Microplastic Index—How to Predict Microplastics Formation?
Abstract
:1. Introduction
2. Experimental Evidence of the Difference in Microplastic Formation Depending on Type of Polymer
3. Derivation of MPI for Impact
3.1. Dugdale Model for Size of the Plastic Zone during Impact Fracture
3.2. Energy Dissipation
3.3. Microplastic Formation Index from Impact
4. Derivation of MPI for Wear
4.1. Critical Depth for Fracture
4.2. Archard Approach
4.3. Critical Length Scale of Adhesive Wear
4.4. Microplastic Index from Wear
5. Determination of Material Properties
- Critical stress intensity factor (KIC, MPa√m)
- Young’s modulus (E, GPa)
- Poisson’s ratio (ν)
- Coefficient of friction (μ)
- Yield strength (σY, MPa)
- Shear strength (σS, MPa)
- Ball hardness (H, MPa)
- Specific wear rate coefficient (k, mm3/Nm)
- Ultimate tensile strength (σU, MPa)
- Ultimate strain (εU)
- Surface energy (γ, mN/m)
- Charpy notched impact (CN, J/cm2)
5.1. The Specific Wear Rate Coefficient
5.2. Shear Strength
6. Determination of Theoretical Particle Size and MPI for 14 Virgin Polymers
6.1. Material Properties
6.2. Impact Versus Wear
7. Impact of MPI and Microplastics for the Global Environment
8. Discussion & Conclusions
- Both Nylon6 and Nylon6.6 (mentioned as polyamide in many papers) are found as microplastics at a much higher concentration than expected from the MPI or the total polymer production. This is the case for all environmental compartments. This is most likely caused by the microplastics formed from fishing nets that are present in large abundancy in water environments. Globally, most fishing nets are made from nylon (46% followed by PET and PE (both ~20%) [112]. Degrading nets will add to the amount of polyamide in sea quickly, since it is already present. Since the correlation between of the Nylons with MPIWEAR appears to be better, it could be concluded that wear is for this case the dominating fracture mechanism.
- PS and PMMA have the highest MPI and the highest abundancy in all environmental compartments. PS and PMMA are brittle, and a correlation between MPI and brittleness is evident.
- The presence of PMMA in marine environments is relatively higher than in fresh water. In the compiling of the compositions of microplastics in the different compartments, PMMA has been combined with acrylics that may be formed from ship paints. It is expected that the amount of paint microplastics is higher in sea than in rivers and lakes.
- PVC does not follow the trends in these plots. We have done the MPI calculations for rigid PVC. However, it can be expected that part of the PVC found as microplastics are plasticized plastics. This would mean that the impact strength, modulus and wear have significantly different values, shifting the predicted MPI to lower values.
- The correlation for microplastics in air is the poorest of the three, because the plastics found here are not only limited by composition but also by particle size and density that determine sedimentation from the air column. As a consequence, many polymers are not found in the air compartment.
- Assessing both the correlations for impact and wear, the actual reduction of plastic litter to smaller particles is most likely a combination of both. First the plastics breaks into large pieces by impact that further break up by wear and friction causes by wind and water.
- UV degradation due to environmental weathering is not included in the present study. It is expected that this will play a very important role in the formation of microplastics from plastics in the environment. This also means that the correlations we presented in Figure 6 are only an approximation.
- From the calculations and figures presented in this paper, it becomes clear that only PMMA, of the (virgin) polymers addressed, can form microplastics well below 1 μm.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://echa.europa.eu/hot-topics/microplastics (accessed on 7 March 2023).
- Koelmans, A.A.; Redondo-Hasselerharm, P.E.; Mohammed Nor, N.H.; De Ruijter, V.N.; Mintenig, S.M.; Kooi, M. Risk assessment of microplastic particles. Nat. Rev. Mater. 2022, 7, 138–152. [Google Scholar] [CrossRef]
- Yao, X.; Luo, X.-S.; Fan, J.; Zhang, T.; Li, H.; Wei, Y. Ecological and human health risks of atmospheric microplastics (MPs): A review. Environ. Sci. Atmos. 2022, 2, 921–942. [Google Scholar] [CrossRef]
- Jenner, L.C.; Rotchell, J.M.; Bennett, R.T.; Cowen, M.; Tentzeris, V.; Sadofsky, L.R. Detection of microplastics in human lung tissue using mFTIR spectroscopy. Sci. Total Environ. 2022, 831, 154907. [Google Scholar] [CrossRef] [PubMed]
- Leslie, H.A.; Van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery, and quantification of plastic particle pollution in human blood. Environ. Internat. 2022, 163, 107199. [Google Scholar] [CrossRef] [PubMed]
- Jonkers, J.M.; Höppener, E.M.; Grigoriev, I.; Will, L.; Melgert, B.N.; Van der Zaan, B.; Van de Steeg, E.; Kooter, I.M. Advanced epithelial lung and gut barrier models demonstrate passage of microplastic particles. Micropl. Nanopl. 2022, 2, 6. [Google Scholar] [CrossRef]
- Schwartz, A.E.; Ligthart, T.N.; Boukris, E.; Van Harmelen, T. Sources, transport and accumulation of different types of plastic litter in aquatic environments: A review study. Marine Poll. Bull. 2019, 143, 92–100. [Google Scholar] [CrossRef]
- Evans, M.C.; Ruf, C.S. Towards the Detection and Imaging of Ocean Microplastics with a Spaceborne Radar. IEEE Trans. Geosci. Rem. Sens. 2022, 60, 21475344. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Mohammed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef]
- Waymann, C.; Niemann, H. The fate of plastic in the ocean environment—A minireview. Environ. Sci. Process. Impacts 2021, 23, 198–212. [Google Scholar] [CrossRef]
- Schwarz, A.; Lensen, S.; Langeveld, E.; Parker, L.; Urbanus, J.H. Plastics in the Global Environment Assessed Through Material Flow Analysis, Degradation and Environmental Transportation. Sci. Total Environ. 2023, 875, 162644. [Google Scholar] [CrossRef]
- Available online: https://www.theoceancleanup.com (accessed on 7 March 2023).
- Anagnosti, L.; Varvaresou, A.; Pavlou, P.; Protopapa, E.; Carayanni, V. Worldwide actions against plastic pollution from microbeads and microplastics in cosmetics focusing on European policies. Has the issue been handled effectively? Marin. Poll. Bull. 2021, 162, 111883. [Google Scholar] [CrossRef]
- Onyena, A.P.; Aniche, D.C.; Ogbulu, B.O.; Rakib, R.J.; Uddin, J.; Walker, T.R. Governance Strategies for Mitigating Microplastic Pollution in the Marine Environment: A Review. Microplastics 2022, 1, 15–46. [Google Scholar] [CrossRef]
- Min, K.; Cuiffi, J.D.; Mathers, R.T. Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure. Nat. Commun. 2020, 11, 727. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Nag, R.; Cummins, E. Ranking of potential hazards from microplastics polymers in the marine environment. J. Haz. Mater. 2022, 429, 128399. [Google Scholar] [CrossRef] [PubMed]
- Quinn, G.D. A History of the Fractography of Glasses and Ceramics, in Fractography of Glasses and Ceramics VI: Ceramic Transactions; Varner, J.R., Wightman, M., Eds.; The American Ceramic Society: Columbus, OH, USA, 2012; Volume 230, pp. 1–55. [Google Scholar] [CrossRef]
- Available online: https://www.horiba.com/esp/scientific/products/particle-characterization/particle-education/particle-size-distribution-calculations/ (accessed on 7 March 2023).
- Dugdale, D.S. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 1960, 8, 100–104. [Google Scholar] [CrossRef]
- Irwin, G.R. Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 1957, 24, 361–364. [Google Scholar] [CrossRef]
- Barenblatt, G.I. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially symmetric cracks. J. Appl. Math. Mech. 1959, 23, 622–636. [Google Scholar] [CrossRef]
- Barenblatt, G.I. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Adv. Appl. Mech. 1962, 7, 55. [Google Scholar] [CrossRef]
- Bilby, B.A.; Cottrell, A.H.; Swinden, K.H. The spread of plastic yield from a notch. Proc. R. Soc. 1963, A272, 304. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, F. Effect of plastic deformation on the elastic stress field near a crack tip under small-scale yielding conditions: An extended Irwin’s model. Eng. Fract. Mech. 2021, 254, 107888. [Google Scholar] [CrossRef]
- Antolovich, S.D.; Antolovich, B.F. An Introduction to Fracture Mechanics. In ASM Handbook; ASM International: Detroit, MI, USA, 1996; ISBN 978-1-62708-193-1. [Google Scholar]
- De With, G. Structure, Deformation and Integrity of Materials Volume II: Plasticity, Vicoelasticity and Fracture; WILEY-VCH Verlag GmbH: Weinheim, Germany, 2006; ISBN 978-3-527-31426-3. [Google Scholar]
- Xu, J.-J.; Tang, C.-S.; Cheng, Q.; Xu, Q.-l.; Inyang, H.I.; Lin, Z.-Y.; Shi, B. Investigation on desiccation cracking behavior of clayey soils with a perspective of fracture mechanics: A review. J. Solis Sedim. 2022, 22, 859–888. [Google Scholar] [CrossRef]
- Moore, D.R. The time and temperature dependence of fracture toughness for thermoplastics. Polym. Test. 1985, 5, 255–268. [Google Scholar] [CrossRef]
- Kerkhof, F. Anwendung der Bruchmechanik auf Hochpolymere. Coll. Polym. Sci. 1973, 251, 545–553. [Google Scholar] [CrossRef]
- Schmidt, J.; Plate, M.; Tröger, S.; Peukert, W. Production of polymer particles below 5 μm by wet grinding. Powder Technol. 2012, 228, 84–90. [Google Scholar] [CrossRef]
- Schmidt, J.; Sachs, M.; Blümel, C.; Winzer, B.; Toni, F.; Wirth, K.-E.; Peukert, W. A novel process chain for the production of spherical SLS polymer powders with good flowability. Proc. Engin. 2015, 102, 550–556. [Google Scholar] [CrossRef]
- Wolff, M.F.H.; Antonyul, S.; Heinrich, S.; Schneider, G.A. Attritor-milling of poly(amide imide) suspensions. Particuology 2014, 17, 92–96. [Google Scholar] [CrossRef]
- Griffith, A.A. The Phenomena of Rupture and Flow in Solids. Philos. Trans. Ser. A 1921, 221, 163–198. [Google Scholar]
- Wang, W.; Wang, P.; Liu, X.; Dong, Z.; Fang, H. Mathematical Model for Charpy Impact Energy of V-Notch Specimens. Adv. Mater. Sci. Engin. 2021, 2021, 5330068. [Google Scholar] [CrossRef]
- Bifano, T.G.; Dow, T.A.; Scattergood, R.O. Ductile-regime Grinding: A New Technology for Machining Brittle Materials. Trans. ASME 1991, 113, 184–189. [Google Scholar] [CrossRef]
- Lawn, B.R.; Huang, H.; Lu, M.; Borrero-López, O.; Zhang, Y. Threshold damage mechanisms in brittle solids and their impact on advanced technologies. Acta Mater. 2022, 232, 117921. [Google Scholar] [CrossRef]
- Brinksmeier, E.; Mutlugünes, Y.; Klocke, F.; Aurich, J.C.; Shore, P.; Ohmori, H. Ultra-precision grinding. CIRP Ann.-Manuf. Tech. 2010, 59, 652–671. [Google Scholar] [CrossRef]
- Wu, C.; Li, B.; Liu, Y.; Liang, S.Y. Surface roughness modelling for grinding of Silicon-Carbide ceramics considering co-existence of brittleness and ductility. Int. J. Mech. Sci. 2017, 133, 167–177. [Google Scholar] [CrossRef]
- Marshall, D.B.; Lawn, B.R.; Cook, R.F. Microstructural Effects on Grinding of Alumina and Glass-ceramics. Comm. Am. Cer. Soc. 1987, 70, 139–140. [Google Scholar] [CrossRef]
- Aghababaei, R.; Malekan, M.; Budnik, M. Cutting Depth Dictates the Transition from Continuous to Segmented Chip Formation. Phys. Rev. Lett. 2021, 127, 235502. [Google Scholar] [CrossRef]
- Lamy, B. Effect of brittleness index and sliding speed on the morphology of surface scratching in abrasive or erosive processes. Trib. Int. 1984, 17, 35–38. [Google Scholar] [CrossRef]
- Archard, J.F. Contact and rubbing of flat surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Manoj, Archard Wear Equation. 2017. Available online: https://www.tribonet.org/wiki/archard-wear-equation/ (accessed on 7 March 2023).
- Salib, J.; Kligerman, Y.; Etsion, I. A Model for Potential Adhesive Wear Particle at Sliding Inception of a Spherical Contact. Tribol. Lett. 2008, 30, 225–233. [Google Scholar] [CrossRef]
- Rabinowicz, E.; Tanner, R.I. Friction and wear of materials. J. Appl. Mech. 1966, 33, 479. [Google Scholar] [CrossRef]
- Aghababaei, R.; Warner, D.H.; Molinari, J.-F. Critical length scale controls adhesive wear mechanisms. Nat. Commun. 2016, 7, 11816. [Google Scholar] [CrossRef]
- Rabinowicz, E. Influence of surface energy on friction and wear phenomena. J. Appl. Phys. 1961, 32, 1440–1444. [Google Scholar] [CrossRef]
- Ye, J.; Yao, S.; Sun, W.; Li, L.; Wei, J.; Zhang, K.; Liu, K. Bridging asperity adhesive wear and macroscale material transfer. Tribol. Int. 2022, 174, 107768. [Google Scholar] [CrossRef]
- Available online: https://www.matweb.com (accessed on 7 March 2023).
- Brandrup, J.; Immergut, E.H.; Grulke, E.A. Polymer Handbook, 4th ed.; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Van Krevelen, D.W. Properties of polymers, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Andreassen, E.; Nord-Varhaug, K.; Hinrichsen, E.L.; Persson, A.-M. In Proceedings of the Impact fracture toughness of polyethylene materials for injection moulding, Extended abstract for PPS07EA, Gothenburg, Sweden, 28–30 August 2007.
- Salazar, A.; Rodriquez, J.; Arbeiter, F.; Pinter, G.; Martinez, A.B. Fracture toughness of high density polyethylene: Fatigue pre-cracking versus femtolaser, razor sharpening and broaching. Eng. Frac. Mech. 2015, 149, 199–213. [Google Scholar] [CrossRef]
- Vlad, U.; Gheorghe, D.; Virgil, A. Fracture mechanics testing of high density polyethylene (HDPE) pipe material with compact tension(CT) specimens. J. Eng. Studies Res. 2011, 17, 98–103. [Google Scholar]
- Lokas, R. Mechanical Behavior of Four Brittle Polymers. Master’s Thesis, MIT, Boston, MA, USA, 2 September 2000. [Google Scholar]
- Kouhi, M.; Butan, S.; Li, Y.; Shakour, E.; Banu, M. Role of chemically functionalization of bamboo fibers on polyethylene-based composite performance: A solution for recycling. Polymers 2021, 13, 2564. [Google Scholar] [CrossRef]
- Katangoori, A.J.R.R. Fracture Mechanica Applied in Thin Ductile Packaging Materials—Experiments with Simulations. Master’s Thesis, Blekinge Institute of Technology, Karlskrona, Sweden, 2011. [Google Scholar]
- Jancar, J.; DiAnselmo, A.; DiBenedetto, A.T.; Kucera, J. Failure mechanics in elastomer toughened polypropylene. Polymer 1993, 34, 1684–1694. [Google Scholar] [CrossRef]
- Ku, H.; Baddeley, D.; Snook, C.; Chew, C.S. Fracture toughness of vinyl ester composites cured by microwave irradiation: Preliminary results. J. Reinf. Plast. Comp. 2005, 24, 1181–1201. [Google Scholar] [CrossRef]
- Arencón, D.; Velasco, J.I. Fracture Toughness of Polypropylene-Based Particulate Composites. Materials 2009, 2, 2046–2094. [Google Scholar] [CrossRef]
- Fracture Mechanics II (uni-kiel.de). Available online: https://www.tf.uni-kiel.de/matwis/amat/iss/kap_5/illustr/s5_4_4.html (accessed on 7 March 2023).
- Table 8.1 Fracture Toughness and Corresponding Tensile Properties, |Chegg.com. Available online: https://www.chegg.com/homework-help/questions-and-answers/table-81-fracture-toughness-corresponding-tensile-properties-representative-metals-room-te-q85731368 (accessed on 7 March 2023).
- Guessasma, S.; Belhabib, S.; Nouri, H. Printability and tensile performance of 3D printed polyethylene terephthalate glycol using fused deposition modelling. Polymers 2019, 11, 1220. [Google Scholar] [CrossRef]
- Lim, S.-H.; Dasari, A.; Yu, Z.-Z.; Mai, Y.-W.; Liu, S.; Yong, M.S. Fracture toughness of nylon6/organoclay/elastomer nanocomposites. Comp. Sci. Technol. 2007, 67, 2914–2923. [Google Scholar] [CrossRef]
- Kagan, V.A.; Weizel, S.P. Basic principles in materials selection for mechanical fastening of thermoplastics. J. Reinf. Plast. Comp. 2003, 22, 1455–1465. [Google Scholar] [CrossRef]
- Lee, L.H. Fracture Mechanics in PVC and Other Thermoplastics. PhD Thesis, MIT, Boston, MA, USA, 10 August 1984. [Google Scholar]
- Turner, R.P.; Kelly, C.A.; Fox, R.; Hopkins, B. Re-formative polymer composites from plastics waste: Novel infrastructural product application. Recycling 2018, 3, 54. [Google Scholar] [CrossRef]
- Andena, L.; Rink, M.; Marano, C.; Briatico-Vangosa, F.; Castellani, L. Effect of processing on the environmental stress cracking resistance of high impact polystyrene. Polym. Test. 2016, 54, 40–47. [Google Scholar] [CrossRef]
- Yap, O.F.; Mai, Y.W.; Cotterell, B. Thickness effect on fracture in high impact polystyrene. J. Mater. Sci. 1983, 18, 657–668. [Google Scholar] [CrossRef]
- Parvin, M.; Williams, J.G. The effect of temperature on the fracture of polycarbonate. J. Mater. Sci. 1975, 10, 1883–1888. [Google Scholar] [CrossRef]
- Uete, H.; Cadell, R.M. Determination of the fracture toughness of polycarbonate using energy approach. Int. J. Mech. Sci. 1983, 25, 87–92. [Google Scholar] [CrossRef]
- Zekriti, N.; Rhanim, R.; Majid, F.; Lahlou, M.; Ibrahim, M.; Rhanim, H. Mode I stress intensity factors of printed and extruded specimens based on digital image correlation method (DIC): Case of ABS material. Procedia Struct. Int. 2020, 28, 1745–1754. [Google Scholar] [CrossRef]
- Bernal, C.R.; Frontini, P.M.; Herrera, R. Fracture toughness determination of ABS polymers using the J-method. Polym. Test. 1992, 11, 271–288. [Google Scholar] [CrossRef]
- Bedoui, F.; Fayolle, B. POM mechanical properties. In Polyoxymethylene Handbook: Structure, Properties, Applications and Their Nanocomposites (Polymer Science and Plastics Engineering), Wiley; Lüftl, S., Visakh, P.M., Chandran, S., Eds.; Scrivener: New York, NY, USA, 2014; pp. 241–255. [Google Scholar]
- Berer, M.; Pinter, G.; Feuchter, M. Fracture mechanical analysis of two commercial polyoxymethylene homopolymer resins. J. Appl. Polym. Sci. 2014, 131, 40831. [Google Scholar] [CrossRef]
- Lancaster, J.K. Relationship between wear of polymers and their mechanical properties. Proc. Instn. Mech. Engrs. 1968, 183, 98–106. [Google Scholar] [CrossRef]
- Ratner, S.B.; Farberova, I.I.; Radyukevich, O.V.; Lure, E.G. Connection between Wear Resistance of Plastics and Other Mechanical Properties, in Abrasion of Rubber; James, D.I., Ed.; MacLaren: New York, NY, USA, 1967; p. 145. [Google Scholar]
- Myshkin, N.K.; Tkachuk, D.V. Polymer Tribology Fundamentals. Encycl. Tribol. 2013, pp. 2614–2619. Available online: https://link.springer.com/content/pdf/10.1007/978-0-387-92897-5_817.pdf (accessed on 7 March 2023).
- Shipway, P.H.; Ngao, N.K. Microscale abrasive wear of polymeric materials. Wear 2003, 255, 742–750. [Google Scholar] [CrossRef]
- Olaru, P. The evaluation of the Mechanical and Tribological Parameters of the materials for bearing projects. In Proceedings of the 8th International Conference on Tribology, Sinaia, Romania, 30 October–1 November 2014. [Google Scholar] [CrossRef]
- Evans, P.D. The Hardness and Abrasion of Polymers. Ph.D. Thesis, Imperial College, London, UK, 1987. Available online: https://spiral.imperial.ac.uk/bitstream/10044/1/38305/2/Evans-PD-1987-PhD-Thesis.pdf (accessed on 7 March 2023).
- Posmyk, A.; Myalski, J.; Hekner, B. Composite coatings with ceramic matrix including nanomaterials as solid lubricants for oil-less automotive applications. Arch. Metall. Mater. 2016, 61, 139–143. [Google Scholar] [CrossRef]
- Molina-Boisseau, S.; Le Bolay, N. Size reduction of polystyrene in a shaker bead mill—Kinetic aspects. Chem. Engin. J. 2000, 79, 31–39. [Google Scholar] [CrossRef]
- Schymanski, D.; Humpf, H.-U.; Fürst, P. Determination of particle abrasion through milling with five different salt grinders—A preliminary study by micro-Raman spectroscopy with efforts towards improved quality control of the analytical methods. Food Add. Contam. A 2020, 37, 1238–1252. [Google Scholar] [CrossRef] [PubMed]
- Koponen, I.K.; Jensen, K.A.; Schneider, T. Comparison of dust released from sanding conventional and nanoparticle-doped wall and wood coatings. J. Expos. Sci. Environ. Epid. 2011, 21, 408–418. [Google Scholar] [CrossRef]
- Geyer, R. A Brief History of Plastics. In Mare Plasticum—The Plastic Sea; Streit-Bianchi, M., Cimadevila, M., Trettnak, W., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Available online: https://pmarketresearch.com/polyethylene-terephthalate-glycol-petg-market/?utm_source=rss&utm_medium=rss&utm_campaign=polyethylene-terephthalate-glycol-petg-market (accessed on 7 March 2023).
- Available online: https://www.hdinresearch.com/news/56 (accessed on 7 March 2023).
- Available online: https://www.findoutaboutplastics.com/2019/03/reviewing-key-engineering-plastics.html (accessed on 7 March 2023).
- Available online: https://ihsmarkit.com/research-analysis/challenges-in-the-global-methyl-methacrylate-market.html (accessed on 7 March 2023).
- Available online: http://media.corporate-ir.net/media_files/irol/24/244333/pdf/styrenics_resins_market_trends.pdf (accessed on 7 March 2023).
- Available online: https://prismaneconsulting.com/blog_details/131/Polycarbonate-Global-Market-(Demand-Supply),-2005---2030 (accessed on 2 March 2023).
- Available online: https://www.statista.com/statistics/856670/acrylonitrile-butadiene-styrene-global-production-capacity/ (accessed on 7 March 2023).
- Available online: https://en.kunststoffe.de/a/specialistarticle/polyoxymethylene-pom-245435 (accessed on 7 March 2023).
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel. Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef]
- Kannankai, M.P.; Babu, A.J.; Radhakrishnan, A.; Alex, R.K.; Borah, A.; Devipriya, S.P. Machine learning aided meta-analysis of microplastic polymer composition in global marine environment. J. Haz. Mater. 2022, 440, 129801. [Google Scholar] [CrossRef]
- Alimi, O.S.; Fadare, O.O.; Okoffo, E.D. Microplastics in African Ecosystems: Current knowledge, abundance, associated contaminants, techniques, and research needs. Sci. Total Environ. 2021, 755, 142422. [Google Scholar] [CrossRef]
- Pakhomova, S.; Berezine, A.; Lusher, A.L.; Zhdanov, I.; Silvestrova, K.; Zavialov, P.; Van Bavel, B.; Yakushev, E. Microplastic variability in subsurface water from the Arctic to Antarctica. Environ. Pollut. 2022, 298, 118808. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Zhou, X.; Tian, Y.; Lin, C.; Wang, W.; Zhou, K.; Zhang, Y.; Lin, H. Microplastic abundance, distribution and composition in the mid-west Pacific Ocean. Environ. Pollut. 2020, 264, 114125. [Google Scholar] [CrossRef]
- Peng, X.; Chen, M.; Chen, S.; Dasgupta, S.; Xu, H.; Ta, K.; Du, M.; Li, J.; Guo, Z.; Bai, S. Microplastics contaminate the deepest part of the world’s ocean. Geochem. Perspect. Lett. 2018, 9, 1–5. [Google Scholar] [CrossRef]
- Yakushev, E.; Gebruk, A.; Osadchiev, A.; Pakhomova, S.; Lucher, A.; Berezina, A.; Van Bavel, B.; Vorozheikina, E.; Chernykh, D.; Kolbasova, G.; et al. Microplastics distribution in the Eurasian Arctic is affected by Atlantic waters and Siberian rivers. Comm. Earth Environ. 2021, 2, 23. [Google Scholar] [CrossRef]
- Chen, H.; Qin, Y.; Huang, H.; Xu, W. A Regional Difference Analysis of Microplastic Pollution in Global Freshwater Bodies Based on a Regression Model. Water 2020, 12, 1889. [Google Scholar] [CrossRef]
- Li, C.; Busquets, R.; Campos, L.C. Assessment of microplastics in freshwater systems: A review. Sci. Total Environ. 2020, 707, 135578. [Google Scholar] [CrossRef]
- Lu, H.-C.; Ziajahromi, S.; Neale, P.A.; Leusch, F.D.L. A systematic review of freshwater microplastics in water and sediments: Recommendations for harmonisation to enhance future study comparisons. Sci. Total Environ. 2021, 781, 146693. [Google Scholar] [CrossRef]
- Liu, Z.; Nowack, B. Probabilistic material flow analysis and emissions modeling for five commodity plastics (PUR, ABS, PA, PC, and PMMA) as macroplastics and microplastics. Res. Conser. Recycl. 2022, 179, 106071. [Google Scholar] [CrossRef]
- Xu, A.; Shi, M.; Xing, X.; Su, Y.; Li, X.; Liu, W.; Mao, Y.; Hu, T.; Qi, S. Status and prospects of atmospheric microplastics: A review of methods, occurrence, composition, source and health risks. Environ. Pollut. 2022, 303, 119173. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.; Allen, D.; Moss, K.; Le Roux, G.; Phoenix, V.R.; Sonke, J.E. Examination of the ocean as a source for atmospheric microplastics. PLoS ONE 2020, 15, e0232746. [Google Scholar] [CrossRef]
- Habibi, N.; Udin, S.; Fowler, S.W.; Behbehani, M. Microplastics in the atmosphere: A review. J. Environ. Expo. Assess. 2022, 1, 6. [Google Scholar] [CrossRef]
- Munyaneza, J.; Jia, Q.; Qaraah, F.A.; Hossain, M.F.; Wu, C.; Zhen, H.; Xia, G. A review of atmospheric microplastics pollution: In-depth sighting of sources, analytical methods, physiognomies, transport and risks. Sci. Total Environ. 2022, 822, 153339. [Google Scholar] [CrossRef]
- Ao, Z.; Li, S. Temperature and thickness-depenedent elastic moduli of polymer thin films. Nanoscale Res. Lett. 2011, 6, 243. [Google Scholar] [CrossRef]
- Wang, J.; Shi, F.G. Thickness dependence of elastic modulus and hardness of on-wafer low-k ultrathin polytetrafluoroethylene films. Scr. Mater 2000, 42, 687–694. [Google Scholar] [CrossRef]
- Available online: https://www.persistencemarketresearch.com/market-research/fishing-net-fibers-market.asp (accessed on 7 March 2023).
- Kärkkäinnen, N.; Sillanpää, M. Quantification of different microplastic fibres discharged from textiles in machine wash and tumble drying. Environ. Sci. Pollut. Res. 2021, 28, 16253–16263. [Google Scholar] [CrossRef] [PubMed]
Impact | Wear | |
---|---|---|
δ (μm) | δ (μm) | |
HDPE | 178 ± 59 | 5.2 ± 1.7 |
PP | 75 ± 43 | 5.6 ± 1.8 |
PET | 74 ± 44 | 2.6 ± 1.7 |
PS | 3.1 ± 0.9 | 1.1 ± 0.4 |
Polymer | Ref [40] | Equation (18) |
---|---|---|
PMMA | 0.13 mm | 0.12 mm |
HIPS | 1.2 mm | 0.95 mm |
POM | 2.1 mm | 1.8 mm |
PC | 5.0 mm | 3.6 mm |
E GPa | H MPa | σY MPa | σU MPa | σS MPa | εU % | ν | μ | Γ mN/m | CN (J/cm2) | KIC Mpa√m | k mm3/Nm | Refs | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HDPE | 1.04 | 49 | 26 | 26 | 13 | 638 | 0.44 | 0.27 | 35.7 | 2.0 | 3.6 | 8.8 × 10−5 | [49,50,51,52,53,54,55,80] |
LDPE | 0.24 | 15 | 11 | 12 | 7 | 400 | 0.43 | 0.46 | 33.7 | 0.9 | 1.2 | 6.9 × 10−5 | [49,50,51,56,57,81] |
PP | 1.47 | 68 | 32 | 38 | 17 | 188 | 0.43 | 0.25 | 29.6 | 3.6 | 2.4 | 3.2 × 10−5 | [49,50,51,58,59,60,79,80,81] |
PET | 3.29 | 154 | 73 | 50 | 35 | 70 | 0.43 | 0.23 | 43.0 | 0.5 | 5 | 8.8 × 10−4 | [49,50,51,59,61,62,81] |
PETG | 3.03 | 110 | 51 | 45 | 31 | 123 | 0.38 | 0.28 | 30.0 | 0.7 | 2.3 | 5.1 × 10−4 | [49,50,51,63,79] |
Nylon6 | 2.45 | 103 | 64 | 70 | 57 | 71 | 0.35 | 0.55 | 42.0 | 2.3 | 4.9 | 1.1 × 10−3 | [49,50,51,64,65,81] |
Nylon66 | 3.49 | 139 | 73 | 80 | 42 | 52 | 0.40 | 0.30 | 42.0 | 1.3 | 3.1 | 1.6 × 10−3 | [49,50,51,59,66,80,81] |
PVC | 2.70 | 109 | 45 | 21 | 35 | 254 | 0.40 | 0.32 | 40.3 | 0.5 | 2.4 | 1.6 × 10−4 | [49,50,51,55,59,61,67,79,81] |
PMMA | 2.91 | 171 | 64 | 64 | 100 | 10 | 0.39 | 0.58 | 40.2 | 0.3 | 1.1 | 5.0 × 10−3 | [49,50,51,59,66,79,80,81] |
PS | 2.94 | 133 | 36 | 41 | 57 | 12 | 0.34 | 0.43 | 40.7 | 0.4 | 0.9 | 3.1 × 10−3 | [49,50,51,59,67,79,80,81] |
HIPS | 1.99 | 81 | 26 | 27 | 33 | 45 | 0.41 | 0.40 | 40.7 | 1.0 | 1.3 | 7.7 × 10−4 | [49,50,51,68,69] |
PC | 2.38 | 115 | 62 | 65 | 29 | 87 | 0.35 | 0.25 | 43.5 | 4.8 | 3.9 | 9.0 × 10−4 | [49,50,51,59,66,67,70,71,81] |
ABS | 2.30 | 100 | 45 | 40 | 34 | 33 | 0.36 | 0.34 | 38.5 | 2.0 | 2.9 | 1.4 × 10−3 | [49,50,51,72,73,81] |
POM | 3.01 | 161 | 67 | 63 | 43 | 37 | 0.37 | 0.27 | 41.5 | 0.9 | 5.5 | 1.8 × 10−3 | [49,50,51,74,75,80,81] |
Theoretical Prediction | Experimental Results | |||||
---|---|---|---|---|---|---|
Impact | Wear | Impact | Wear | |||
δ (μm) | MPI | δ (μm) | MPI | δ (μm) | δ (μm) | |
HDPE | 240 ± 19 | 2.7 ± 0.5 | 6.3 ± 0.3 | 2.3 ± 0.3 | 178 ± 59 | 5.2 ± 1.7 |
LDPE | 272 ± 48 | 3.0 ± 0.3 | 5.0 ± 1.1 | 2.7 ± 0.3 | ||
PP | 72 ± 14 | 3.5 ± 0.1 | 4.4 ± 0.5 | 3.2 ± 0.3 | 75 ± 43 | 5.6 ± 1.8 |
PET | 52 ± 8 | 4.7± 0.3 | 3.3 ± 0.3 | 4.0 ± 0.5 | 74 ± 44 | 2.6 ± 1.7 |
PETG | 17 ± 8 | 5.5 ± 0.1 | 2.7± 0.6 | 4.1 ± 0.1 | ||
Nylon6 | 76 ± 35 | 3.7 ± 0.2 | 0.9 ± 0.4 | 6.3 ± 0.1 | ||
Nylon66 | 19 ± 11 | 5.1 ± 0.5 | 2.4 ± 1.3 | 4.8 ± 0.9 | ||
PVC | 24 ± 11 | 5.3 ± 0.2 | 2.6 ± 0.9 | 3.8 ± 0.3 | ||
PMMA | 3.2 ± 0.9 | 7.4 ± 0.4 | 0.3 ± 0.2 | 8.2 ± 0.7 | ||
PS | 3.8 ± 1.0 | 7.0 ± 0.3 | 1.0 ± 0.5 | 6.4 ± 0.1 | 3.1 ± 0.9 | 1.1 ± 0.4 |
HIPS | 8 ± 3 | 6.0 ± 0.4 | 2.2 ± 0.1 | 4.7 ± 0.5 | ||
PC | 46 ± 11 | 3.8 ± 0.3 | 3.4 ± 1.4 | 4.0 ± 0.4 | ||
ABS | 41 ± 16 | 4.3 ± 0.2 | 2.1 ± 1.0 | 5.0 ± 0.5 | ||
POM | 75 ± 25 | 4.1 ± 0.1 | 1.9 ± 0.2 | 5.1 ± 0.6 |
% of Global Production [86,87,88,89,90,91,92,93,94] | % of MPs in | Relative Abundancy (=% MP/% Global Production) | |||||
---|---|---|---|---|---|---|---|
Sea [95,96,97,98,99,100,101] | Rivers and Lakes [9,102,103,104,105] | Air [106,107,108,109] | Sea | Rivers and Lakes | Air | ||
HDPE | 15.5 | 7.6 | 8.3 | 6.3 | 0.49 | 0.54 | 0.41 |
LDPE | 18.7 | 11.4 | 12.4 | 9.4 | 0.61 | 0.66 | 0.50 |
PP | 20.4 | 18.4 | 17.1 | 11.1 | 0.90 | 0.84 | 0.54 |
PET | 9.9 | 15.0 | 17.0 | 21.3 | 1.53 | 1.72 | 2.17 |
PETG | - | ||||||
Nylon6 | 1.4 | 5.3 | 5.9 | 6.3 | 3.82 | 4.24 | 4.51 |
Nylon66 | 0.7 | 2.7 | 3.0 | 3.2 | 4.18 | 4.64 | 4.93 |
PVC | 11.3 | 8.6 | 7.4 | 6.5 | 0.76 | 0.66 | 0.58 |
PMMA | 1.0 | 6.8 | 3.3 | 2.4 | 6.86 | 3.35 | 2.47 |
PS | 3.7 | 11.5 | 10.7 | 9.7 | 3.11 | 2.91 | 2.62 |
HIPS | - | ||||||
PC | 1.1 | 0.5 | 0.7 | 2.0 | 0.47 | 0.58 | 1.80 |
ABS | 2.4 | 2.1 | 2.2 | 0.87 | 0.93 | ||
POM | 0.5 | 0.3 | 0.57 | ||||
Rest | 13.5 | 9.7 | 11.9 | 21.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boersma, A.; Grigoriadi, K.; Nooijens, M.G.A.; Henke, S.; Kooter, I.M.; Parker, L.A.; Dortmans, A.; Urbanus, J.H. Microplastic Index—How to Predict Microplastics Formation? Polymers 2023, 15, 2185. https://doi.org/10.3390/polym15092185
Boersma A, Grigoriadi K, Nooijens MGA, Henke S, Kooter IM, Parker LA, Dortmans A, Urbanus JH. Microplastic Index—How to Predict Microplastics Formation? Polymers. 2023; 15(9):2185. https://doi.org/10.3390/polym15092185
Chicago/Turabian StyleBoersma, Arjen, Kalouda Grigoriadi, Merel G. A. Nooijens, Sieger Henke, Ingeborg M. Kooter, Luke A. Parker, Ardi Dortmans, and Jan Harm Urbanus. 2023. "Microplastic Index—How to Predict Microplastics Formation?" Polymers 15, no. 9: 2185. https://doi.org/10.3390/polym15092185
APA StyleBoersma, A., Grigoriadi, K., Nooijens, M. G. A., Henke, S., Kooter, I. M., Parker, L. A., Dortmans, A., & Urbanus, J. H. (2023). Microplastic Index—How to Predict Microplastics Formation? Polymers, 15(9), 2185. https://doi.org/10.3390/polym15092185