Significant Improvement of Thermal Conductivity of Polyamide 6/Boron Nitride Composites by Adding a Small Amount of Stearic Acid
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of PA6/BN Composites
2.3. Characterization
3. Results and Discussion
3.1. Morphology
3.2. Melting and Crystallization Behavior
3.3. Thermal Conductivity
3.4. Transient Temperature Responses
3.5. Mechanical Property
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohayon-Lavi, A.; Buzaglo, M.; Ligati, S.; Peretz-Damari, S.; Shachar, G.; Pinsk, N.; Riskin, M.; Schatzberg, Y.; Genish, I.; Regev, O. Compression-enhanced thermal conductivity of carbon loaded polymer composites. Carbon 2020, 163, 333–340. [Google Scholar] [CrossRef]
- Mahmud, M.B.; Anstey, A.; Shaayegan, V.; Lee, P.C.; Park, C.B. Enhancing the mechanical performance of PA6 based composites by altering their crystallization and rheological behavior via in-situ generated PPS nanofibrils. Compos. Part B Eng. 2020, 195, 108067. [Google Scholar] [CrossRef]
- Tomiak, F.; Schneider, K.; Schoeffel, A.; Rathberger, K.; Drummer, D. Expandable graphite as a multifunctional flame-retarding additive for highly filled thermal conductive polymer formulations. Polymers 2022, 14, 1613. [Google Scholar] [CrossRef]
- Kumar, S.S.; Kanagaraj, G. Investigation of characterization and mechanical performances of Al2O3 and SiC reinforced PA6 hybrid composites. J. Inorg. Organomet. Polym. Mater. 2016, 26, 788–798. [Google Scholar] [CrossRef]
- Liu, C.; Wu, W.; Drummer, D.; Shen, W.; Wang, Y.; Schneider, K.; Tomiak, F. ZnO nanowire-decorated Al2O3 hybrids for im-proving the thermal conductivity of polymer composites. J. Mater. Chem. C. 2020, 8, 5380–5388. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Z.; Gou, X. Thermal conductivity of aligned CNT-polyethylene nanocomposites and correlation with the in-terfacial thermal resistance. Polym. Composit. 2020, 41, 3787–3797. [Google Scholar] [CrossRef]
- Wang, L.; Wu, W.; Drummer, D. Construction of micro-thermal conductive network of self-assembled CNTs hybrids with 1D–0D structure. J. Therm. Anal. Calorim. 2020, 147, 169–180. [Google Scholar] [CrossRef]
- Jia, C.; Zhang, P.; Seraji, S.M.; Xie, R.; Chen, L.; Liu, D.; Xiong, Y.; Chen, H.; Fu, Y.; Xu, H.; et al. Effects of BN/GO on the recyclable, healable and thermal conductivity properties of ENR/PLA thermoplastic vulcanizates. Compos. Part A Appl. Sci. Manuf. 2022, 152, 106686. [Google Scholar] [CrossRef]
- He, J.; Wang, H.; Qu, Q.; Su, Z.; Qin, T.; Da, Y.; Tian, X. Self-assembled three-dimensional structure with optimal ratio of GO and SiC particles effectively improving the thermal conductivity and reliability of epoxy composites. Compos. Commun. 2020, 22, 100448. [Google Scholar] [CrossRef]
- Huang, H.; Yan, L.; Guo, Y.; Lin, H.L.; Chen, L.; Yang, L.F.; Xie, Y.J.; Bian, J. Morphological, mechanical and thermal properties of PA6 nanocomposites Co-incorporated with Nano-Al2O3 and graphene oxide fillers. Polymer 2020, 188, 122119. [Google Scholar] [CrossRef]
- Fang, H.; Li, D.; Wu, F.; Peng, X.; Chen, A.; Zhang, L.; Chen, S. In situ polymerization of polyamide 6/boron nitride composites to enhance thermal conductivity and mechanical properties via boron nitride covalently grafted polyamide 6. Polym. Eng. Sci. 2020, 60, 710–716. [Google Scholar] [CrossRef]
- Wu, F.; Chen, S.; Tang, X.; Fang, H.; Tian, H.; Li, D.; Peng, X. Thermal conductivity of polycaprolactone/three-dimensional hex-agonal boron nitride composites and multi-orientation model investigation. Compos. Sci. Technol. 2020, 197, 108245. [Google Scholar] [CrossRef]
- Jang, I.; Shin, K.-H.; Yang, I.; Kim, H.; Kim, J.; Kim, W.-H.; Jeon, S.-W.; Kim, J.-P. Enhancement of thermal conductivity of BN/epoxy composite through surface modification with silane coupling agents. Colloids Surf. A Physicochem. Eng. Asp. 2017, 518, 64–72. [Google Scholar] [CrossRef]
- Shen, W.; Wu, W.; Liu, C.; Wang, Y.; Zhang, X. Thermal conductivity enhancement of PLA/TPU/BN composites by con-trolling BN distribution and annealing treatment. Plast. Rubber Compos. 2020, 49, 204–213. [Google Scholar] [CrossRef]
- Yuan, C.; Duan, B.; Li, L.; Xie, B.; Huang, M.; Luo, X. Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets. ACS Appl. Mater. Interfaces 2015, 7, 13000–13006. [Google Scholar] [CrossRef]
- Guerra, V.; Wan, C.; McNally, T. Prog thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Mater. Sci. 2019, 100, 170–186. [Google Scholar]
- Li, X.; Li, C.; Zhang, X.; Jiang, Y.; Xia, L.; Wang, J.; Song, X.; Wu, H.; Guo, S. Simultaneously enhanced thermal conductivity and mechanical properties of PP/BN composites via constructing reinforced segregated structure with a trace amount of BN wrapped PP fiber. Chem. Eng. J. 2020, 390, 124563. [Google Scholar] [CrossRef]
- Chen, J.; Huang, X.; Sun, B.; Wang, Y.; Zhu, Y.; Jiang, P. Vertically aligned and interconnected boron nitride nanosheets for ad-vanced flexible nanocomposite thermal interface materials. ACS Appl. Mater. Interfaces 2017, 9, 30909–30917. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Kong, M.; Yi, Z. Improved thermal conductivity and breakdown strength of PVDF-based composites by im-proving the dispersion of BN. High Volt. 2022, 7, 595–605. [Google Scholar] [CrossRef]
- Yang, D.; Ni, Y.; Kong, X.; Gao, D.; Wang, Y.; Hu, T.; Zhang, L. Mussel-inspired modification of boron nitride for natural rubber composites with high thermal conductivity and low dielectric constant. Compos. Sci. Technol. 2019, 177, 18–25. [Google Scholar] [CrossRef]
- Jo, I.; Pettes, M.; Kim, J.; Watanabe, K.; Taniguchi, T.; Yao, Z.; Shi, L. Thermal conductivity and phonon transport in sus-pended few-layer hexagonal boron nitride. Nano Lett. 2013, 13, 550–554. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wu, P. Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading. Chem. Eng. J. 2018, 348, 723–731. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, W.; Wang, Y.; Liu, C.; Liu, X.; Cui, S. Polyurethane-templated 3D BN network for enhanced thermally conductive property of epoxy composites. Polymer 2021, 235, 124239. [Google Scholar] [CrossRef]
- Xu, X.; Hu, R.; Chen, M.; Dong, J.; Xiao, B.; Wang, Q.; Wang, H. 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach. Chem. Eng. J. 2020, 397, 125447. [Google Scholar] [CrossRef]
- Chen, X.; Lim, J.S.K.; Yan, W.; Guo, F.; Liang, Y.N.; Chen, H.; Lambourne, A.; Hu, X.M. Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites. ACS Appl. Mater. Interfaces 2020, 12, 16987–16996. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Zhao, X.; Zhang, W.; Li, S.; Lu, Y.; Zhang, L. Jelly-inspired construction of the three-dimensional interconnected BN network for lightweight, thermally conductive, and electrically insulating rubber composites. ACS Appl. Electron. Mater. 2020, 2, 1661–1669. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, Y.; Wang, J.; Li, H.; Xu, W.; Li, B.; Chen, L.; Wang, Q. Lightweight porous polystyrene with high thermal con-ductivity by constructing 3D interconnected network of boron nitride nanosheets. ACS Appl. Mater. Interfaces 2020, 12, 46767–46778. [Google Scholar] [CrossRef]
- Khakbaz, H.; Ruberu, K.; Kang, L.; Talebian, S.; Sayyar, S.; Filippi, B.; Khatamifar, M.; Beirne, S.; Innis, P.C. 3D printing of highly flexible, cytocompatible nanocomposites for thermal management. J. Mater. Sci. 2021, 56, 6385–6400. [Google Scholar] [CrossRef]
- Bragaglia, M.; Lamastra, F.R.; Russo, P.; Vitiello, L.; Rinaldi, M.; Fabbrocino, F.; Nanni, F. A comparison of thermally conductive polyamide 6-boron nitride composites produced via additive layer manufacturing and compression molding. Polym. Compos. 2021, 42, 2751–2765. [Google Scholar] [CrossRef]
- Han, Y.; Lv, S.; Hao, C.; Ding, F.; Zhang, Y. Thermal conductivity enhancement of BN/silicone composites cured under electric field: Stacking of shape, thermal conductivity, and particle packing structure anisotropies. Thermochim. Acta 2012, 529, 68–73. [Google Scholar] [CrossRef]
- Liu, X.; Cao, J.; Xiao, M.; Du, B.; Chen, L.; Zhang, J.W.; Gong, Z.; Wu, Y.; Li, J.; Wang, Y. Thermal and electrical properties of nanoparticle oriented epoxy/BN/SiC composites for superconducting magnet. IEEE Trans. Appl. Supercond. 2019, 29, 1–5. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J. Vertical filler alignment of boron nitride/epoxy composite for thermal conductivity enhancement via external magnetic field. Int. J. Therm. Sci. 2016, 100, 29–36. [Google Scholar] [CrossRef]
- Chung, S.-H.; Kim, J.T.; Kim, H.; Kim, D.H.; Jeong, S.W. Magnetic alignment of graphite platelets in polyimide matrix toward a flexible electronic substrate with enhanced thermal conductivity. Mater. Today Commun. 2022, 30, 103026. [Google Scholar] [CrossRef]
- Tian, C.; Yuan, L.; Liang, G.; Gu, A. High thermal conductivity and flame-retardant phosphorus-free bismaleimide resin composites based on 3D porous boron nitride framework. J. Mater. Sci. 2019, 54, 7651–7664. [Google Scholar] [CrossRef]
- Du, X.; Yang, W.; Zhu, J.; Fu, L.; Li, D.; Zhou, L. Aligning diamond particles inside BN honeycomb for significantly im-proving thermal conductivity of epoxy composite. Compos. Sci. Technol. 2022, 222, 109370. [Google Scholar] [CrossRef]
- Zeng, X.; Yao, Y.; Gong, Z.; Wang, F.; Sun, R.; Xu, J.; Wong, C.-P. Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small 2015, 11, 6205–6213. [Google Scholar] [CrossRef]
- Zhang, R.; Hu, H.; Chen, H.; Li, S.; Ying, C.; Huang, S.; Liu, Q.; Fu, X.; Hu, S.; Wong, C. Simultaneous improvement of thermal conductivity and mechanical properties for mechanically mixed ABS/h-BN composites by using small amounts of hyper-branched polymer additives. J. Appl. Polym. Sci. 2020, 137, 49186. [Google Scholar] [CrossRef]
- Wang, F.; Shi, W.; Mai, Y.; Liao, B. Effect of thermal conductive fillers on the flame retardancy, thermal conductivity, and thermal behavior of flame-retardant and thermal conductive polyamide 6. Materials 2019, 12, 4114. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, J.; Xia, L.; Li, C.; Wang, J.; Xu, F.; Zhang, X.; Wu, H.; Guo, S. Simple and consecutive melt extrusion method to fabricate thermally conductive composites with highly oriented boron nitrides. ACS Appl. Mater. Interfaces 2017, 9, 22977–22984. [Google Scholar] [CrossRef]
- Ryu, S.; Kim, K.; Kim, J. Silane surface treatment of boron nitride to improve the thermal conductivity of polyethylene naphthalate requiring high temperature molding. Polym. Compos. 2018, 39, E1692–E1700. [Google Scholar] [CrossRef]
- Lule, Z.C.; Oh, H.; Kim, J. Enhanced directional thermal conductivity of polylactic acid/polybutylene adipate terephthalate ternary composite filled with oriented and surface treated boron nitride. Polym. Test. 2020, 86, 106495. [Google Scholar] [CrossRef]
- Bai, Y.; Shi, Y.; Zhou, S.; Zou, H.; Liang, M. Highly thermally conductive yet electrically insulative polycarbonate composites with oriented hybrid networks assisted by high shear injection molding. Macromol. Mater. Eng. 2021, 307, 2100632. [Google Scholar] [CrossRef]
- Wu, B.; Yang, Y.; Li, M.; Zhu, K.; Iqbal, Z.; Li, Y. Enhanced thermal conductivity of polyamide-66 composites with meso-carbon microbeads through simple melt blending. Polym. Eng. Sci. 2022, 62, 530–536. [Google Scholar] [CrossRef]
- Benkaddour, A.; Demir, E.C.; Jankovic, N.C.; Kim, C.I.; McDermott, M.T.; Ayranci, C. A hydrophobic coating on cellulose nanocrystals improves the mechanical properties of polyamide-6 nanocomposites. J. Compos. Mater. 2022, 56, 1775–1788. [Google Scholar] [CrossRef]
- Wang, L.; Wu, W.; Drummer, D.; Ma, R.; Liu, Z.; Shen, W. Study on thermal conductive PA6 composites with 3-dimensional structured boron nitride hybrids. J. Appl. Polym. Sci. 2019, 136, 47630. [Google Scholar] [CrossRef]
SA Content (phr) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
I002/I100 | 256 | 181 | 139 | 9.78 | 9.68 | 5.98 | 102 |
Sample | Tm (°C) | ΔHm (J g−1) | Tc (°C) | ΔHc (J g−1) | Xc (%) |
---|---|---|---|---|---|
PA6/BN | 226.4 | 27.17 | 194.4 | 20.80 | 28.6 |
PA6/BN/SA1 | 222.4 | 31.40 | 194.1 | 31.64 | 33.4 |
PA6/BN/SA2 | 221.7 | 31.61 | 193.7 | 32.05 | 34.0 |
PA6/BN/SA3 | 219.0 | 33.16 | 191.6 | 26.64 | 36.0 |
PA6/BN/SA4 | 219.1 | 34.08 | 193.2 | 29.65 | 37.3 |
PA6/BN/SA5 | 218.9 | 36.17 | 191.7 | 29.05 | 40.0 |
PA6/BN/SA6 | 217.4 | 35.55 | 191.1 | 31.57 | 39.7 |
Sample | Tensile Strength (MPa) | Young’s Modulus (MPa) |
---|---|---|
PA6/BN | 61.5 ± 0.5 | 2151 ± 32 |
PA6/BN/SA1 | 57.4 ± 1.8 | 2093 ± 30 |
PA6/BN/SA2 | 51.5 ± 0.6 | 1957 ± 26 |
PA6/BN/SA3 | 48.0 ± 1.6 | 1855 ± 24 |
PA6/BN/SA4 | 45.7 ± 0.9 | 1631 ± 27 |
PA6/BN/SA5 | 42.7 ± 0.8 | 1597 ± 26 |
PA6/BN/SA6 | 29.0 ± 1.0 | 1056 ± 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, H.; Li, G.; Wang, K.; Wu, F. Significant Improvement of Thermal Conductivity of Polyamide 6/Boron Nitride Composites by Adding a Small Amount of Stearic Acid. Polymers 2023, 15, 1887. https://doi.org/10.3390/polym15081887
Fang H, Li G, Wang K, Wu F. Significant Improvement of Thermal Conductivity of Polyamide 6/Boron Nitride Composites by Adding a Small Amount of Stearic Acid. Polymers. 2023; 15(8):1887. https://doi.org/10.3390/polym15081887
Chicago/Turabian StyleFang, Hui, Guifeng Li, Kai Wang, and Fangjuan Wu. 2023. "Significant Improvement of Thermal Conductivity of Polyamide 6/Boron Nitride Composites by Adding a Small Amount of Stearic Acid" Polymers 15, no. 8: 1887. https://doi.org/10.3390/polym15081887
APA StyleFang, H., Li, G., Wang, K., & Wu, F. (2023). Significant Improvement of Thermal Conductivity of Polyamide 6/Boron Nitride Composites by Adding a Small Amount of Stearic Acid. Polymers, 15(8), 1887. https://doi.org/10.3390/polym15081887