Dopant-Free Hole-Transporting Material Based on Poly(2,7-(9,9-bis(N,N-di-p-methoxylphenylamine)-4-phenyl))-fluorene for High-Performance Air-Processed Inverted Perovskite Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of PFTPA
2.1.1. Synthesis of 4,4′-(2,7-Dibromo-9H-fluorene-9,9-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) (2BrFTPA)
2.1.2. Polymerization of PFTPA
2.2. Device Fabrication and Measurement
3. Results and Discussion
3.1. Synthesis and Design Principle
3.2. Thermal, Photophysical and Electrochemical Properties
3.3. Density Functional Theory Simulation of PFTPA
3.4. Photovoltaic Performance of the PFTPA-Based PSC Devices
3.5. Morphology Analysis of Perovskite Films
3.6. SCLC Measurements of PFTPA for Its Hole-Transporting Morbility
3.7. Steady-State PL and TRPL Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A.K.; Liu, B.; Grätzel, M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396–17399. [Google Scholar] [CrossRef] [Green Version]
- Meng, D.; Xue, J.J.; Zhao, Y.P.; Zhang, E.; Zheng, R.; Yang, Y. Configurable organic charge carriers toward stable perovskite photovoltaics. Chem. Rev. 2022, 122, 14954–14986. [Google Scholar] [CrossRef] [PubMed]
- Burschka, J.; Pellet, N.; Moon, S.J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Yang, W.; Wang, Z.; Sadhanala, A.; Hu, Q.; Su, R.; Zhu, R. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 2018, 360, 1442–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, J.; Kim, M.; Seo, J.; Lu, H.; Ahlawat, P.; Mishra, A.; Kim, J.Y. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 2021, 592, 381–385. [Google Scholar] [CrossRef]
- Zhou, H.; Liang, L.; Guo, Z.; Li, L. Anti-corrosion strategy to improve the stability of perovskite solar cells. Nanoscale 2023, 15, 8473. [Google Scholar]
- Khare, S.; Gohel, J.V. Performance enhancement of cost-effective mixed cationic perovskite solar cell with MgCl2 and n-BAI as surface passivating agents. Opt. Mater. 2022, 132, 112845. [Google Scholar] [CrossRef]
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Correa-Baena, J.P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M.I.; Seok, S.I.; Han, H. Challenges for commercializing perovskite solar cells. Science 2018, 361, eaat8235. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Lee, J.W.; Jung, H.S.; Shin, H.; Park, N.G. High-efficiency perovskite solar cells. Chem. Rev. 2020, 120, 7867–7918. [Google Scholar] [CrossRef] [PubMed]
- Isikgor, F.H.; Zhumagali, S.T.; Merino, L.V.; De Bastiani, M.; McCulloch, I.; De Wolf, S. Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 2023, 8, 89–108. [Google Scholar] [CrossRef]
- Liu, T.; Chen, K.; Hu, Q.; Zhu, R.; Gong, Q. Inverted perovskite solar cells: Progresses and perspectives. Adv. Energy Mater. 2016, 6, 1600457. [Google Scholar] [CrossRef]
- Lin, X.; Cui, D.; Luo, X.; Zhang, C.; Han, Q.; Wang, Y.; Han, L. Efficiency progress of inverted perovskite solar cells. Energy Environ. Sci. 2020, 13, 3823–3847. [Google Scholar] [CrossRef]
- Yao, Y.; Cheng, C.; Zhang, C.; Hu, H.; Wang, K.; De Wolf, S. Organic Hole-Transport Layers for Efficient, Stable, and Scalable Inverted Perovskite Solar Cells. Adv. Mater. 2022, 34, 2203794. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Guo, X.; Lu, C.; Wei, J.; Fang, J. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 2022, 375, 434–437. [Google Scholar] [CrossRef]
- Al-Ashouri, A.; Magomedov, A.; Roß, M.; Jošt, M.; Talaikis, M.; Chistiakova, G.; Albrecht, S. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 2019, 12, 3356–3369. [Google Scholar] [CrossRef] [Green Version]
- Ullah, A.; Park, K.H.; Nguyen, H.D.; Siddique, Y.; Shah, S.F.A.; Tran, H.; Hong, S. Novel phenothiazine-based self-assembled monolayer as a hole selective contact for highly efficient and stable p-i-n perovskite solar cells. Adv. Energy Mater. 2022, 12, 2103175. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Wang, X.; Lin, R.; Luo, X.; Liu, Z.; Tan, H. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 2022, 7, 708–717. [Google Scholar] [CrossRef]
- Li, Z.; Tan, Q.; Chen, G.; Gao, H.; Wang, J.; Zhang, X.; He, Z. Simple and robust phenoxazine phosphonic acid molecules as self-assembled hole selective contacts for high-performance inverted perovskite solar cells. Nanoscale 2023, 15, 1676–1686. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ye, F.; Wang, X.; Chen, R.; Zhang, H.; Zhan, L.; Wu, Y. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 2023, 380, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Al-Ashouri, A.; Köhnen, E.; Li, B.; Magomedov, A.; Hempel, H.; Caprioglio, P.; Albrecht, S. Monolithic perovskite/silicon tandem solar cell with> 29% efficiency by enhanced hole extraction. Science 2020, 370, 1300–1309. [Google Scholar] [CrossRef]
- Tong, J.; Song, Z.; Kim, D.H.; Chen, X.; Chen, C.; Palmstrom, A.F.; Zhu, K. Carrier lifetimes of> 1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 2019, 364, 475–479. [Google Scholar] [CrossRef]
- Urieta-Mora, J.; García-Benito, I.; Molina-Ontoria, A.; Martín, N. Hole transporting materials for perovskite solar cells: A chemical approach. Chem. Soc. Rev. 2018, 47, 8541–8571. [Google Scholar] [CrossRef]
- Pham, H.D.; Yang, T.C.J.; Jain, S.M.; Wilson, G.J.; Sonar, P. Development of dopant-free organic hole transporting materials for perovskite solar cells. Adv. Energy Mater. 2020, 10, 1903326. [Google Scholar] [CrossRef]
- Murugan, P.; Hu, T.; Hu, X.; Chen, Y. Advancements in organic small molecule hole-transporting materials for perovskite solar cells: Past and future. J. Mater. Chem. A 2022, 10, 5044–5081. [Google Scholar] [CrossRef]
- Cho, K.T.; Paek, S.; Grancini, G.; Roldán-Carmona, C.; Gao, P.; Lee, Y.; Nazeeruddin, M.K. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci. 2017, 10, 621–627. [Google Scholar] [CrossRef]
- Wu, X.; Gao, D.; Sun, X.; Zhang, S.; Wang, Q.; Li, B.; Zhu, Z. Backbone Engineering Enables Highly Efficient Polymer Hole-Transporting Materials for Inverted Perovskite Solar Cells. Adv. Mater. 2023, 35, 2208431. [Google Scholar] [CrossRef]
- Desoky, M.M.H.; Bonomo, M.; Barbero, N.; Viscardi, G.; Barolo, C.; Quagliotto, P. Polymeric dopant-free hole transporting materials for perovskite solar cells: Structures and concepts towards better performances. Polymers 2021, 13, 1652. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.W.; Kang, G.; Kim, J.; Lee, G.Y.; Kim, H.I.; Pyeon, L.; Park, T. Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells. Energy Environ. Sci. 2016, 9, 2326–2333. [Google Scholar] [CrossRef]
- Sun, X.; Yu, X.; Li, Z.A. Recent advances of dopant-free polymer hole-transporting materials for perovskite solar cells. ACS Appl. Energy Mater. 2020, 3, 10282–10302. [Google Scholar] [CrossRef]
- Wang, L.; Zhuang, Q.; You, G.; Lin, X.; Li, K.; Lin, Z.; Ling, Q. Donor-Acceptor Type Polymers Containing Fused-Ring Units as Dopant-Free, Hole-Transporting Materials for High-Performance Perovskite Solar Cells. ACS Appl. Energy Mater. 2020, 3, 12475–12483. [Google Scholar] [CrossRef]
- Kim, D.W.; Choi, M.W.; Yoon, W.S.; Hong, S.H.; Park, S.; Kwon, J.E.; Park, S.Y. A dopant-free donor-acceptor type semi-crystalline polymeric hole transporting material for superdurable perovskite solar cells. J. Mater. Chem. A 2022, 10, 12187–12195. [Google Scholar] [CrossRef]
- You, G.; Zhuang, Q.; Wang, L.; Lin, X.; Zou, D.; Lin, Z.; Ling, Q. Dopant-free, donor–acceptor-type polymeric hole-transporting materials for the perovskite solar cells with power conversion efficiencies over 20%. Adv. Energy Mater. 2020, 10, 1903146. [Google Scholar] [CrossRef]
- Rombach, F.M.; Haque, S.A.; Macdonald, T.J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 2021, 14, 5161–5190. [Google Scholar] [CrossRef]
- Reza, K.M.; Mabrouk, S.; Qiao, Q. A review on tailoring PEDOT: PSS layer for improved performance of perovskite solar cells. Proc. Nat. Res. Soc. 2018, 2, 02004. [Google Scholar] [CrossRef]
- Erazo, E.A.; Ortiz, P.; Cortés, M.T. Tailoring the PEDOT: PSS hole transport layer by electrodeposition method to improve perovskite solar cells. Electrochim. Acta 2023, 439, 141573. [Google Scholar] [CrossRef]
- Duan, C.; Zhao, M.; Zhao, C.; Wang, Y.; Li, J.; Han, W.; Jiu, T. Inverted CH3NH3PbI3 perovskite solar cells based on solution-processed V2O5 film combined with P3CT salt as hole transport layer. Mater. Today Energy 2018, 9, 487–495. [Google Scholar] [CrossRef]
- Zuo, C.; Vak, D.; Angmo, D.; Ding, L.; Gao, M. One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy 2018, 46, 185–192. [Google Scholar] [CrossRef]
- Shao, J.Y.; Yu, B.C.; Wang, Y.D.; Lan, Z.R.; Li, D.M.; Meng, Q.B.; Zhang, Y.W. In-situ electropolymerized polyamines as dopant-free hole transporting materials for efficient and stable inverted perovskite solar cells. ACS Appl. Energy Mater. 2020, 3, 5058–5066. [Google Scholar] [CrossRef]
- Niu, T.; Zhu, W.; Zhang, Y.; Xue, Q.; Jiao, X.; Wang, Z.; Cao, Y. DA-π-AD-type dopant-free hole transport material for low-cost, efficient, and stable perovskite solar cells. Joule 2021, 5, 249–269. [Google Scholar] [CrossRef]
- Lee, K.; Yu, H.; Lee, J.W.; Oh, J.; Bae, S.; Kim, S.K.; Jang, J. Efficient and moisture-resistant hole transport layer for inverted perovskite solar cells using solution-processed polyaniline. J. Mater. Chem. C 2018, 6, 6250–6256. [Google Scholar] [CrossRef]
Scan Direction | VOC (V) | JSC (mA cm−2) | FF (%) | PCE (%) a | |
---|---|---|---|---|---|
PFTPA | Reverse | 1.13 | 19.66 | 75.7 | 16.82 |
Forward | 1.12 | 20.08 | 72.5 | 16.30 | |
Slot-die | Reverse | 1.08 | 19.50 | 65.7 | 13.84 |
PEDOT:PSS | Reverse | 1.00 | 19.87 | 69.5 | 13.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Tian, M.; Chu, X.; Xu, P.; Yao, J.; Hou, P.; Li, Z.; Huang, H. Dopant-Free Hole-Transporting Material Based on Poly(2,7-(9,9-bis(N,N-di-p-methoxylphenylamine)-4-phenyl))-fluorene for High-Performance Air-Processed Inverted Perovskite Solar Cells. Polymers 2023, 15, 2750. https://doi.org/10.3390/polym15122750
Zhao B, Tian M, Chu X, Xu P, Yao J, Hou P, Li Z, Huang H. Dopant-Free Hole-Transporting Material Based on Poly(2,7-(9,9-bis(N,N-di-p-methoxylphenylamine)-4-phenyl))-fluorene for High-Performance Air-Processed Inverted Perovskite Solar Cells. Polymers. 2023; 15(12):2750. https://doi.org/10.3390/polym15122750
Chicago/Turabian StyleZhao, Baomin, Meng Tian, Xingsheng Chu, Peng Xu, Jie Yao, Pingping Hou, Zhaoning Li, and Hongyan Huang. 2023. "Dopant-Free Hole-Transporting Material Based on Poly(2,7-(9,9-bis(N,N-di-p-methoxylphenylamine)-4-phenyl))-fluorene for High-Performance Air-Processed Inverted Perovskite Solar Cells" Polymers 15, no. 12: 2750. https://doi.org/10.3390/polym15122750
APA StyleZhao, B., Tian, M., Chu, X., Xu, P., Yao, J., Hou, P., Li, Z., & Huang, H. (2023). Dopant-Free Hole-Transporting Material Based on Poly(2,7-(9,9-bis(N,N-di-p-methoxylphenylamine)-4-phenyl))-fluorene for High-Performance Air-Processed Inverted Perovskite Solar Cells. Polymers, 15(12), 2750. https://doi.org/10.3390/polym15122750