Determination of Mechanical Properties of Sand-Coated Carbon Fiber Reinforced Polymer (CFRP) Rebar
Abstract
:1. Introduction
2. Testing of Mechanical Properties of CFRP Rebar Specimens
2.1. Materials
2.2. Tensile Strength Testing of CFRP Rebar Specimens
2.3. Compressive Strength Testing of CFRP Rebar Specimens
2.4. Shear Strength Testing of CFRP Rebar Specimens
3. Test Results and Discussion
3.1. Tensile Strength Test Results
3.2. Compressive Strength Test Results
3.3. Shear Strength Test Results
4. Discussion
4.1. Effect of Size of CFRP Rebar
4.2. Relationship between Shear Strength and Tensile Strength
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cho, J.R.; Park, Y.H.; Park, S.Y.; Park, C.W. Development of Design Guidelines for FRP Reinforced Concrete Structure and Application of FRP Reinforcement in Korea. Mag. Korea Concr. Inst. 2018, 30, 81–86. Available online: https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE07571350 (accessed on 19 April 2023).
- ACI 440.1R-15; Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) bars. American Concrete Institute: Farmington Hills, MI, USA, 2015.
- ACI 440.1R-06; Guide for the the Design and Construction of Structural Concrete Reinforced with fiber-Reinforced Polymer (FRP) bars. American Concrete Institute: Farmington Hills, MI, USA, 2006.
- ACI 440.3R; Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars. American Concrete Institute: Farmington Hills, MI, USA, 2012.
- CAN/CSA-S6-14; Canadian Highway Bridge Design Code. Canadian Standards Authority (CSA): Toronto, ON, Canada, 2006.
- CAN/CSA-S6:19; Canadian Highway Bridge Design Code. Canadian Standards Authority (CSA): Toronto, ON, Canada, 2014.
- CAN/CSA S806; Design and Construction of Building Structures with Fibre-reinforced Polymers. Canadian Standards Authority (CSA): Toronto, ON, Canada, 2012.
- KS F ISO 10406-1; Fibre-Reinforced Polymer (FRP) Reinforcement of Concrete-Test Methods-Part 1: FRP Bars and Grids. Korean Standards Association: Seoul, Republic of Korea, 2017.
- Benmokrane, B.; Zhang, B.; Chennouf, A. Tensile Properties and Pull out Behaviour of AFRP and CFRP rods for grouted anchor applications. Constr. Build. Mater. 2000, 14, 157–170. [Google Scholar] [CrossRef]
- Khan, Q.S.; Sheikh, M.N.; Hadi, M.N.S. Tension and Compression Testing of Fibre Reinforced Polymer (FRP) Bars. In Proceedings of the 12th International Symposium on Fiber Reinforced Polymers for Reinforced Concrete Structures (FRPRCS-12) & the 5th Asia-Pacific Conference on Fiber Reinforced Polymers in Structures (APFIS-2015) Joint Conference, Nanjing, China, 14–16 December 2015. [Google Scholar]
- Khan, Q.S.; Sheikh, M.N.; Hadi, M.N.S. Tensile Testing of Carbon FRP (CFRP) and Glass FRP (GFRP) Bars: An Experimental Study. J. Test. Eval. 2021, 49, 2035–2050. [Google Scholar] [CrossRef]
- Plevkov, V.; Baldin, I.; Kudyakov, K.; Nevskii, A. Mechanical Properties of Composite Rebar under Static and Short-term Dynamic Loading. AIP Conf. Proc. 2017, 1800, 040018. [Google Scholar]
- Koosha, K.; Pedram, S. New Testing Method of GFRP Bars in Compression. In Proceedings of the CSCE Annual Conference 2018, Frederiction, NB, Canada, 13–16 June 2018. [Google Scholar]
- Ashrafi, H.; Bazli, M.; Najafabadi, E.P.; Oskouei, A.V. The Effect of Mechanical and Thermal Properties of FRP bars on their Tensile Performance under Elevated Temperatures. Constr. Build. Mater. 2017, 157, 1001–1010. [Google Scholar] [CrossRef]
- Lee, S.T.; Park, K.P.; Park, K.T.; You, Y.J.; Seo, D.W. A study on the Application of FRP Hybrid Bar to Prevent Corrosion of Reinforcing Bar in Concrete Structure. J. Korea Acad. Ind. Coop. Soc. 2019, 20, 559–568. [Google Scholar]
- ASTM D3039/D3039M-14; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM D7205/D7205M; Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2016.
- ASTM D695; Standard Test Method for Compressive Properties of Rigid Plastics. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2010.
- ASTM D7617/D7617M; Standard Test Method for Transverse Shear Strength of Fiber-reinforced Polymer Matrix Compo-site Bars. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2017.
- Park, C.G.; Won, J.P. Mechanical Properties of Hybrid FRP Rebar. J. Korean Soc. Agric. Eng. 2003, 45, 58–67. [Google Scholar]
- Protchenko, K.; Zayoud, F.; Urba´nski, M.; Szmigiera, E. Tensile and Shear Testing of Basalt Fiber Reinforced Polymer (BFRP) and Hybrid Basalt/Carbon Fiber Reinforced Polymer (HFRP) Bars. Materials 2020, 13, 5839. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.S.; Park, K.T.; Seo, D.W.; Kim, B.C.; Park, J.S. Prediction of Tensile Behavior for FRP Hybrid Bar. J. Korean Soc. Adv. Compos. Struct. 2017, 8, 25–33. [Google Scholar] [CrossRef]
Diameter (mm) | Grip Length (mm) | Free Length (mm) | Total Length (mm) |
---|---|---|---|
10 | 550 | 400 | 1500 |
12 | 660 | 480 | 1800 |
16 | 660 | 480 | 1800 |
Specimen | Diameter (mm) | Height (mm) |
---|---|---|
D10 (2D) | 10 | 20 |
D10 (4D) | 10 | 40 |
D12 (2D) | 12 | 24 |
D12 (4D) | 12 | 48 |
D16 (2D) | 16 | 32 |
D16 (4D) | 16 | 64 |
Specimen | Tensile Strength (MPa) | Tensile Modulus of Elasticity (GPa) | Failure Mode |
---|---|---|---|
D10-1 | 2107 | 161 | Grip failure |
D10-2 | 2229 | 144 | Grip failure |
D10-3 | 2083 | 153 | Grip failure |
D10-4 | 2100 | 158 | Grip failure |
D10-5 | 2062 | 133 | Grip failure |
Average | 2116 ± 58.50 | 150 ± 10.19 | |
D12-1 | 1854 | 152 | Grip failure |
D12-2 | 1811 | 173 | Grip failure |
D12-3 | 1732 | 144 | Center failure |
D12-4 | 1762 | 162 | Grip failure |
D12-5 | 1758 | 158 | Grip failure |
Average | 1784 ± 43.57 | 158 ± 9.72 | |
D16-1 | 1859 | 136 | Grip failure |
D16-2 | 1799 | 135 | Specimen end |
D16-3 | 1839 | 145 | Grip failure |
D16-4 | 1871 | 136 | Grip failure |
D16-5 | 1786 | 131 | Grip failure |
Average | 1831 ± 33.16 | 136 ± 4.59 |
Description | 1 | 2 | 3 | 4 | 5 | Average | ||
---|---|---|---|---|---|---|---|---|
D10 | (2D) | fcomp. (MPa) | 402 | 452 | 427 | 314 | 402 | 399 |
(2D) | Compressive modulus of elasticity Ecomp (GPa) | 14 | 17 | 15 | 13 | 15 | 15 | |
(4D) | fcomp. (MPa) | 369 | 355 | 314 | 333 | 408 | 356 | |
(4D) | Compressive modulus of elasticity Ecomp (GPa) | 29 | 26 | 23 | 23 | 30 | 26 | |
D12 | (2D) | fcomp. (MPa) | 350 | 392 | 420 | 344 | 277 | 357 |
(2D) | Compressive modulus of elasticity Ecomp (GPa) | 16 | 16 | 16 | 13 | 13 | 15 | |
(4D) | fcomp. (MPa) | 356 | 311 | 335 | 398 | 273 | 335 | |
(4D) | Compressive modulus of elasticity Ecomp (GPa) | 31 | 30 | 28 | 36 | 26 | 30 | |
D16 | (2D) | fcomp. (MPa) | 326 | 348 | 332 | 410 | 382 | 360 |
(2D) | Compressive modulus of elasticity Ecomp (GPa) | 13 | 18 | 17 | 19 | 18 | 17 | |
(4D) | fcomp. (MPa) | 453 | 429 | 321 | 403 | 368 | 395 | |
(4D) | Compressive modulus of elasticity Ecomp (GPa) | 42 | 38 | 34 | 46 | 41 | 40 |
Description | D10 | D12 | D16 |
---|---|---|---|
Shear Strength (MPa) | 350 | 353 | 282 |
368 | 360 | 256 | |
368 | 376 | 314 | |
375 | 353 | 275 | |
393 | 357 | 290 | |
Average | 371 | 360 | 283 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, H.-D.; Kim, S.-H.; Choi, W. Determination of Mechanical Properties of Sand-Coated Carbon Fiber Reinforced Polymer (CFRP) Rebar. Polymers 2023, 15, 2186. https://doi.org/10.3390/polym15092186
Yun H-D, Kim S-H, Choi W. Determination of Mechanical Properties of Sand-Coated Carbon Fiber Reinforced Polymer (CFRP) Rebar. Polymers. 2023; 15(9):2186. https://doi.org/10.3390/polym15092186
Chicago/Turabian StyleYun, Hyun-Do, Sun-Hee Kim, and Wonchang Choi. 2023. "Determination of Mechanical Properties of Sand-Coated Carbon Fiber Reinforced Polymer (CFRP) Rebar" Polymers 15, no. 9: 2186. https://doi.org/10.3390/polym15092186
APA StyleYun, H. -D., Kim, S. -H., & Choi, W. (2023). Determination of Mechanical Properties of Sand-Coated Carbon Fiber Reinforced Polymer (CFRP) Rebar. Polymers, 15(9), 2186. https://doi.org/10.3390/polym15092186