Advances in Molecular Imprinting Technology for the Extraction and Detection of Quercetin in Plants
Abstract
:1. Introduction
2. Extraction and Analysis of Quercetin from Plant Samples Using MIPs
2.1. Extraction of Quercetin from Plant Samples by Molecularly Imprinted Solid-Phase Extraction
2.2. Extraction of Quercetin from Plant Samples by Molecularly Imprinted Microsphere Extraction
2.3. Recognition of Quercetin from Plant Samples by Molecularly Imprinted Electrochemical Sensor
2.4. Extraction of Quercetin from Plant Samples by MIP-Based Composites of Materials Extraction
3. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.Y.; Loo, Y.T.; Li, Z.Z.; Ng, K. Alginate-inulin-chitosan based microspheres alter metabolic fate of encapsulated quercetin, promote short chain fatty acid production, and modulate pig gut microbiota. Food Chem. 2023, 418, 135802–135813. [Google Scholar] [CrossRef] [PubMed]
- Al-Ansari, M.M.; Al-Humaid, L.; Aldawsari, M.; Abid, I.F.; Jhanani, G.K.; Shanmuganathan, R. Quercetin extraction from small onion skin (Allium cepa L. var. aggregatum Don.) and its antioxidant activity. Environ. Res. 2023, 224, 115497–115503. [Google Scholar]
- Zhou, Y.M.; Duan, H.Y.; Chen, J.S.; Ma, S.J.; Wang, M.L.; Zhou, X.L. The mechanism of in vitro non-enzymatic glycosylation inhibition by Tartary buckwheat’s rutin and quercetin. Food Chem. 2023, 406, 134956–134963. [Google Scholar] [CrossRef]
- Cristian, C.V.; Sánchez, L.T.; Valencia, G.A.; Ahmed, S.; Gutiérrez, T.J. Molecularly imprinted polymers for food applications: A review. Trends Food Sci. Technol. 2021, 111, 642–669. [Google Scholar]
- Kaya, S.I.; Cetinkaya, A.; Ozkan, S.A. Molecularly imprinted polymers as highly selective sorbents in sample preparation techniques and their applications in environmental water analysis. Trends Environ. Anal. Chem. 2022, 37, e00193–e00204. [Google Scholar] [CrossRef]
- Viveiros, R.; Rebocho, S.; Casimiro, T. Green strategies for molecularly imprinted polymer development. Polymers 2018, 10, 306. [Google Scholar] [CrossRef] [PubMed]
- Tasfaout, A.; Ibrahim, F.; Morrin, A.; Brisset, H.; Sorrentino, I.; Nanteuil, C.; Laffite, G.; Nicholls, I.A.; Regan, F.; Branger, C. Molecularly imprinted polymers for per-and polyfluoroalkyl substances enrichment and detection. Talanta 2023, 258, 124434–124446. [Google Scholar]
- Becskereki, G.; George, H.; Blanka, T. The selectivity of molecularly imprinted polymers. Polymers 2021, 13, 1781. [Google Scholar] [CrossRef]
- Zhang, L.X.; Yu, H.; Chen, H.F.; Huang, Y.H.; Bakunina, I.; de Sousa, D.P.; Sun, M.N.; Zhang, J.Y. Application of molecular imprinting polymers in separation of active compounds from plants. Fitoterapia 2022, 164, 105383–105396. [Google Scholar] [CrossRef]
- Yang, Y.R.; Shen, X.T. Preparation and application of molecularly imprinted polymers for flavonoids: Review and perspective. Molecules 2022, 27, 7355. [Google Scholar] [CrossRef]
- Ye, C.L.; He, S.; Cao, W.L.; Zhang, Z.Y. Research progress in new technologies for extraction and separation of Chinese materia medica. Chin. Tradit. Herbal. Drugs 2015, 46, 457–464. [Google Scholar]
- Guć, M.; Grzegorz, S. Application of molecularly imprinted polymers (MIP) and magnetic molecularly imprinted polymers (mag-MIP) to selective analysis of quercetin in flowing atmospheric-pressure afterglow mass spectrometry (FAPA-MS) and in electrospray ionization mass spectrometry (ESI-MS). Molecules 2019, 24, 2364. [Google Scholar] [PubMed]
- Pakade, V.E.; Molefe, E.D.; Tavengwa, N.T. Quantitative determination of trace concentrations of quercetin from prickly pear skin complex sample extracts by application of molecularly imprinted polymers. J. Environ. Eng. 2017, 5, 1186–1195. [Google Scholar] [CrossRef]
- Ersoy, S.K.; Tutem, E.; Baskan, K.S.; Apak, R.; Nergiz, C. Preparation, characterization and usage of molecularly imprinted polymer for the isolation of quercetin from hydrolyzed nettle extract. J. Chromatogr. B 2016, 1017, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Song, X.L.; Li, J.H.; Wang, J.T.; Chen, L.X. Quercetin molecularly imprinted polymers: Preparation, recognition characteristics and properties as sorbent for solid-phase extraction. Talanta 2009, 80, 694–702. [Google Scholar] [CrossRef]
- Rahimi, M.; Bahar, S.; Heydari, R.; Amininasab, S.M. Determination of quercetin using a molecularly imprinted polymer as solid-phase microextraction sorbent and high-performance liquid chromatography. Microchem. J. 2019, 148, 433–441. [Google Scholar] [CrossRef]
- Fan, P.M.; Wang, B. Molecular recognition characteristics of quercetin’s metal-complexing imprinted polymer. Chem. J. Chin. Univ. 2009, 30, 2514–2520. [Google Scholar]
- Pakade, V.; Lindahl, S.; Chimuka, L.; Turner, C. Molecularly imprinted polymers targeting quercetin in high-temperature aqueous solutions. J. Chromatogr. A 2012, 1230, 15–23. [Google Scholar] [CrossRef]
- Petrova, Y.Y.; Bulatova, E.V.; Sevast’yanova, E.V.; Mateyshina, Y.G. Quercetin-imprinted monolithic polymer. Mater. Today Proc. 2020, 31, 555–557. [Google Scholar] [CrossRef]
- Hong, Y.S.; Chen, L.G. Extraction of quercetin from Herba Lysimachiae by molecularly imprinted-matrix solid phase dispersion. J. Chromatogr. B 2013, 941, 38–44. [Google Scholar] [CrossRef]
- Cong, J.J.; Luo, J.; Gao, H.; Liu, X.Y. Research progress of surface molecular imprinting technique. Chin. Polym. Bull. 2015, 5, 10–20. [Google Scholar]
- Shiomi, T.; Matsui, M.; Mizukami, F. A method for the molecular imprinting of hemoglobin on silica surfaces using silanes. Biomaterials 2005, 26, 5564–5571. [Google Scholar] [CrossRef] [PubMed]
- Dramou, P.; Itatahine, A.; Fizir, M.; Mehdi, Y.A.; Kutoka, P.T.; He, H. Preparation of novel molecularly imprinted magnetic graphene oxide and their application for quercetin determination. J. Chromatogr. B 2019, 1124, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Nie, J.Y.; Li, J.; Liu, H.D.; Yan, Z.; Kuang, L.X. Synthesis and characterization of core–shell magnetic molecularly imprinted polymers for selective recognition and determination of quercetin in apple samples. Food Chem. 2019, 287, 100–106. [Google Scholar] [CrossRef]
- Ruan, Y.X.; Ma, Y.X.; Wang, R.J.; Xing, D.; Du, X.Y.; Zhang, W.J. Preparation and adsorption property of quercetin magnetic molecularly imprinted polymers. J. Funct. Polym. 2016, 29, 68–74. [Google Scholar]
- Roghayeh, M.; Soleiman, B. Synthesis of magnetic graphene quantum dots based molecularly imprinted polymers for fluorescent determination of quercetin. Microchem. J. 2023, 185, 108233–108242. [Google Scholar]
- Karrat, A.; Palacios-Santander, J.M.; Amine, A.; Cubillana-Aguilera, L. A novel magnetic molecularly imprinted polymer for selective extraction and determination of quercetin in plant samples. Anal. Chim. Acta 2022, 1203, 339709–339718. [Google Scholar] [CrossRef]
- Abdullah; Alveroglu, E.; Balouch, A.; Khan, S.; Mahar, A.M.; Jagirani, M.S.; Pato, A.H. Evaluation of the performance of a selective magnetite molecularly imprinted polymer for extraction of quercetin from onion samples. Microchem. J. 2021, 162, 105849. [Google Scholar] [CrossRef]
- Luo, A.Q.; Cai, Y.H.; Liang, A.X.; Xie, B.T. Application of novel molecularly imprinted biosensors in cancer biomarkers. Chem. Ind. Eng. Prog. 2022, 41, 448–460. [Google Scholar]
- Dinc, M.; Esen, C.; Mizaikoff, B. Recent advances on core–shell magnetic molecularly imprinted polymers for biomacromolecules. Trends Anal. Chem. 2019, 114, 202–217. [Google Scholar] [CrossRef]
- Latif, U.; Mujahid, A.; Zahid, M.; Mustafa, G.; Hayat, A. Nanostructured Molecularly Imprinted Photonic Polymers for Sensing Applications. Curr. Nanosci. 2020, 16, 495–503. [Google Scholar] [CrossRef]
- Lah, N.F.C.; Ahmad, A.L.; Low, S.C.; Shoparwe, N.F. The role of porogen-polymer complexation in atrazine imprinted polymer to work as an electrochemical sensor in water. J. Environ. Chem. Eng. 2019, 7, 103500. [Google Scholar]
- Liu, B.C.; Ma, Y.R.; Zhou, F.; Wang, Q.; Liu, G.Q. Voltammetric determination of sulfadiazine based on molecularimprinted electrochemical sensor. Int. J. Electrochem. Sci. 2020, 15, 9590–9596. [Google Scholar] [CrossRef]
- Liu, W.F.; Clovia, H.; Ye, L. Synthesis of molecularly imprinted polymers using a functionalized initiator for chiral-selective recognition of propranolol. Chirality 2020, 32, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Refaat, D.; Aggour, M.G.; Farghali, A.A.; Mahajan, R.; Wiklander, J.G.; Nicholls, I.A.; Piletsky, S.A. Strategies for Molecular Imprinting and the Evolution of MIP Nanoparticles as Plastic Antibodies—Synthesis and Applications. Int. J. Mol. Sci. 2019, 20, 6304. [Google Scholar] [CrossRef]
- Bodoki, A.E.; Iacob, B.C.; Gliga, L.; Oprean, S.; Spivak, D.; Gariano, N.; Bodoki, E. Improved Enantioselectivity for Atenolol Employing Pivot Based Molecular Imprinting. Molecules 2018, 23, 1875. [Google Scholar] [CrossRef]
- Liu, R.; Zhong, T.S.; Long, L.P.; Zhao, J.T.; Li, J. Graphene-SWNTs modified molecular imprinting sensor for the determination the content of quercetin in black tea. Environ. Chem. 2016, 35, 1280–1286. [Google Scholar]
- Liu, R.; Long, L.P.; Liu, S.Q.; Zhao, Y.L.; Yan, X.; Lvi, J. Selective Determination of Quercetin′s Content in Black Tea by Electrochemical Polymerized Molecularly Imprinted Sensor. Chem. Bull. 2015, 78, 918–922. [Google Scholar]
- Zhao, P.C.; Ni, M.J.; Xu, Y.T.; Wang, C.X.; Chen, C.; Zhang, X.R.; Li, C.Y.; Xie, Y.X.; Fei, J.J. A novel ultrasensitive electrochemical quercetin sensor based on MoS2-carbon nanotube@graphene oxide nanoribbons/HS-cyclodextrin/graphene quantum dots composite film. Sens. Actuators B-Chem. 2019, 299, 126997–127007. [Google Scholar] [CrossRef]
- Yao, Z.F.; Yang, X.; Liu, X.B.; Yang, Y.Q.; Hu, Y.J.; Zhao, Z.J. Electrochemical quercetin sensor based on a nanocomposite consisting of magnetized reduced graphene oxide, silver nanoparticles and a molecularly imprinted polymer on a screen-printed electrode. Microchimi. Acta 2018, 185, 70–78. [Google Scholar] [CrossRef]
- Qiu, H.M.; Luo, C.N.; Sun, M.; Lu, F.G.; Fan, L.L.; Li, X.J. A novel chemiluminescence sensor for determination of quercetin based on molecularly imprinted polymeric microspheres. Food Chem. 2012, 134, 469–473. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, M.; Li, Y.; He, X. A Molecularly Imprinted Polymer with Incorporated Graphene Oxide for Electrochemical Determination of Quercetin. Sensors 2013, 13, 5493–5506. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Xia, J.F.; Wang, Z.H.; Zhang, F.F.; Yang, M.; Li, Y.H.; Xia, Y.Z. Molecularly imprinted electrochemical sensor based on an electrode modified with an imprinted pyrrole film immobilized on a β-cyclodextrin/gold nanoparticles/graphene layer. RSC Adv. 2015, 5, 82930–82935. [Google Scholar] [CrossRef]
- Wang, W.; Sun, H.; He, C.X. A sensitive quercetin sencor based on molecularly imprinted eletropolymer of o-pheny-lenediamine. J. Sci. TC Univ. 2012, 32, 50–52. [Google Scholar]
- de Faria, H.D.; Abrao, L.C.D.; Santos, M.G.; Barbosa, A.F.; Figueiredo, E.C. New advances in restricted access materials for sample preparation:a review. Anal. Chim. Acta 2017, 959, 43–65. [Google Scholar] [CrossRef]
- Wang, X.F.; Song, S.K.; Bai, Y.L.; Liu, M.P.; Sun, Y.Q.; Meng, M. Application of restricted access material-molecularly imprinted polymers in sample preparation of pharmaceutical analysis. J. Pharm. Anal. 2020, 40, 785–794. [Google Scholar]
- Li, X.X.; Row, K.H. Preparation of deep eutectic solvent-based hexagonal boron nitride-molecularly imprinted polymer nanoparticles for solid phase extraction of flavonoids. Mikrochimi. Acta 2019, 186, 753–762. [Google Scholar] [CrossRef]
- Liang, C.L.; Zhang, Z.Y.; Zhang, H.D.; Ye, L.F.; He, J.F.; Ou, J.M.; Wu, Q.Z. Ordered macroporous molecularly imprinted polymers prepared by a surface imprinting method and their applications to the direct extraction of flavonoids from Gingko leaves. Food Chem. 2020, 309, 125680–125689. [Google Scholar] [CrossRef]
- Zhi, K.K.; Li, Z.; Luo, H.; Ding, Y.T.; Chen, F.Y.; Tan, Y.X.; Liu, H.R. Selective adsorption of quercetin by the Sol-Gel surface molecularly imprinted polymer. Polymers 2023, 15, 905. [Google Scholar] [CrossRef]
- Quan, T.; Wang, D.D.; Yang, L.J.; Liu, S.C.; Tao, Y.Q.; Wang, J.J.; Deng, L.L.; Kang, X.; Zhang, K.L.; Xia, Z.N.; et al. Effective extraction methods based on hydrophobic deep eutectic solvent coupled with functional molecularly imprinted polymers: Application on quercetagetin extraction from natural medicine and blood. Microchem. J. 2022, 174, 107076–107086. [Google Scholar] [CrossRef]
Samples | Modified Electrode | Linearity Range /mol/L | LOD /mol/L | Recovery/% | Reference |
---|---|---|---|---|---|
Dark tea | MIP/SWNTs/GR/Au a | 3.00 × 10−7–1.92 × 10−5 | 1.00 × 10−7 | 97.8–104.0 | [37] |
Dark tea | MIP/Au b | 6.00 × 10−6–1.00 × 10−4 | 2.00 × 10−6 | 99.0–101.2 | [38] |
Juices | MIP/MoS2-CNTs@GONRs/HS-CD/GQDs/GCE c | 2.00 × 10−9–1.60 × 10−6 | 8.20 × 10−10 | 95.4–106.1 | [39] |
Pharmaceuticals | MIP/SPE/MrCO d | 2.00 × 10−8–2.50 × 10−4 | 1.30 × 10−8 | 99.5–104.3 | [40] |
Chemicals | MIP/Luminol-NaOH-H2O2 e | 1.40 × 10−6–1.60 × 10−4 | 9.30 × 10−7 | 98.1–100.0 | [41] |
Juices | MIP/GO/GC f | 6.00 × 10−7–1.50 × 10−5 | 4.80 × 10−8 | 97.4–101.4 | [42] |
Pharmaceuticals | MIP/β-CD/AuNPs/GR/GCE g | 1.00 × 10−9–1.00 × 10−6 | 1.00 × 10−10 | 97.6–102.1 | [43] |
Gingko drugs | MIP/OPD/GE h | 8.00 × 10−8–1.00 × 10−3 | 5.00 × 10−8 | 99.2–102.0 | [44] |
Methods | Type of Polymerization | Sample | Materials | Monomer; Crosslinker; Initiator; Template | Linearity Range /mol/L | LOD /mol/L | Recovery/% | Ref. |
---|---|---|---|---|---|---|---|---|
molecularly imprinted solid-phase extraction | thermal polymerization | cacumen, platycladi | MIP | acrylamide; EGDMA a; AIBN; quercetin | − | − | 80.21–89.15, 85.33–95.28 | [15] |
sol-gel process | tea, coffee | MIP | APTES b; AIBN; TEOS c | 0.05–100 μg/mL | 9.94 ng/mL | 94.20–98.50 | [16] | |
− | − | MIP | 4-vinylpyridine; AIBN; complex of quercetin and Zn (II) | − | − | − | [17] | |
− | yellow onion | MIP | 4-vinylpyridine; EGDMA; AIBN; quercetin | − | − | − | [18] | |
molecularly imprinted microsphere extraction | co-precipitation technique | green tea, serum | MGO d -MIP | Methacrylic acid; EGDMA; AIBN; quercetin | 0.001–3 μg/mL; 0.005–3 μg/mL | 0.09 ng/mL; 0.70 ng/mL | 82–100; 83–100 | [23] |
surface imprinting technology | apple | magnetic Fe3O4@MIPs | APTES; EGDMA; AIBN;quercetin | 1–400 μg/mL | 0.20 μg/mL | 89.2–93.6 | [24] | |
Surface molecular imprinting | quercetin | quercetin-MMIPs e | N-vinylpyrrolidone and Acrylic Acid; N, N’-methylene diacrylamide; AIBN; quercetin | − | − | − | [25] | |
− | green tea, cumin, thyme | FeO@GQDs f/MIP | APTES; TEOS; AIBN; quercetin | 5–220 ng/mL | 0.54 ng/mL | 97.61–102.11 | [26] | |
radical polymerization | orange juice, tea | MMIP-coated Fe3O4-Chitosan | MAA; EGDMA; AIBN; ammonium persulfate and quercetin | 0.005–1.25 μg/mL | 1.1 ng/mL | 92.2–104.7 | [27] | |
ultrasonic mediated co-precipitation polymerization | onion | Fe3O4@SiO2@ NH2-quercetin-MIP | Methacrylic acid; EGDMA; AIBN; quercetin | 0.32–25 μg/mL | 0.06 µg/mL | 96–98.6 | [28] | |
MIP-based composites of materials extraction | − | − | h-BN-MIP nanoparticles | -; EGDMA; AIBN; quercetin | − | − | 98.9–100.3 | [47] |
surface imprinting method | gingko | OMMIPs g | 4-VP h; EGDMA; AIBN; quercetin | − | − | − | [48] | |
Sol-Gel Surface-MIP | − | − | APTES; TEOS; AIBN; quercetin | − | − | − | [49] | |
precipitation polymerization | natural medicine, blood | − | 2-VP i; EDMA; quercetin | − | − | 65.27–78.77 | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, K.; Xu, S.; Zhou, Q.; Wang, S.; Xu, Z.; Liu, Z. Advances in Molecular Imprinting Technology for the Extraction and Detection of Quercetin in Plants. Polymers 2023, 15, 2107. https://doi.org/10.3390/polym15092107
Ye K, Xu S, Zhou Q, Wang S, Xu Z, Liu Z. Advances in Molecular Imprinting Technology for the Extraction and Detection of Quercetin in Plants. Polymers. 2023; 15(9):2107. https://doi.org/10.3390/polym15092107
Chicago/Turabian StyleYe, Kexi, Shufang Xu, Qingqing Zhou, Sitao Wang, Zhigang Xu, and Zhimin Liu. 2023. "Advances in Molecular Imprinting Technology for the Extraction and Detection of Quercetin in Plants" Polymers 15, no. 9: 2107. https://doi.org/10.3390/polym15092107
APA StyleYe, K., Xu, S., Zhou, Q., Wang, S., Xu, Z., & Liu, Z. (2023). Advances in Molecular Imprinting Technology for the Extraction and Detection of Quercetin in Plants. Polymers, 15(9), 2107. https://doi.org/10.3390/polym15092107