Sulfonated PAM/PPy Cryogels with Lowered Evaporation Enthalpy for Highly Efficient Photothermal Water Evaporation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Sulfonated PAM Cryogels
2.3. Synthesis of Sulfonated PAM Composite Cryogels with Photothermal Material
2.4. Determination of Equivalent Evaporation Enthalpy of Water in PAM Cryogels
2.5. Photothermal Evaporation with Different Sulfonated PAM Cryogels
2.6. Characterization
3. Results and Discussion
3.1. Preparation of Different Sulfonated PAM Cryogels
3.2. Preparation of Sulfonated PAM Composite Cryogels Loaded with Polypyrrole
3.3. Determination of Equivalent Vaporization Enthalpy of Water in PAM Cryogels
3.4. Photothermal Evaporation of Water from Different Cryogels and Light-to-Evaporation Conversion
3.5. Simulated Seawater Desalination and Condensate Collection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, H.; Yang, S.; Rao, S.R.; Narayanan, S.; Kapustin, E.A.; Furukawa, H.; Umans, A.S.; Yaghi, O.M.; Wang, E.N. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 2017, 356, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.Y.; Zhao, F.; Guo, Y.H.; Zhang, Y.; Yu, G.H. A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 2018, 11, 1985–1992. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future global urban water scarcity and potential solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, F.; Zhou, X.; Chen, Z.; Yu, G. Tailoring Nanoscale Surface Topography of Hydrogel for Efficient Solar Vapor Generation. Nano Lett. 2019, 19, 2530–2536. [Google Scholar] [CrossRef] [PubMed]
- Shatat, M.; Riffat, S.B. Water desalination technologies utilizing conventional and renewable energy sources. Int. J. Low-Carbon Technol. 2012, 9, 1–19. [Google Scholar] [CrossRef]
- Zhan, Z.; Chen, L.; Wang, C.; Shuai, Y.; Duan, H.; Wang, Z. Super Water-Storage Self-Adhesive Gel for Solar Vapor Generation and Collection. ACS Appl. Mater. Interfaces 2023, 15, 8181–8189. [Google Scholar] [CrossRef]
- Fillet, R.; Nicolas, V.; Fierro, V.; Celzard, A. A review of natural materials for solar evaporation. Sol. Energy Mater. Sol. Cells 2021, 219, 110814. [Google Scholar] [CrossRef]
- Chen, C.J.; Kuang, Y.D.; Hu, L.B. Challenges and Opportunities for Solar Evaporation. Joule 2019, 3, 683–718. [Google Scholar] [CrossRef]
- Saleque, A.M.; Nowshin, N.; Ivan, M.N.A.; Ahmed, S.; Tsang, Y.H. Natural Porous Materials for Interfacial Solar Steam Generation toward Clean Water Production. Sol. RRL 2022, 6, 2100986. [Google Scholar] [CrossRef]
- Onggowarsito, C.; Feng, A.; Mao, S.; Nguyen, L.N.; Xu, J.; Fu, Q. Water Harvesting Strategies through Solar Steam Generator Systems. ChemSusChem 2022, 15, e202201543. [Google Scholar] [CrossRef]
- Xie, H.; Xu, W.H.; Du, Y.; Gong, J.; Niu, R.; Wu, T.; Qu, J.P. Cost-Effective Fabrication of Micro-Nanostructured Superhydrophobic Polyethylene/Graphene Foam with Self-Floating, Optical Trapping, Acid-/Alkali Resistance for Efficient Photothermal Deicing and Interfacial Evaporation. Small 2022, 18, e2200175. [Google Scholar] [CrossRef]
- Zhu, R.F.; Wang, D.; Liu, Y.M.; Liu, M.M.; Fu, S.H. Bifunctional superwetting carbon nanotubes/cellulose composite membrane for solar desalination and oily seawater purification. Chem. Eng. J. 2022, 433, 133510. [Google Scholar] [CrossRef]
- Zhu, G.S.; Jing, G.X.; Xu, G.R.; Li, Q.; Huang, R.J.; Li, F.; Li, H.X.; Wang, D.; Chen, W.W.; Tang, B.Z. A green and efficient strategy facilitates continuous solar-induced steam generation based on tea-assisted synthesis of gold nanoflowers. Nano Res. 2022, 15, 6705–6712. [Google Scholar] [CrossRef]
- Alsehli, M. Application of graphene nanoplatelet/platinum hybrid nanofluid in a novel design of solar still for improving water production and energy management. Sustain. Energy Technol. 2022, 53, 102607. [Google Scholar] [CrossRef]
- Zhao, Q.B.; Wan, Y.Q.; Chang, F.; Wang, Y.F.; Jiang, H.K.; Jiang, L.; Zhang, X.Y.; Ma, N. Photothermal converting polypyrrole/polyurethane composite foams for effective solar desalination. Desalination 2022, 527, 115581. [Google Scholar] [CrossRef]
- Wang, M.; Xu, G.R.; An, Z.H.; Xu, K.; Qi, C.H.; Das, R.; Zhao, H.L. Hierarchically structured bilayer Aerogel-based Salt-resistant solar interfacial evaporator for highly efficient seawater desalination. Sep. Purif. Technol. 2022, 287, 120534. [Google Scholar] [CrossRef]
- Cheng, S.A.; Yu, Z.; Lin, Z.F.; Li, L.X.; Li, Y.H.; Mao, Z.Z. A lotus leaf like vertical hierarchical solar vapor generator for stable and efficient evaporation of high-salinity brine. Chem. Eng. J. 2020, 401, 126108. [Google Scholar] [CrossRef]
- Li, Z.; Ma, X.; Chen, D.; Wan, X.; Wang, X.; Fang, Z.; Peng, X. Polyaniline-Coated MOFs Nanorod Arrays for Efficient Evaporation-Driven Electricity Generation and Solar Steam Desalination. Adv. Sci. 2021, 8, 2004552. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, I.; Seo, D.H.; McDonagh, A.M.; Shon, H.K.; Tijing, L. Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment. Desalination 2021, 500, 114853. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Samanta, S.K. Soft-Nanocomposites of Nanoparticles and Nanocarbons with Supramolecular and Polymer Gels and Their Applications. Chem. Rev. 2016, 116, 11967–12028. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y.; Song, J.; Yang, Z.; Kuang, Y.; Hitz, E.; Jia, C.; Gong, A.; Jiang, F.; Zhu, J.Y.; et al. Highly Flexible and Efficient Solar Steam Generation Device. Adv. Mater. 2017, 29, 1701756. [Google Scholar] [CrossRef]
- Li, Y.; Gao, T.; Yang, Z.; Chen, C.; Luo, W.; Song, J.; Hitz, E.; Jia, C.; Zhou, Y.; Liu, B.; et al. 3D-Printed, All-in-One Evaporator for High-Efficiency Solar Steam Generation under 1 Sun Illumination. Adv. Mater. 2017, 29, 1700981. [Google Scholar] [CrossRef]
- Zhang, P.; Li, J.; Lv, L.; Zhao, Y.; Qu, L. Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water. ACS Nano 2017, 11, 5087–5093. [Google Scholar] [CrossRef]
- Guan, Q.F.; Han, Z.M.; Ling, Z.C.; Yang, H.B.; Yu, S.H. Sustainable Wood-Based Hierarchical Solar Steam Generator: A Biomimetic Design with Reduced Vaporization Enthalpy of Water. Nano Lett. 2020, 20, 5699–5704. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Zhao, L.; Zhang, J.; Zhang, L.; Yuan, P.; Zhang, Y.; Li, Q. Gradient Heating Effect Modulated by Hydrophobic/Hydrophilic Carbon Nanotube Network Structures for Ultrafast Solar Steam Generation. ACS Appl. Mater. Interfaces 2021, 13, 19109–19116. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, Y.D.; Wu, P.; Zhao, J.Y.; Lu, Y.; Yang, X.F.; Xu, H.L. Dual-Zone Photothermal Evaporator for Antisalt Accumulation and Highly Efficient Solar Steam Generation. Adv. Funct. Mater. 2021, 31, 2102618. [Google Scholar] [CrossRef]
- He, W.; Zhou, L.; Wang, M.; Cao, Y.; Chen, X.; Hou, X. Structure development of carbon-based solar-driven water evaporation systems. Sci. Bull. 2021, 66, 1472–1483. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Guo, X.X.; Chen, J.; Hou, S.C.; Li, H.J.; Haleem, A.; Chen, S.Q.; He, W.D. A versatile platform of poly(acrylic acid) cryogel for highly efficient photothermal water evaporation. Mater. Adv. 2021, 2, 3088–3098. [Google Scholar] [CrossRef]
- Hou, Q.; Xue, C.R.; Li, N.; Wang, H.Q.; Chang, Q.; Liu, H.T.; Yang, J.L.; Hu, S.L. Self-assembly carbon dots for powerful solar water evaporation. Carbon 2019, 149, 556–563. [Google Scholar] [CrossRef]
- Bai, H.Y.; Liu, N.; Hao, L.; He, P.P.; Ma, C.D.; Niu, R.; Gong, J.; Tang, T. Self-Floating Efficient Solar Steam Generators Constructed Using Super-Hydrophilic N,O Dual-Doped Carbon Foams from Waste Polyester. Energy Environ. Mater. 2022, 5, 1204–1213. [Google Scholar] [CrossRef]
- Nabeela, K.; Thorat, M.N.; Backer, S.N.; Ramachandran, A.M.; Thomas, R.T.; Preethikumar, G.; Mohamed, A.P.; Asok, A.; Dastager, S.G.; Pillai, S. Hydrophilic 3D Interconnected Network of Bacterial Nanocellulose/Black Titania Photothermal Foams as an Efficient Interfacial Solar Evaporator. ACS Appl. Bio. Mater. 2021, 4, 4373–4383. [Google Scholar] [CrossRef]
- Li, C.C.; Zhu, B.; Liu, Z.X.; Zhao, J.T.; Meng, R.R.; Zhang, L.S.; Chen, Z.G. Polyelectrolyte-based photothermal hydrogel with low evaporation enthalpy for solar-driven salt-tolerant desalination. Chem. Eng. J. 2022, 431, 134224. [Google Scholar] [CrossRef]
- Srivastava, A.; Jain, E.; Kumar, A. The physical characterization of supermacroporous poly(N-isopropylacrylamide) cryogel: Mechanical strength and swelling/de-swelling kinetics. Mat. Sci. Eng. A-Struct. 2007, 464, 93–100. [Google Scholar] [CrossRef]
- Reichelt, S. Introduction to macroporous cryogels. Methods Mol. Biol. 2015, 1286, 173–181. [Google Scholar] [PubMed]
- Carvalho, B.M.A.; Da Silva, S.L.; Da Silva, L.H.M.; Minim, V.P.R.; Da Silva, M.C.H.; Carvalho, L.M.; Minim, L.A. Cryogel Poly(acrylamide): Synthesis, Structure and Applications. Sep. Purif. Rev. 2014, 43, 241–262. [Google Scholar] [CrossRef]
- Plieva, F.M.; Karlsson, M.; Aguilar, M.R.; Gomez, D.; Mikhalovsky, S.; Galaev, I.Y. Pore structure in supermacroporous polyacrylamide based cryogels. Soft Matter 2005, 1, 303–309. [Google Scholar] [CrossRef]
- Loo, S.L.; Vasquez, L.; Zahid, M.; Costantino, F.; Athanassiou, A.; Fragouli, D. 3D Photothermal Cryogels for Solar-Driven Desalination. ACS Appl. Mater. Interfaces 2021, 13, 30542–30555. [Google Scholar] [CrossRef]
- Hu, C.S.; Li, H.J.; Wang, J.Y.; Haleem, A.; Li, X.C.; Siddiq, M.; He, W.D. Mushroom-Like rGO/PAM Hybrid Cryogels with Efficient Solar-Heating Water Evaporation. ACS Appl. Energy Mater. 2019, 2, 7554–7563. [Google Scholar] [CrossRef]
- Chen, J.; Liao, C.; Guo, X.X.; Hou, S.C.; He, W.-D. PAAO cryogels from amidoximated P (acrylic acid-co-acrylonitrile) for the adsorption of lead ion. Eur. Polym. J. 2022, 171, 111192. [Google Scholar] [CrossRef]
- Guo, X.-X.; Hou, S.C.; Chen, J.; Liao, C.; He, W.D. Transpiration-prompted Photocatalytic Degradation of Dye Pollutant with AuNPs/PANI Based Cryogels. Chin. J. Polym. Sci. 2022, 40, 1141–1153. [Google Scholar] [CrossRef]
- Wu, X.; Chen, G.Y.; Zhang, W.; Liu, X.; Xu, H. A Plant-Transpiration-Process-Inspired Strategy for Highly Efficient Solar Evaporation. Adv. Sustain. Syst. 2017, 1, 1700046. [Google Scholar] [CrossRef]
- Kuo, A.T.; Sonoda, T.; Urata, S.; Koguchi, R.; Kobayashi, S.; Tanaka, M. Elucidating the Feature of Intermediate Water in Hydrated Poly(omega-methoxyalkyl acrylate)s by Molecular Dynamics Simulation and Differential Scanning Calorimetry Measurement. ACS Biomater. Sci. Eng. 2020, 6, 3915–3924. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Fan, D.; Wang, Y.; Xu, H.; Lu, C.; Yang, X. Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano 2021, 15, 10366–10376. [Google Scholar] [CrossRef] [PubMed]
- Engineering ToolBox. Water—Heat of Vaporization vs. Temperature. 2010. Available online: https://www.engineeringtoolbox.com/water-properties-d_1573.html (accessed on 20 February 2023).
- Omastová, M.; Trchová, M.; Kovářová, J.; Stejskal, J. Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth. Met. 2003, 138, 447–455. [Google Scholar] [CrossRef]
- Blinova, N.V.; Stejskal, J.; Trchová, M.; Prokeš, J.; Omastová, M. Polyaniline and polypyrrole: A comparative study of the preparation. Eur. Polym. J. 2007, 43, 2331–2341. [Google Scholar] [CrossRef]
Cryogel | Revap (kg⋅m−2⋅h−1) | Rreal (kg⋅m−2⋅h−1) | ηevap (%) | ηtotal (%) |
---|---|---|---|---|
PAM-S(0)@PPy | 1.58 | 1.23 | 72.3 | 70.8 |
PAM-S(0.1)@PPy | 1.72 | 1.37 | 74.4 | 73.2 |
PAM-S(0.2)@PPy | 2.50 | 2.15 | 82.1 | 80.8 |
PAM-S(0.3)@PPy | 1.52 | 1.17 | 68.8 | 67.1 |
PAM-S(0.5)@PPy | 1.83 | 1.48 | 60.8 | 59.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, S.-C.; Zhang, D.-W.; Chen, J.; Guo, X.-X.; Haleem, A.; He, W.-D. Sulfonated PAM/PPy Cryogels with Lowered Evaporation Enthalpy for Highly Efficient Photothermal Water Evaporation. Polymers 2023, 15, 2108. https://doi.org/10.3390/polym15092108
Hou S-C, Zhang D-W, Chen J, Guo X-X, Haleem A, He W-D. Sulfonated PAM/PPy Cryogels with Lowered Evaporation Enthalpy for Highly Efficient Photothermal Water Evaporation. Polymers. 2023; 15(9):2108. https://doi.org/10.3390/polym15092108
Chicago/Turabian StyleHou, Shi-Chang, Dao-Wei Zhang, Jun Chen, Xiao-Xiao Guo, Abdul Haleem, and Wei-Dong He. 2023. "Sulfonated PAM/PPy Cryogels with Lowered Evaporation Enthalpy for Highly Efficient Photothermal Water Evaporation" Polymers 15, no. 9: 2108. https://doi.org/10.3390/polym15092108
APA StyleHou, S. -C., Zhang, D. -W., Chen, J., Guo, X. -X., Haleem, A., & He, W. -D. (2023). Sulfonated PAM/PPy Cryogels with Lowered Evaporation Enthalpy for Highly Efficient Photothermal Water Evaporation. Polymers, 15(9), 2108. https://doi.org/10.3390/polym15092108