An Investigative Study on the Structural, Thermal and Mechanical Properties of Clay-Based PVC Polymer Composite Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modification of Clay Minerals Using Cation Surfactant
2.2. Synthesis of PVC Polymer Film
2.3. Synthesis of Clay-Based PVC Polymer Composite Film
3. Results
3.1. Surface Charge Analysis
3.2. X-ray Diffraction Studies
3.2.1. XRD Pattern of Clay before and after Modification
3.2.2. XRD Pattern of Clay-Based PVC Polymer Composite Film
3.3. Thermogravimetric Analysis
3.3.1. Thermogravimetric Analysis of Clay before and after Modification
3.3.2. Thermogravimetric Analysis of Clay-Based PVC Polymer Film
3.4. Morphological Study
3.4.1. Morphological Studies of Clay before and after Modification
3.4.2. Morphological Studies PVC Polymer Films and their Composite Films
3.5. Mechanical Properties
3.5.1. Tensile Strength and Young’s Modulus of Clay-Based Polymer Composite Films
3.5.2. Hardness
4. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gimenes Benega, M.A.; Silva, W.M.; Schnitzler, M.C.; Espanhol Andrade, R.J.; Ribeiro, H. Improvements in thermal and mechanical properties of composites based on epoxy-carbon nanomaterials—A brief landscape. Polym. Test. 2021, 98, 107180. [Google Scholar] [CrossRef]
- Armstrong, G. An introduction to polymer nanocomposites. Eur. J. Phys. 2015, 36, 063001. [Google Scholar] [CrossRef]
- Silva, H.; Ferreira, J.A.M.; Capela, C.; Richardson, M.O.W. Mixed mode interlayer fracture of glass fiber/nano-enhanced epoxy composites. Compos. Part A Appl. Sci. Manuf. 2014, 64, 211–222. [Google Scholar] [CrossRef]
- Schadler, L.S. Nanocomposite Science and Technology; Wiley-VCH: Weinheim, Germany, 2003; Chapter 2. [Google Scholar]
- Abdalla, M.O.; Ganguli, S.; Abdalla, M.A.; Dean, D.; Campbell, S. Environmental durability of polymerization of monomer reactants-type polyimide–clay nanocomposites. High Perform. Polym. 2005, 17, 239–250. [Google Scholar] [CrossRef]
- Babu, R.; Loganathan, V.S.; Pugazhenthi, G.; Thomas, S.; Varghese, T.O. An Overview of Polymer–Clay Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 2; pp. 29–81. [Google Scholar] [CrossRef]
- Abulyazied, D.E.; Ene, A. An Investigative study on the progress of nanoclay-reinforced polymers: Preparation, properties, and applications: A review. Polymers 2021, 13, 4401. [Google Scholar] [CrossRef] [PubMed]
- Kumari, N.; Mohan, C. Basics of Clay Minerals and Their Characteristic Properties; IntechOpen: London, UK, 2021. [Google Scholar]
- Shas, K.J.; Shukla, A.D.; Shah, D.O.; Imal, T. Effect of organic modifieds on dispersion of organoclay in polymer nanocomposites to improve mechanical properties. Polymers 2016, 97, 525–532. [Google Scholar] [CrossRef]
- Das, P.; Mannaa, S.; Behera, A.K.; Shee, M.; Basak, P.; Sharma, A.K. Current synthesis and characterization techniques for clay-based polymer nano-composites and its biomedical applications: A review. Environ. Res. 2022, 212, 113534. [Google Scholar] [CrossRef]
- Xu, P.; Erdem, T.; Eiser, E. A simple approach to prepare self-assembled, nacre-inspired clay/polymer nanocomposites. Soft Matter 2020, 16, 5497. [Google Scholar] [CrossRef]
- Penaloza, D.P. Review on the Preparation and Properties of Clay-based Nanocomposites with Covalently-bound Polymer Architecture. Philli. J. Sci. 2019, 148, 813. [Google Scholar]
- Faeq, L.S. Thermal and Mechanical Properties of Polymer/Nickel Composites. IOP Conf. Ser. Mater. Sci. Eng. 2020, 881, 012092. [Google Scholar] [CrossRef]
- Kiliaris, P.; Papaspyrides, C.D. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog. Polym. Sci. 2010, 35, 902–958. [Google Scholar] [CrossRef]
- Mominul Alam, S.M.; Kawauchi, T.; Takeichi, T. Preparation, and characterization of rigid polyimide-clay-polydimethylsiloxane hybrid. High Perform. Polym. 2010, 22, 742–760. [Google Scholar] [CrossRef]
- Mallakpour, S.; Dinari, M. Insertion of novel optically active poly(amide-imide) chains containing pyromellitoylbis-L-phenylalanine linkages into the nanolayered silicates modified with L-tyrosine through solution intercalation. Polymers 2011, 52, 2514–2523. [Google Scholar] [CrossRef]
- Su, Y.Y.; Rwei, S.P.; Gou, W.J.; Chan, H.H.; Cheng, K.C. Effect of polar interactions on the structure and rheology of EVA/Montmorillonite nanocomposites. J. Thermoplast. Compos. Mater. 2012, 25, 987–1003. [Google Scholar] [CrossRef]
- Mallakpour, S.; Dinari, M. Novel bionanocomposites of poly(vinyl alcohol) and modified chiral layered double hydroxides: Synthesis, properties and a morphological study. Prog. Org. Coat. 2014, 77, 583–589. [Google Scholar] [CrossRef]
- El Achaby, M.; El Miri, N.; Snik, A.; Zahouily, M.; Abdelouahdi, K.; Fihri, A.; Barakat, A.; Solhy, A. Mechanically strong nanocomposite films based on highly filled carboxymethyl cellulose with graphene oxide. J. Appl. Polym. Sci. 2016, 133, 42356–42366. [Google Scholar] [CrossRef]
- Dinari, M.; Mohammadnezhad, G.; Soltani, R. Fabrication of poly(methyl methacrylate)/silica KIT-6 nanocomposites via in situ polymerization approach and their application for removal of Cu2+ from aqueous solution. RSC Adv. 2016, 6, 11419–11429. [Google Scholar] [CrossRef]
- Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep. 2000, 28, 1–63. [Google Scholar] [CrossRef]
- Araujo, E.M.; Damião Leite, A.M.; da Paz, R.A.; da Nóbrega Medeiros, V.; de Melo, T.J.A.; de Lucena Lira, H. Polyamide 6 Nanocomposites with Inorganic Particles Modified with Three Quaternary Ammonium Salts. Materials 2011, 4, 1956–1966. [Google Scholar] [CrossRef]
- Su, S.; Jiang, D.D.; Wilkie, C.A. Methacrylate modified clays and their polystyrene and poly(methyl methacrylate) nanocomposites. Polym. Adv. Technol. 2004, 15, 225–231. [Google Scholar] [CrossRef]
- Wang, D.; Parlow, D.; Yao, Q.; Wilkie, C.; Vinyl, J. PVC-clay nanocomposites: Preparation, thermal and mechanical properties. Addit. Technol. 2001, 7, 203. [Google Scholar] [CrossRef]
- Kaur, R.; Singh, P.; Tanwar, S.; Varshney, G.; Yadav, S. Assessment of Bio-Based Polyurethanes: Perspective on Applications and Bio-Degradation. Macromol 2022, 2, 284–314. [Google Scholar] [CrossRef]
- Morgan, A.B.; Mukhopadhyay, P. A targeted review of bio-derived plasticizers with flame retardant functionality used in PVC. J. Mater. Sci. 2022, 57, 7155–7172. [Google Scholar] [CrossRef]
- Sadak, E.M.; Komy, D.E.; Motawie, A.M.; Darwish, M.S.; Ahmed, S.M.; Mokhtar, S.M. Wax co-cracking synergism of high density polyethylene to alternative fuels. J. Sci. Res. Sci. 2014, 36, 453. [Google Scholar]
- Pandey, A.; Singh, G.; Singh, S.; Jha, K.; Prakash, C. 3D printed biodegradable functional temperature-stimuli shape memory polymer for customized scaffoldings. J. Mech. Behav. Biomed. Mater. 2020, 108, 103781. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, Y.N.; Selvakumar, M.; Bhat, D.K. Investigations on thermo-mechanical properties of organically modified polymer clay nanocomposites for packaging application. Polym. Polym. Compos. 2021, 29, 1191. [Google Scholar] [CrossRef]
- Mazhar, S.; Qarn, A.A.; Haq, Y.U.; Haq, Z.U.; Murtaz, I. Promising PVC/MXene based flexible thin film nanocomposites with excellent dielectric, thermal and mechanical properties. Ceram. Internat. 2021, 46, 12593. [Google Scholar] [CrossRef]
- Wan, C.Y.; Qiao, X.Y.; Zhang, Y.; Zhang, Y.X. Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polym. Test. 2003, 22, 453–461. [Google Scholar] [CrossRef]
- Vandevyver, E.; Eichholz, E. Latest advancements in PVC/clay nanocomposites: Potential applications in plastisols. Plast. Rubber Compos. 2008, 37, 417–420. [Google Scholar] [CrossRef]
- Wang, D.Y.; Parlow, D.; Yao, Q.; Wilkie, C.A. Melt blending preparation of PVC-sodium clay nanocomposites. J. Vinyl. Addit. Technol. 2002, 8, 139–150. [Google Scholar] [CrossRef]
- Du, J.X.; Wang, D.Y.; Wilkie, C.A.; Wang, J.Q. An XPS investigation of thermal degradation and charring on poly(vinyl chloride)- clay nanocomposites. Polym. Degrad. Stab. 2003, 79, 319–324. [Google Scholar] [CrossRef]
- Grause, G.; Hirahashi, S.; Toyoda, H.; Kameda, T.; Yoshioka, T. Solubility parameters for determining optimal solvents for separating PVC from PVC-coated PET fibers. J. Mater. Cycles Waste Manag. 2015, 19, 612–622. [Google Scholar] [CrossRef]
- Petersen, H.; Jakubowicz, I.; Enebro, J.; Yarahmadi, N. Organic modification of montmorillonite for application in plasticized PVC nanocomposites. App. Clay Sci. 2015, 107, 78–84. [Google Scholar] [CrossRef]
- Mohan, C.; Kumari, N.; Dixit, S. Effect of various types of naturally occurring clay minerals on mechanical and thermal properties of PMMA polymer composite films. MRS Adv. 2022, 7, s43580. [Google Scholar] [CrossRef]
- Chen, T.S.; Wang, I.H.; Lee, Y.R.; Hsieh, T.H. Mechanical property of polymer composites reinforced with nanomaterials. Polym. Polym. Compos. 2020, 29, 696. [Google Scholar] [CrossRef]
- Derdar, H.; Meghabar, R.; Benachour, M.; Mitchell, G.R.; Bachari, K.; Belbachir, M.; Cherifi, Z.; Baghdadli, M.C.; Harrane, A. Polymer-Clay Nanocomposites: Exfoliation and Intercalation of Organophilic Montmorillonite Nanofillers in Styrene–Limonene Copolymer. Polym. Sci. Ser. A 2021, 63, 568. [Google Scholar] [CrossRef]
- Hadj-Hamou, A.S.; Yahiaoui, F. Performances of PCL/PVC/Organoclay Nanobioblends Films for Packaging Applications. Macromol. Symposia 2019, 386, 1800239. [Google Scholar] [CrossRef]
- Bertuoli, P.T.; Piazza, D.; Scienza, L.C.; Zattera, A.J. Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane. App. Clay Sci. 2014, 87, 46–51. [Google Scholar] [CrossRef]
- Ye, F.; Ye, Q.; Zhan, H.; Ge, Y.; Ma, X.; Xu, Y.; Wang, X. Synthesis and study of zinc orotate and its synergistic effect with commercial stabilizers for stabilizing Poly(Vinyl Chloride). Polymers 2019, 11, 194. [Google Scholar] [CrossRef]
- Andrunik, M.; Bajda, T. Modification of Bentonite with Cationic and Nonionic Surfactants: Structural and Textural Features. Materials 2019, 12, 3772. [Google Scholar] [CrossRef]
- Bee, S.T.; Ratnam, C.T.; Sin, L.T.; Tee, T.T.; Hui, D.; Kadhum, A.A.H.; Rahmat, A.R.; Lau, J. Effects of electron beam irradiation on mechanical properties and nanostructural–morphology of montmorillonite added polyvinyl alcohol composite. Compos. B Eng. 2014, 63, 141–153. [Google Scholar] [CrossRef]
- Khaleghi, M.; Didehban, K.; Shabanian, M. Effect of new melamine-terephthaldehyde resin modified graphene oxide on thermal and mechanical properties of PVC. Polym. Test. 2017, 63, 382. [Google Scholar] [CrossRef]
- Chee, S.S.; Jawaid, M. The Effect of Bi-Functionalized MMT on Morphology, Thermal Stability, Dynamic Mechanical, and Tensile Properties of Epoxy/Organoclay Nanocomposites. Polymers 2019, 11, 2012. [Google Scholar] [CrossRef] [PubMed]
- Mondragon, M.; Sanchez-Valdes, S.; Sanchez-Espindola, M.E.; Rivera-Lopez, J.E. Morphology, Mechanical Properties, and Thermal Stability of Rigid PVC/Clay Nanocomposites. Polym. Eng. Sci. 2010, 51, 641–646. [Google Scholar] [CrossRef]
- Mohan, C.; Kumari, N.; Varma, R. Novel Approach for the Synthesis of Hybrid-Clay based Nano Pigments and their Application as Coloring Agents. Clean Tech. Environ. Policy 2023, 25, s10098. [Google Scholar] [CrossRef]
- Kumar, M.; Arun, S.; Upadhyaya, P.; Pugazhenthi, G. Properties of PMMA/ Clay nanocomposites prepsred using various compatibilizers. Int. J. Mech. Mater. Eng. 2015, 10, 7. [Google Scholar] [CrossRef]
- Onyedika, G.O.; Onuegbu, G.C.; Onuoha, C. Modeling the Mechanical Properties of Clay Powder Filled Recycled Low Density Polyethylene Composites. J. Mater. Sci. Chem. Eng. 2020, 8, 36–47. [Google Scholar] [CrossRef]
Clay | Sample | Zeta Potential mV |
---|---|---|
Montmorillinite | Mt | −17.60 |
OMt | +29.30 | |
Bentonite | Bent | −31.10 |
OBent | +35.70 | |
Vermiculite | Vt | −47.00 |
OVt | −19.10 |
Clay | Sample | 2θ Value | Basal Spacing (d) Å |
---|---|---|---|
Montmorillinite | Mt | 6.2 | 14.45 |
OMt | 5.25 | 17.00 | |
Bentonite | Bent | 5.8 | 15.24 |
OBent | 5.4 | 16.4 | |
Vermiculite | Vt | 6.0 | 14.72 |
OVt | 5.95 | 15.09 |
S. No. | Sample Code | Stress (Pascal) | Strain (mm/mm) | Tensile Strength (MPa) | Young’s Modulus (MPa) |
---|---|---|---|---|---|
01 | PVC | 07.85 | 3.55 | 1.58 | 0.881 |
02 | PVC + Mt | 14.87 | 4.96 | 2.20 | 0.996 |
03 | PVC + OMt | 14.28 | 6.11 | 2.71 | 1.072 |
04 | PVC + Bent | 16.27 | 5.70 | 2.53 | 0.989 |
05 | PVC + OBent | 20.65 | 6.56 | 2.91 | 1.191 |
06 | PVC + Vt | 08.87 | 4.77 | 2.12 | 0.898 |
07 | PVC + OVt | 14.87 | 4.93 | 2.19 | 0.929 |
S. No. | Sample Code | Hardness D—Shore |
---|---|---|
1 | PVC | 55 |
2 | PVC + Mt | 62 |
3 | PVC + OMt | 72 |
4 | PVC + Bent | 65 |
5 | PVC + OBent | 70 |
6 | PVC + Vt | 62 |
7 | PVC + OVt | 63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumari, N.; Mohan, C.; Negi, A. An Investigative Study on the Structural, Thermal and Mechanical Properties of Clay-Based PVC Polymer Composite Films. Polymers 2023, 15, 1922. https://doi.org/10.3390/polym15081922
Kumari N, Mohan C, Negi A. An Investigative Study on the Structural, Thermal and Mechanical Properties of Clay-Based PVC Polymer Composite Films. Polymers. 2023; 15(8):1922. https://doi.org/10.3390/polym15081922
Chicago/Turabian StyleKumari, Neeraj, Chandra Mohan, and Arvind Negi. 2023. "An Investigative Study on the Structural, Thermal and Mechanical Properties of Clay-Based PVC Polymer Composite Films" Polymers 15, no. 8: 1922. https://doi.org/10.3390/polym15081922
APA StyleKumari, N., Mohan, C., & Negi, A. (2023). An Investigative Study on the Structural, Thermal and Mechanical Properties of Clay-Based PVC Polymer Composite Films. Polymers, 15(8), 1922. https://doi.org/10.3390/polym15081922