Coffee Staining and Simulated Brushing Induced Color Changes and Surface Roughness of 3D-Printed Orthodontic Retainer Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Coffee Staining and Simulated Brushing
2.3. Color
2.4. Surface Roughness
2.5. Scanning Electron Microscopy (SEM) Analysis
2.6. Statistical Analysis
3. Results
3.1. Color Change (ΔE)
3.2. Surface Roughness (Ra)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anil, P. Fixed Retention in Orthodontics. Decis. Dent. 2019, 5, 21–22. [Google Scholar]
- Johnston, C.D.; Littlewood, S.J. Retention in orthodontics. Br. Dent. J. 2015, 218, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Shopova, D.; Yordanova, M.; Yordanova, S. Capabilities of Digital Software for Creating a 3D Printed Retainer. Open Access Maced. J. Med. Sci. 2022, 10, 6–10. [Google Scholar] [CrossRef]
- Alshahrani, I.; Asiry, M.A.; Altwijry, M.K.; Premanath, S.N.; Ramakrishnaiah, R.; Durgesh, B.H. Nanomechanical properties, surface topography, and color stability of fiber-reinforced composite orthodontic retainers. Polym. Polym. Compos. 2019, 27, 92–100. [Google Scholar] [CrossRef]
- Lyros, I.; Tsolakis, I.A.; Maroulakos, M.P.; Fora, E.; Lykogeorgos, T.; Dalampira, M.; Tsolakis, A.I. Orthodontic Retainers-A Critical Review. Children 2023, 10, 230. [Google Scholar] [CrossRef]
- Andriekute, A.; Vasiliauskas, A.; Sidlauskas, A. A survey of protocols and trends in orthodontic retention. Prog. Orthod. 2017, 18, 31. [Google Scholar] [CrossRef]
- Vandevska-Radunovic, V.; Espeland, L.; Stenvik, A. Retention: Type, duration and need for common guidelines. A survey of Norwegian orthodontists. Orthodontics 2013, 14, e110–e117. [Google Scholar] [CrossRef]
- Renuka, B.; Anup, K.; Divyaroop, R.; Akanksha, J.; Lucky, Y. Orthodontic retention protocols—A survey among Indian practitioners. J. Contemp. Orthod. 2022, 6, 43–47. [Google Scholar] [CrossRef]
- Knaup, I.; Schulte, U.; Bartz, J.R.; Niederau, C.; Craveiro, R.B.; Jäger, A.; Wolf, M. Post-treatment Stability in Orthodontic Retention with Twistflex Retainers-Do Patients Benefit from Additional Removable Retainers? Clin. Oral Investig. 2022, 26, 5215–5222. [Google Scholar] [CrossRef]
- Meade, M.J.; Millett, D.T. Vacuum-formed retainers: An overview. Dent. Update 2015, 42, 24–34. [Google Scholar] [CrossRef]
- Mai, W.; He, J.; Meng, H.; Jiang, Y.; Huang, C.; Li, M.; Yuan, K.; Kang, N. Comparison of vacuum-formed and Hawley retainers: A systematic review. Am. J. Orthod. Dentofac. Orthop. 2014, 145, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Storey, M.; Forde, K.; Littlewood, S.J.; Scott, P.; Luther, F.; Kang, J. Bonded versus vacuum-formed retainers: A randomized controlled trial. Part 2: Periodontal health outcomes after 12 months. Eur. J. Orthod. 2018, 40, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Hotta, Y.; Kunii, J.; Kuriyama, S.; Tamaki, Y. A review of dental CAD/CAM: Current status and future perspectives from 20 years of experience. Dent. Mater. J. 2009, 28, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.; Bencharit, S.; Yang, I.H.; Stilianoudakis, S.C.; Carrico, C.K.; Tüfekçi, E. Effect of print angulation on the accuracy and precision of 3D-printed orthodontic retainers. Am. J. Orthod. Dentofac. Orthop. 2022, 161, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Cole, D.; Bencharit, S.; Carrico, C.K.; Arias, A.; Tüfekçi, E. Evaluation of fit for 3D-printed retainers compared with thermoform retainers. Am. J. Orthod. Dentofac. Orthop. 2019, 155, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Hada, T.; Kanazawa, M.; Iwaki, M.; Arakida, T.; Soeda, Y.; Katheng, A.; Otake, R.; Minakuchi, S. Effect of Printing Direction on the Accuracy of 3D-Printed Dentures Using Stereolithography Technology. Mater 2020, 13, 3405. [Google Scholar] [CrossRef]
- Alfouzan, A.F.; Alotiabi, H.M.; Labban, N.; Al-Otaibi, H.N.; Al Taweel, S.M.; AlShehri, H.A. Color stability of 3D-printed denture resins: Effect of aging, mechanical brushing and immersion in staining medium. J. Adv. Prosthodont. 2021, 13, 160–171. [Google Scholar] [CrossRef]
- Cousley, R.R. Introducing 3D printing in your orthodontic practice. J. Orthod. 2020, 47, 265–272. [Google Scholar] [CrossRef]
- Doldo, T.; Di Vece, L.; Ferrari Cagidiaco, E.; Nuti, N.; Parrini, S.; Ferrari, M.; Carboncini, F. A New Generation of Orthodontic retainer using 3d printing technology: Clinical cases report. J. Osseointegration 2018, 10, 142–148. [Google Scholar]
- Firlej, M.; Zaborowicz, K.; Zaborowicz, M.; Firlej, E.; Domagała, I.; Pieniak, D.; Igielska-Kalwat, J.; Dmowski, A.; Biedziak, B. Mechanical Properties of 3D Printed Orthodontic Retainers. Int. J. Environ. Res. Public Health 2022, 19, 5775. [Google Scholar] [CrossRef]
- Frazee, B.W. Evaluation of the Accuracy of Directly Printed Orthodontic Retainers as Compared to Vacuum-Formed Retainers; The University of Oklahoma Health Sciences Center: Norman, OK, USA, 2021. [Google Scholar]
- Nasef, A.; El-Beialy, A.; Eid, F.; Mostafa, Y. Accuracy of Orthodontic 3D Printed Retainers versus Thermoformed Retainers. Open J. Med. Imaging 2017, 7, 169–179. [Google Scholar] [CrossRef]
- Nasef, A.A.; El-Beialy, A.R.; Mostafa, Y.A. Virtual techniques for designing and fabricating a retainer. Am. J. Orthod. Dentofac. Orthop. 2014, 146, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.; Zhang, N.; Chen, H.; Bai, Y. Dynamic stress relaxation of orthodontic thermoplastic materials in a simulated oral environment. Dent. Mater. J. 2013, 32, 946–951. [Google Scholar] [CrossRef]
- Al Groosh, D.; Roudsari, G.B.; Moles, D.R.; Ready, D.; Noar, J.H.; Pratten, J. The prevalence of opportunistic pathogens associated with intraoral implants. Lett. Appl. Microbiol. 2011, 52, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Hakami, Z.; Alshehri, A.H. Antimicrobial efficacy, optical properties and flexural strength following antimicrobial photodynamic therapy over vacuum-formed orthodontic retainers. Photodiagnosis Photodyn. Ther. 2022, 39, e102951. [Google Scholar] [CrossRef] [PubMed]
- Azmuddin, I.; Mustapha, N.; Khan, H.; Sinniah, S. Physical effects of cleaning agents on orthodontic thermoplastic retainer polymer: A narrative review. J. Int. Oral Health 2022, 14, 349–356. [Google Scholar]
- The American Association of Orthodontists. Taking Care of Retainers. Available online: https://aaoinfo.org/whats-trending/taking-care-of-retainers/ (accessed on 12 October 2022).
- British Orthodontic Society. Patient Information Leaflets. Available online: https://www.bos.org.uk/BOS-Homepage/Patient-Information-Leaflets/Retainers (accessed on 12 October 2022).
- Agarwal, M.; Wible, E.; Ramir, T.; Altun, S.; Viana, G.; Evans, C.; Lukic, H.; Megremis, S.; Atsawasuwan, P. Long-term effects of seven cleaning methods on light transmittance, surface roughness, and flexural modulus of polyurethane retainer material. Angle Orthod. 2018, 88, 355–362. [Google Scholar] [CrossRef]
- Chang, C.S.; Al-Awadi, S.; Ready, D.; Noar, J. An assessment of the effectiveness of mechanical and chemical cleaning of Essix orthodontic retainer. J. Orthod. 2014, 41, 110–117. [Google Scholar] [CrossRef]
- de Andrade, I.M.; Silva-Lovato, C.H.; de Souza, R.F.; Pisani, M.X.; de Andrade, K.M.; Paranhos Hde, F. Trial of experimental toothpastes regarding quality for cleaning dentures. Int. J. Prosthodont. 2012, 25, 157–159. [Google Scholar]
- Peracini, A.; Davi, L.R.; de Queiroz Ribeiro, N.; de Souza, R.F.; Lovato da Silva, C.H.; de Freitas Oliveira Paranhos, H. Effect of denture cleansers on physical properties of heat-polymerized acrylic resin. J. Prosthodont. Res. 2010, 54, 78–83. [Google Scholar] [CrossRef]
- Šimunović, L.; Blagec, T.; Meštrović, S. The Influence of Different Cleaning Protocols on the Surface Roughness of Orthodontic Retainers. Appl. Sci. 2023, 13, 1319. [Google Scholar] [CrossRef]
- Alfouzan, A.F.; Alotiabi, H.M.; Labban, N.; Al-Otaibi, H.N.; Al Taweel, S.M.; AlShehri, H.A. Effect of aging and mechanical brushing on surface roughness of 3D printed denture resins: A profilometer and scanning electron microscopy analysis. Technol. Health Care 2022, 30, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.S.; Kim, J.-E.; Jeong, S.H.; Choi, Y.J.; Ryu, J.J. Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations. J. Prosthet. Dent. 2020, 124, 468–475. [Google Scholar] [CrossRef]
- Short, M.M.; Favero, C.S.; English, J.D.; Kasper, F.K. Impact of orientation on dimensional accuracy of 3D-printed orthodontic models. J. Clin. Orthod. 2018, 52, 13–20. [Google Scholar]
- Tahayeri, A.; Morgan, M.; Fugolin, A.P.; Bompolaki, D.; Athirasala, A.; Pfeifer, C.S.; Ferracane, J.L.; Bertassoni, L.E. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent. Mater. 2018, 34, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Unkovskiy, A.; Bui, P.H.-B.; Schille, C.; Geis-Gerstorfer, J.; Huettig, F.; Spintzyk, S. Objects build orientation, positioning, and curing influence dimensional accuracy and flexural properties of stereolithographically printed resin. Dent. Mater. 2018, 34, e324–e333. [Google Scholar] [CrossRef]
- McCarty, M.C.; Chen, S.J.; English, J.D.; Kasper, F. Effect of print orientation and duration of ultraviolet curing on the dimensional accuracy of a 3-dimensionally printed orthodontic clear aligner design. Am. J. Orthod. Dentofac. Orthop. 2020, 158, 889–897. [Google Scholar] [CrossRef]
- Boyer, R.A.; Kasper, F.K.; English, J.D.; Jacob, H.B. Effect of print orientation on the dimensional accuracy of orthodontic aligners printed 3-dimensionally. Am. J. Orthod. Dentofac. Orthop. 2021, 160, 732–742.e731. [Google Scholar] [CrossRef]
- de Castro, E.F.; Nima, G.; Rueggeberg, F.A.; Giannini, M. Effect of build orientation in accuracy, flexural modulus, flexural strength, and microhardness of 3D-Printed resins for provisional restorations. J. Mech. Behav. Biomed. Mater. 2022, 136, e105479. [Google Scholar] [CrossRef]
- Ehlen, L.A.; Marshall, T.A.; Qian, F.; Wefel, J.S.; Warren, J.J. Acidic beverages increase the risk of in vitro tooth erosion. Nutr. Res. 2008, 28, 299–303. [Google Scholar] [CrossRef]
- Sorgini, D.B.; da Silva-Lovato, C.H.; Muglia, V.A.; de Souza, R.F.; de Arruda, C.N.; Paranhos Hde, F. Adverse effects on PMMA caused by mechanical and combined methods of denture cleansing. Braz. Dent. J. 2015, 26, 292–296. [Google Scholar] [CrossRef] [PubMed]
- ISO/TR 14569-1:2007; Dental Materials—Guidance on Testing of Wear—Part 1: Wear by Toothbrushing. International Organization for Standardization: Geneva, Switzerland, 2007.
- ISO/TR 28642:2016; Dentistry—Guidance on Colour Measurement. International Organization for Standardization: Geneva, Switzerland, 2016.
- Paravina, R.D.; Ghinea, R.; Herrera, L.J.; Bona, A.D.; Igiel, C.; Linninger, M.; Sakai, M.; Takahashi, H.; Tashkandi, E.; Perez Mdel, M. Color difference thresholds in dentistry. J. Esthet. Restor. Dent. 2015, 27 (Suppl. 1), S1–S9. [Google Scholar] [CrossRef] [PubMed]
- Porojan, L.; Vasiliu, R.D.; Porojan, S.D.; Bîrdeanu, M.I. Surface Quality Evaluation of Removable Thermoplastic Dental Appliances Related to Staining Beverages and Cleaning Agents. Polymers 2020, 12, 1736. [Google Scholar] [CrossRef] [PubMed]
- Durgesh, B.; Alaqeel, S.; Ajwa, N.; AlKhadhari, M.; Alsadon, O.; Matinlinna, J. Experimental silane primer and grit-blasting distance in orthodontic bonding of zirconia surfaces. Ceramics-Silikáty 2020, 64, 469–477. [Google Scholar] [CrossRef]
- Susarchick, L.; Virji, I.; Viana, G.; Mahmoud, M.; Allareddy, V.; Gruber, M.; Lukic, H.; Megremis, S.; Atsawasuwan, P. The Effects of Staining and Cleaning on the Color and Light Transmittance Changes of a Copolyester Retainer Material with Different Surface Textures. Materials 2022, 15, 6808. [Google Scholar] [CrossRef]
- Wible, E.; Agarwal, M.; Altun, S.; Ramir, T.; Viana, G.; Evans, C.; Lukic, H.; Megremis, S.; Atsawasuwan, P. Long-term effects of different cleaning methods on copolyester retainer properties. Angle Orthod. 2019, 89, 221–227. [Google Scholar] [CrossRef]
- Bichu, Y.M.; Alwafi, A.; Liu, X.; Andrews, J.; Ludwig, B.; Bichu, A.Y.; Zou, B. Advances in orthodontic clear aligner materials. Bioact. Mater. 2023, 22, 384–403. [Google Scholar] [CrossRef]
- Jindal, P.; Juneja, M.; Siena, F.L.; Bajaj, D.; Breedon, P. Mechanical and geometric properties of thermoformed and 3D printed clear dental aligners. Am. J. Orthod. Dentofac. Orthop. 2019, 156, 694–701. [Google Scholar] [CrossRef]
- Walczak, K.T.J.; Geisler, D.; Boening, K.; Wieckiewicz, M. Effect of Chemical Disinfection on Chitosan Coated PMMA and PETG Surfaces-An In Vitro Study. Polymers 2018, 10, 536. [Google Scholar] [CrossRef]
- Jones, C.S.; Billington, R.W.; Pearson, G.J. The in vivo perception of roughness of restorations. Br. Dent. J. 2004, 196, 42–45. [Google Scholar] [CrossRef]
- Teixeira, E.C.; Thompson, J.L.; Piascik, J.R.; Thompson, J.Y. In vitro toothbrush-dentifrice abrasion of two restorative composites. J. Esthet. Restor. Dent. 2005, 17, 172–180. [Google Scholar] [CrossRef] [PubMed]
NBS Units | Inference of Color Change |
---|---|
0.0–0.5 | Trace: extremely slight change |
0.5–1.5 | Slight: slight change |
1.5–3.0 | Appreciable: marked change |
3.0–6.0 | Noticeable: perceivable |
6.0–12.0 | Much: extremely marked change |
>12.0 | Very much: change to another color |
Group (I) | Group (J) | Mean Difference (I-J) | p-Value | 95% CI for Mean Diff | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
Conventional VFRs | 3D-printed—0° | −1.446 | 0.381 | −3.44 | 0.55 |
3D-printed—15° | −0.659 | 1.000 | −2.66 | 1.34 | |
3D-printed—30° | −1.114 | 1.000 | −3.11 | 0.88 | |
3D-printed—45° | −2.498 | 0.006 * | −4.50 | −0.50 | |
3D-printed—0° | 3D-printed—15° | 0.787 | 1.000 | −1.21 | 2.78 |
3D-printed—30° | 0.332 | 1.000 | −1.67 | 2.33 | |
3D-printed—45° | −1.052 | 1.000 | −3.05 | 0.95 | |
3D-printed—15° | 3D-printed—30° | −0.455 | 1.000 | −2.45 | 1.54 |
3D-printed—45° | −1.839 | 0.093 | −3.84 | 0.16 | |
3D-printed—30° | 3D-printed—45° | −1.384 | 0.467 | −3.38 | 0.61 |
Group | Mean | SD | SE of Mean | Mean Difference | t | p-Value |
---|---|---|---|---|---|---|
Conventional VFRs | 2.18 | 0.87 | 0.28 | −1.429 | −4.003 | 0.001 * |
3D Printed | 3.61 | 0.72 | 0.23 |
Group (I) | Group (J) | Mean Difference (I-J) | p-Value | 95% CI for Mean Diff | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
Conventional VFRs | 3D-printed—0° | −0.188 | 0.001 * | −0.32 | −0.05 |
3D-printed—15° | −0.020 | 1.000 | −0.15 | 0.11 | |
3D-printed—30° | −0.219 | <0.001 * | −0.35 | −0.09 | |
3D-printed—45° | −0.266 | <0.001 * | −0.40 | −0.13 | |
3D-printed—0° | 3D-printed—15° | 0.168 | 0.006 * | 0.03 | 0.30 |
3D-printed—30° | −0.031 | 1.000 | −0.17 | 0.10 | |
3D-printed—45° | −0.078 | 0.935 | −0.21 | 0.06 | |
3D-printed—15° | 3D-printed—30° | −0.200 | 0.001 * | −0.33 | −0.07 |
3D-printed—45° | −0.246 | <0.001 * | −0.38 | −0.11 | |
3D-printed—30° | 3D-printed—45° | −0.047 | 1.000 | −0.18 | 0.09 |
Group | Treatment | Mean | SD | SE of Mean | Mean Difference | t | p-Value |
---|---|---|---|---|---|---|---|
Conventional VFRs | Ra1 | 0.26 | 0.07 | 0.02 | −0.482 | −12.956 | <0.001 * |
Ra2 | 0.74 | 0.12 | 0.04 | ||||
3D-printed—0° | Ra1 | 0.26 | 0.04 | 0.01 | −0.667 | −25.745 | <0.001 * |
Ra2 | 0.93 | 0.07 | 0.02 | ||||
3D-printed—15° | Ra1 | 0.23 | 0.08 | 0.03 | −0.534 | −17.126 | <0.001 * |
Ra2 | 0.76 | 0.06 | 0.02 | ||||
3D-printed—30° | Ra1 | 0.23 | 0.10 | 0.03 | −0.728 | −20.769 | <0.001 * |
Ra2 | 0.96 | 0.10 | 0.03 | ||||
3D-printed—45° | Ra1 | 0.29 | 0.05 | 0.02 | −0.721 | −14.541 | <0.001 * |
Ra2 | 1.01 | 0.13 | 0.04 |
Treatment | Group | Mean | SD | SE of Mean | Mean Difference | t | p-Value |
---|---|---|---|---|---|---|---|
Ra1 | Conventional VFRs | 0.26 | 0.07 | 0.02 | 0.006 | 0.227 | 0.824 |
3D-Printed | 0.25 | 0.03 | 0.01 | ||||
Ra2 | Conventional VFRs | 0.74 | 0.12 | 0.04 | −0.173 | −4.318 | 0.001 * |
3D-Printed | 0.92 | 0.05 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bangalore, D.; Alshehri, A.M.; Alsadon, O.; Alaqeel, S.M.; Alageel, O.; Alsarani, M.M.; Almansour, H.; AlShahrani, O. Coffee Staining and Simulated Brushing Induced Color Changes and Surface Roughness of 3D-Printed Orthodontic Retainer Material. Polymers 2023, 15, 2164. https://doi.org/10.3390/polym15092164
Bangalore D, Alshehri AM, Alsadon O, Alaqeel SM, Alageel O, Alsarani MM, Almansour H, AlShahrani O. Coffee Staining and Simulated Brushing Induced Color Changes and Surface Roughness of 3D-Printed Orthodontic Retainer Material. Polymers. 2023; 15(9):2164. https://doi.org/10.3390/polym15092164
Chicago/Turabian StyleBangalore, Durgesh, Abdullah M. Alshehri, Omar Alsadon, Samer M. Alaqeel, Omar Alageel, Majed M. Alsarani, Haitham Almansour, and Obaid AlShahrani. 2023. "Coffee Staining and Simulated Brushing Induced Color Changes and Surface Roughness of 3D-Printed Orthodontic Retainer Material" Polymers 15, no. 9: 2164. https://doi.org/10.3390/polym15092164
APA StyleBangalore, D., Alshehri, A. M., Alsadon, O., Alaqeel, S. M., Alageel, O., Alsarani, M. M., Almansour, H., & AlShahrani, O. (2023). Coffee Staining and Simulated Brushing Induced Color Changes and Surface Roughness of 3D-Printed Orthodontic Retainer Material. Polymers, 15(9), 2164. https://doi.org/10.3390/polym15092164