 (50%) | [59] |
Lignin/cellulose | 0.010 | 80.0–90.0 | 200.00 | [60] |
Cellulose foam | 0.020–0.065 | 80.0–90.0 | 10.00–90.00 | [61] |
Nano cellulose foam | 0.011 | 97.1–99.4 | 60.00 (80%) | [62] |
Cellulose scaffold | 0.006–0.176 | 99.7 | 271.00 (70–80%) | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Yin, W.; Guo, Y.; Qin, C.; Qin, Y.; Liu, Y. Green Preparation of Lightweight, High-Strength Cellulose-Based Foam and Evaluation of Its Adsorption Properties. Polymers 2023, 15, 1879. https://doi.org/10.3390/polym15081879
Zhou Y, Yin W, Guo Y, Qin C, Qin Y, Liu Y. Green Preparation of Lightweight, High-Strength Cellulose-Based Foam and Evaluation of Its Adsorption Properties. Polymers. 2023; 15(8):1879. https://doi.org/10.3390/polym15081879
Chicago/Turabian StyleZhou, Yongxing, Wenbo Yin, Yuliang Guo, Chenni Qin, Yizheng Qin, and Yang Liu. 2023. "Green Preparation of Lightweight, High-Strength Cellulose-Based Foam and Evaluation of Its Adsorption Properties" Polymers 15, no. 8: 1879. https://doi.org/10.3390/polym15081879
APA StyleZhou, Y., Yin, W., Guo, Y., Qin, C., Qin, Y., & Liu, Y. (2023). Green Preparation of Lightweight, High-Strength Cellulose-Based Foam and Evaluation of Its Adsorption Properties. Polymers, 15(8), 1879. https://doi.org/10.3390/polym15081879