Thymol-Modified Oleic and Linoleic Acids Encapsulated in Polymeric Nanoparticles: Enhanced Bioactivity, Stability, and Biomedical Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. PASS-Based In Silico Assessment of the Biological Activity of the Modified Fatty Acids
2.3. ADMET Simulations of the Modified Fatty Acids
2.4. Synthesis of TOA and TLA
2.4.1. Synthesis of TOA
2.4.2. Synthesis of TLA
2.5. NPs Loaded with OA, LA, TOA, and TLA Formulations
2.6. Characterization of the NPs Loaded with OA, LA, TOA, and TLA
2.6.1. Size, ζ-Potential, and Polydispersity Index Measurement
2.6.2. Drug Loading (DL) and Entrapment Efficiency (EE) Measurement
total amount of drug)) × 100
2.6.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.6.4. Morphological Study
2.7. In Vitro Drug Release of OA, LA, TOA, and TLA from NPs
2.7.1. pH 1.2–6.8 for Oral Administration (Antimicrobial Activity)
2.7.2. pH 7.4 for Parenteral Administration (Cytotoxic Activity)
2.8. Antibacterial and Antifungal Efficacy Test
2.8.1. Cell Culture
2.8.2. Preparation of the Test Samples
2.8.3. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
2.9. Cytotoxic Activity Test
2.9.1. Cell Culture
2.9.2. Cytotoxic Activity
2.10. Statistical Analysis
3. Results and Discussion
3.1. PASS-Based In Silico Assessment of the Biological Activity of the Modified Fatty Acids
3.2. ADME Simulations of the Modified Fatty Acids
3.3. Synthesis of TOA and TLA
3.4. Formulation of the Nanoparticles
3.5. Morphological Analysis
3.6. Fourier Transform Infrared Spectroscopy
3.7. In Vitro Drug Release Study
3.8. Antibacterial and Antifungal Efficacy
3.9. In Vitro Cytotoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoon, B.K.; Jackman, J.A.; Valle-González, E.R.; Cho, N.-J. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications. Int. J. Mol. Sci. 2018, 19, 1114. [Google Scholar] [CrossRef] [PubMed]
- Kitahara, T.; Koyama, N.; Matsuda, J.; Aoyama, Y.; Hirakata, Y.; Kamihira, S.; Kohno, S.; Nakashima, M.; Sasaki, H. Antimicrobial Activity of Saturated Fatty Acids and Fatty Amines against Methicillin-Resistant Staphylococcus Aureus. Biol. Pharm. Bull. 2004, 27, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Bergsson, G.; Steingrímsson, O.; Thormar, H. Bactericidal Effects of Fatty Acids and Monoglycerides on Helicobacter Pylori. Int. J. Antimicrob. Agents 2002, 20, 258–262. [Google Scholar] [CrossRef]
- Skrivanová, E.; Savka, O.G.; Marounek, M. In Vitro Effect of C2-C18 Fatty Acids on Salmonellas. Folia Microbiol. 2004, 49, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wang, W.; He, Q.; Wu, Y.; Lu, Z.; Sun, J.; Liu, Z.; Shao, Y.; Wang, A. Oleic Acid Induces Apoptosis and Autophagy in the Treatment of Tongue Squamous Cell Carcinomas. Sci. Rep. 2017, 7, 11277. [Google Scholar] [CrossRef] [PubMed]
- Scheim, D.E. Cytotoxicity of Unsaturated Fatty Acids in Fresh Human Tumor Explants: Concentration Thresholds and Implications for Clinical Efficacy. Lipids Health Dis. 2009, 8, 54. [Google Scholar] [CrossRef]
- Amarù, D.L.; Biondo, P.D.; Field, C.J. The Role of Conjugated Linoleic Acid in Breast Cancer Growth and Development. Open Nutraceuticals J. 2010, 3, 30–46. [Google Scholar] [CrossRef]
- Zobel, M.; Schäfer, H.J. Synthesis of Fatty Acid Conjugates with Phenols, Carbohydrates, Amines, and CH-Acidic Compounds by Pd(0)-Catalyzed Allylic Substitution. Eur. J. Lipid Sci. Technol. 2016, 118, 80–92. [Google Scholar] [CrossRef]
- Crauste, C.; Vigor, C.; Brabet, P.; Picq, M.; Lagarde, M.; Hamel, C.; Durand, T.; Vercauteren, J. Synthesis and Evaluation of Polyunsaturated Fatty Acid–Phenol Conjugates as Anti-Carbonyl-Stress Lipophenols. Eur. J. Org. Chem. 2014, 2014, 4548–4561. [Google Scholar] [CrossRef]
- Jóźwiak, M.; Filipowska, A.; Fiorino, F.; Struga, M. Anticancer Activities of Fatty Acids and Their Heterocyclic Derivatives. Eur. J. Pharmacol. 2020, 871, 172937. [Google Scholar] [CrossRef]
- Crauste, C.; Galano, J.-M.; Guy, A.; Lehoux, J.; Durand, T.; Balas, L. Synthesis of Fatty Acid Bioconjugates and Related Derivatives. Eur. J. Org. Chem. 2022, 2022, e202101502. [Google Scholar] [CrossRef]
- Islam, M.T.; Khalipha, A.B.R.; Bagchi, R.; Mondal, M.; Smrity, S.Z.; Uddin, S.J.; Shilpi, J.A.; Rouf, R. Anticancer Activity of Thymol: A Literature-Based Review and Docking Study with Emphasis on Its Anticancer Mechanisms. IUBMB Life 2019, 71, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Liang, C.; Wei, W.; Huang, S.; Ren, Y.; Geng, Y.; Huang, X.; Chen, D.; Guo, H.; Fang, J.; et al. The Antibacterial Activity of Thymol Against Drug-Resistant Streptococcus Iniae and Its Protective Effect on Channel Catfish (Ictalurus Punctatus). Front. Microbiol. 2022, 13, 914868. [Google Scholar] [CrossRef] [PubMed]
- Alsaab, H.O.; Alharbi, F.D.; Alhibs, A.S.; Alanazi, N.B.; Alshehri, B.Y.; Saleh, M.A.; Alshehri, F.S.; Algarni, M.A.; Almugaiteeb, T.; Uddin, M.N.; et al. PLGA-Based Nanomedicine: History of Advancement and Development in Clinical Applications of Multiple Diseases. Pharmaceutics 2022, 14, 2728. [Google Scholar] [CrossRef] [PubMed]
- Alvi, M.; Yaqoob, A.; Rehman, K.; Shoaib, S.M.; Akash, M.S.H. PLGA-Based Nanoparticles for the Treatment of Cancer: Current Strategies and Perspectives. AAPS Open 2022, 8, 12. [Google Scholar] [CrossRef]
- Nikolskaya, E.D.; Zhunina, O.A.; Vasilenko, E.A.; Yabbarov, N.G.; Tereshchenko, O.G.; Sokol, M.B.; Popenko, V.I.; Severin, E.S. Preparation of Temozolomide-Loaded Polymer Particles and Study of Their Antitumor Activity in Models of Glioma and Melanoma. Russ. J. Bioorganic Chem. 2017, 43, 552–560. [Google Scholar] [CrossRef]
- Nikolskaya, E.D.; Zhunina, O.A.; Sokol, M.B.; Fomicheva, M.V.; Gukasova, N.V.; Vorontsov, E.A.; Yabbarov, N.G.; Tereshchenko, O.G.; Severin, E.S. Antibacterial Activity of the Polymeric Form of Josamycin. Antibiot. Chemother. 2017, 62, 18–24. [Google Scholar]
- Sokol, M.B.; Chirkina, M.V.; Yabbarov, N.G.; Mollaeva, M.R.; Podrugina, T.A.; Pavlova, A.S.; Temnov, V.V.; Hathout, R.M.; Metwally, A.A.; Nikolskaya, E.D. Structural Optimization of Platinum Drugs to Improve the Drug-Loading and Antitumor Efficacy of PLGA Nanoparticles. Pharmaceutics 2022, 14, 2333. [Google Scholar] [CrossRef]
- Faustova, M.R.; Nikolskaya, E.D.; Mollaev, M.D.; Sokol, M.B.; Zabolotsky, A.I.; Zhunina, O.A.; Fomicheva, M.V.; Schvets, V.I.; Lobanov, A.V.; Yabbarov, N.G. Polymer Particles Containing Fe-Based Metalloporphyrin as a Highly Efficient Stimulator of Reactive Oxygen Species Formation in Vitro and in Vivo. Russ. Chem. Bull. 2019, 68, 2216–2224. [Google Scholar] [CrossRef]
- Sokol, M.B.; Yabbarov, N.G.; Mollaeva, M.R.; Chirkina, M.V.; Mollaev, M.D.; Zabolotsky, A.I.; Kuznetsov, S.L.; Nikolskaya, E.D. Alpha-Fetoprotein Mediated Targeting of Polymeric Nanoparticles to Treat Solid Tumors. Nanomedicine 2022, 17, 1217–1235. [Google Scholar] [CrossRef]
- Way2Drug. Available online: https://www.way2drug.com/PassOnline/index.php (accessed on 15 November 2023).
- de-Souza-Silva, C.M.; Guilhelmelli, F.; Zamith-Miranda, D.; de Oliveira, M.A.; Nosanchuk, J.D.; Silva-Pereira, I.; Albuquerque, P. Broth Microdilution In Vitro Screening: An Easy and Fast Method to Detect New Antifungal Compounds. J. Vis. Exp. JoVE 2018, 132, 57127. [Google Scholar] [CrossRef]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb. Protoc. 2018, 2018, pdb.prot095505. [Google Scholar] [CrossRef] [PubMed]
- Fidanza, M.; Panigrahi, P.; Kollmann, T.R. Lactiplantibacillus Plantarum-Nomad and Ideal Probiotic. Front. Microbiol. 2021, 12, 712236. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Diekema, D.J.; Colombo, A.L.; Kibbler, C.; Ng, K.P.; Gibbs, D.L.; Newell, V.A. Candida Rugosa, an Emerging Fungal Pathogen with Resistance to Azoles: Geographic and Temporal Trends from the ARTEMIS DISK Antifungal Surveillance Program. J. Clin. Microbiol. 2006, 44, 3578–3582. [Google Scholar] [CrossRef] [PubMed]
- Filimonov, D.; Poroikov, V. Probabilistic Approaches in Activity Prediction. In Chemoinformatics Approaches to Virtual Screening; Varnek, A., Tropsha, A., Eds.; PSC Publishing: Cambridge, UK, 2008; pp. 182–216. [Google Scholar]
- Mansoor, A.; Mahabadi, N. Volume of Distribution; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Smith, D.A.; Beaumont, K.; Maurer, T.S.; Di, L. Volume of Distribution in Drug Design. J. Med. Chem. 2015, 58, 5691–5698. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.F. Probing the World of Cytochrome P450 Enzymes. Mol. Interv. 2004, 4, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Wijnen, P.; Buijsch, R.; Drent, M.; Kuijpers, P.; Kuipers, P.; Neef, C.; Bast, A.; Bekers, O.; Koek, G. Review Article: The Prevalence and Clinical Relevance of Cytochrome P450 Polymorphisms. Aliment. Pharmacol. Ther. 2008, 26 (Suppl. S2), 211–219. [Google Scholar] [CrossRef] [PubMed]
- Mollaeva, M.R.; Yabbarov, N.; Sokol, M.; Chirkina, M.; Mollaev, M.D.; Zabolotskii, A.; Seregina, I.; Bolshov, M.; Kaplun, A.; Nikolskaya, E. Optimization, Characterization and Pharmacokinetic Study of Meso-Tetraphenylporphyrin Metal Complex-Loaded PLGA Nanoparticles. Int. J. Mol. Sci. 2021, 22, 12261. [Google Scholar] [CrossRef]
- Khan, A.A.; Alam, M.; Tufail, S.; Mustafa, J.; Owais, M. Synthesis and Characterization of Novel PUFA Esters Exhibiting Potential Anticancer Activities: An in Vitro Study. Eur. J. Med. Chem. 2011, 46, 4878–4886. [Google Scholar] [CrossRef]
- Sharifi, M.; Cho, W.C.; Ansariesfahani, A.; Tarharoudi, R.; Malekisarvar, H.; Sari, S.; Bloukh, S.H.; Edis, Z.; Amin, M.; Gleghorn, J.P.; et al. An Updated Review on EPR-Based Solid Tumor Targeting Nanocarriers for Cancer Treatment. Cancers 2022, 14, 2868. [Google Scholar] [CrossRef]
- Feng, S.; Huang, G. Effects of Emulsifiers on the Controlled Release of Paclitaxel (Taxol) from Nanospheres of Biodegradable Polymers. J. Control. Release Off. J. Control. Release Soc. 2001, 71, 53–69. [Google Scholar] [CrossRef] [PubMed]
- Mares, A.G.; Pacassoni, G.; Marti, J.S.; Pujals, S.; Albertazzi, L. Formulation of Tunable Size PLGA-PEG Nanoparticles for Drug Delivery Using Microfluidic Technology. PLoS ONE 2021, 16, e0251821. [Google Scholar] [CrossRef] [PubMed]
- Gurdeniz, G.; Ozen, B.; Tokatli, F. Comparison of Fatty Acid Profiles and Mid-Infrared Spectral Data for Classification of Olive Oils. Eur. J. Lipid Sci. Technol. 2010, 112, 218–226. [Google Scholar] [CrossRef]
- Harwood, J.; Aparicio, R. Handbook of Olive Oil: Analysis and Properties, 2nd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Schulz, H.; Özkan, G.; Baranska, M.; Krüger, H.; Özcan, M. Characterisation of Essential Oil Plants from Turkey by IR and Raman Spectroscopy. Vib. Spectrosc. 2005, 39, 249–256. [Google Scholar] [CrossRef]
- Valderrama, A.; de Gante, C. Traceability of Active Compounds of Essential Oils in Antimicrobial Food Packaging Using a Chemometric Method by ATR-FTIR. Am. J. Anal. Chem. 2017, 08, 726–741. [Google Scholar] [CrossRef]
- Lu, B.; Lv, X.; Le, Y. Chitosan-Modified PLGA Nanoparticles for Control-Released Drug Delivery. Polymers 2019, 11, 304. [Google Scholar] [CrossRef]
- Hua, S. Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract—Influence of Physiological, Pathophysiological and Pharmaceutical Factors. Front. Pharmacol. 2020, 11, 524. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X.; Mi, Y.; Zhang, B.; Gu, S.; Liu, G.; Li, X. PLGA Nanoparticles for the Oral Delivery of Nuciferine: Preparation, Physicochemical Characterization and in Vitro/in Vivo Studies. Drug Deliv. 2017, 24, 443–451. [Google Scholar] [CrossRef]
- Yoo, J.; Won, Y.-Y. Phenomenology of the Initial Burst Release of Drugs from PLGA Microparticles. ACS Biomater. Sci. Eng. 2020, 6, 6053–6062. [Google Scholar] [CrossRef]
- Ekenna, I.C.; Abali, S.O. Comparison of the Use of Kinetic Model Plots and DD Solver Software to Evaluate the Drug Release from Griseofulvin Tablets. J. Drug Deliv. Ther. 2022, 12, 5–13. [Google Scholar] [CrossRef]
- Choe, R.; Yun, S.I. Fmoc-Diphenylalanine-Based Hydrogels as a Potential Carrier for Drug Delivery. e-Polymers 2020, 20, 458–468. [Google Scholar] [CrossRef]
- Trongchuen, K.; Ounkaew, A.; Kasemsiri, P.; Hiziroglu, S.; Mongkolthanaruk, W.; Wannasutta, R.; Pongsa, U.; Chindaprasirt, P. Bioactive Starch Foam Composite Enriched With Natural Antioxidants from Spent Coffee Ground and Essential Oil. Starch Stärke 2017, 70, 1700238. [Google Scholar] [CrossRef]
- Kim, H.-U.; Park, H.-I.; Lee, J.-H.; Lee, E.-S.; Oh, K.-T.; Yoon, J.-H.; Park, E.-S.; Lee, K.; Youn, Y.-S. Pharmaceutical Potential of Gelatin as a pH-Responsive Porogen for Manufacturing Porous Poly(d,l-Lactic-Co-Glycolic Acid) Microspheres. J. Pharm. Investig. 2010, 40, 245–250. [Google Scholar] [CrossRef]
- Zlomke, C.; Barth, M.; Mäder, K. Polymer Degradation Induced Drug Precipitation in PLGA Implants—Why Less Is Sometimes More. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Pharm. Verfahrenstechnik EV 2019, 139, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Jackson, N.; Ortiz, A.C.; Jerez, A.; Morales, J.; Arriagada, F. Kinetics and Mechanism of Camptothecin Release from Transferrin-Gated Mesoporous Silica Nanoparticles through a pH-Responsive Surface Linker. Pharmaceutics 2023, 15, 1590. [Google Scholar] [CrossRef]
- Bruschi, M.L. Main Mechanisms to Control the Drug Release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Bruschi, M.L., Ed.; Woodhead Publishing: Sawston, UK, 2015; pp. 37–62. ISBN 978-0-08-100092-2. [Google Scholar]
- Nagoor Meeran, M.F.; Javed, H.; Al Taee, H.; Azimullah, S.; Ojha, S.K. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front. Pharmacol. 2017, 8, 380. [Google Scholar] [CrossRef] [PubMed]
- Novak, A.F.; Clark, G.C.; Dupuy, H.P. Antimicrobial Activity of Some Ricinoleic Acid Oleic Acid Derivatives. J. Am. Oil Chem. Soc. 1961, 38, 321–324. [Google Scholar] [CrossRef]
- Dilika, F.; Bremner, P.D.; Meyer, J.J. Antibacterial Activity of Linoleic and Oleic Acids Isolated from Helichrysum Pedunculatum: A Plant Used during Circumcision Rites. Fitoterapia 2000, 71, 450–452. [Google Scholar] [CrossRef]
- Arafa, M.G.; Mousa, H.A.; Afifi, N.N. Preparation of PLGA-Chitosan Based Nanocarriers for Enhancing Antibacterial Effect of Ciprofloxacin in Root Canal Infection. Drug Deliv. 2020, 27, 26–39. [Google Scholar] [CrossRef]
- Guimarães, A.; Venâncio, A. The Potential of Fatty Acids and Their Derivatives as Antifungal Agents: A Review. Toxins 2022, 14, 188. [Google Scholar] [CrossRef]
- Sturabotti, E.; Moldoveanu, V.G.; Camilli, A.; Martinelli, A.; Simonetti, G.; Valletta, A.; Serangeli, I.; Giustini, A.; Miranda, E.; Migneco, L.M.; et al. Thymol-Functionalized Hyaluronic Acid as Promising Preservative Biomaterial for the Inhibition of Candida Albicans Biofilm Formation. ACS Macro Lett. 2023, 12, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Arasoglu, T.; Derman, S.; Mansuroglu, B.; Yelkenci, G.; Kocyigit, B.; Gumus, B.; Acar, T.; Kocacaliskan, I. Synthesis, Characterization and Antibacterial Activity of Juglone Encapsulated PLGA Nanoparticles. J. Appl. Microbiol. 2017, 123, 1407–1419. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Li, N.; Zhang, W.; Yang, E.; Mou, Z.; Zhao, Z.; Liu, H.; Wang, W. Quercetin-Loaded PLGA Nanoparticles: A Highly Effective Antibacterial Agent In Vitro and Anti-Infection Application In Vivo. J. Nanoparticle Res. 2015, 18, 3. [Google Scholar] [CrossRef]
- Bradley, M.O.; Webb, N.L.; Anthony, F.H.; Devanesan, P.; Witman, P.A.; Hemamalini, S.; Chander, M.C.; Baker, S.D.; He, L.; Horwitz, S.B.; et al. Tumor Targeting by Covalent Conjugation of a Natural Fatty Acid to Paclitaxel. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2001, 7, 3229–3238. [Google Scholar]
- Lee, S.; Na, K. Oleic Acid Conjugated Polymeric Photosensitizer for Metastatic Cancer Targeting in Photodynamic Therapy. Biomater. Res. 2020, 24, 1. [Google Scholar] [CrossRef] [PubMed]
- Ngo, H.V.; Bak, H.-E.; Nguyen, H.D.; Lee, K.W.; Park, C.; Lee, B.-J. Physicochemical and Biopharmaceutical Controllability of New Self-Assembled Fatty Acid Conjugated Leuprolide for the Enhanced Anticancer Activity. Int. J. Nanomed. 2023, 18, 2325–2344. [Google Scholar] [CrossRef] [PubMed]
- To, N.B.; Nguyen, Y.T.-K.; Moon, J.Y.; Ediriweera, M.K.; Cho, S.K. Pentadecanoic Acid, an Odd-Chain Fatty Acid, Suppresses the Stemness of MCF-7/SC Human Breast Cancer Stem-Like Cells through JAK2/STAT3 Signaling. Nutrients 2020, 12, 1663. [Google Scholar] [CrossRef]
- Huang, J.; Chen, C.; Xie, J.; Zhai, K.; Wei, S.; Cheng, X.; Zhang, R. Oroxin A Ameliorates the Oleic Acid-Induced A549 Cell Injury through the Suppression of Pyroptosis and Degradation of Alveolar Surfactant. An. Acad. Bras. Cienc. 2022, 94, e20211400. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, D.; Hu, X.; Liu, R.; Li, Z.; Luan, Y. Rational Design of a New Cytarabine-Based Prodrug for Highly Efficient Oral Delivery of Cytarabine. RSC Adv. 2018, 8, 13103–13111. [Google Scholar] [CrossRef]
- Rezvantalab, S.; Drude, N.I.; Moraveji, M.K.; Güvener, N.; Koons, E.K.; Shi, Y.; Lammers, T.; Kiessling, F. PLGA-Based Nanoparticles in Cancer Treatment. Front. Pharmacol. 2018, 9, 1260. [Google Scholar] [CrossRef]
- Shakya, A.K.; Al-Sulaibi, M.; Naik, R.R.; Nsairat, H.; Suboh, S.; Abulaila, A. Review on PLGA Polymer Based Nanoparticles with Antimicrobial Properties and Their Application in Various Medical Conditions or Infections. Polymers 2023, 15, 3597. [Google Scholar] [CrossRef] [PubMed]
Confidence | Bacterial Strain | Confidence | Bacterial Strain |
---|---|---|---|
TOA | TLA | ||
0.506 | Bacteroides stercoris (G −ve) 1 | 0.588 | Staphylococcus simulans (G+ve) |
0.452 | Streptococcus viridans (G +ve) 2 | 0.479 | Bacteroides stercoris (G −ve) |
0.404 | Staphylococcus simulans (G +ve) | 0.418 | Streptococcus viridans (G +ve) |
0.373 | Clostridium cadaveris (G +ve) | 0.351 | Clostridium cadaveris (G +ve) |
0.367 | Lactobacillus plantarum (G +ve) | 0.349 | Lactobacillus plantarum (G +ve) |
OA | LA | ||
0.512 | Streptococcus viridans (G +ve) | 0.718 | Staphylococcus saprophyticus (G +ve) |
0.486 | Staphylococcus simulans (G +ve) | 0.670 | Staphylococcus simulans (G +ve) |
0.411 | Lactobacillus plantarum (G +ve) | 0.414 | Streptococcus viridans (G +ve) |
0.391 | Salmonella enteritidis (G +ve) | 0.389 | Lactobacillus plantarum (G +ve) |
0.385 | Listeria innocua (G +ve) | 0.366 | Streptococcus mutans (G +ve) |
Pa | Pi | Cell Line | Cell Line (Full Name) | Tissue | Tumor Type |
---|---|---|---|---|---|
TOA | |||||
0.629 | 0.004 | SK-MEL-1 | Metastatic melanoma | Skin | Melanoma |
0.569 | 0.024 | NCI-H838 | Non-small-cell lung cancer, stage 3 | Lung | Carcinoma |
0.502 | 0.038 | DMS-114 | Lung carcinoma | Lung | Carcinoma |
TLA | |||||
0.649 | 0.003 | SK-MEL-1 | Metastatic melanoma | Skin | Melanoma |
0.560 | 0.026 | NCI-H838 | Non-small-cell lung cancer, stage 3 | Lung | Carcinoma |
0.526 | 0.028 | DMS-114 | Lung carcinoma | Lung | Carcinoma |
OA | |||||
0.583 | 0.004 | A2058 | Melanoma | Skin | Melanoma |
0.563 | 0.011 | SK-MEL-1 | Metastatic melanoma | Skin | Melanoma |
0.551 | 0.029 | NCI-H838 | Non-small-cell lung cancer, stage 3 | Lung | Carcinoma |
0.543 | 0.022 | DMS-114 | Lung carcinoma | Lung | Carcinoma |
0.508 | 0.018 | IGROV-1 | Ovarian adenocarcinoma | Ovarium | Adenocarcinoma |
LA | |||||
0.607 | 0.009 | DMS-114 | Lung carcinoma | Lung | Carcinoma |
0.595 | 0.005 | SK-MEL-1 | Metastatic melanoma | Skin | Melanoma |
0.544 | 0.006 | A2058 | Melanoma | Skin | Melanoma |
0.513 | 0.043 | NCI-H838 | Non-small-cell lung cancer, stage 3 | Lung | Carcinoma |
Molecular Weight | Flexibility | LogP | F30% 1 | PPB 2, % | Vd 3, L/kg | Metabolism | T1/2 4 | |
---|---|---|---|---|---|---|---|---|
TOA | 414.31 | 2.25 | 9.31 | 0.9–1.0 (poor) | 100 | 2.71 | CYP2C9 substrate | 0.154 |
TLA | 412.33 | 1.89 | 8.50 | 0.9–1.0 (poor) | 101 | 2.07 | CYP2C9 substrate | 0.408 |
OA | 282.26 | 7.50 | 6.17 | 0.9–1.0 (poor) | 99 | 0.78 | CYP2C9 substrate | 0.811 |
LA | 280.24 | 4.67 | 4.60 | 0.9–1.0 (poor) | 99 | 0.63 | CYP2C9 substrate | 0.875 |
Lab Scale | Size, nm | PDI | Zeta, mV | DL, % | EE, % |
---|---|---|---|---|---|
LA-NPs | |||||
1-fold | 263 ± 2 | 0.261 ± 0.031 | −7.2 ± 1.0 | 26 ± 0.2 | 58 ± 3 |
4-fold | 224 ± 1 | 0.233 ± 0.032 | −17.4 ± 1.4 | 24 ± 0.3 | 60 ± 2 |
8-fold | 241 ± 1 | 0.272 ± 0.025 | −14.5 ± 2.0 | 24 ± 0.4 | 54 ± 2 |
12-fold | 267 ± 3 | 0.282 ± 0.022 | −10.8 ± 1.6 | 28 ± 0.3 | 29 ± 4 |
OA-NPs | |||||
1-fold | 207 ± 1 | 0.099 ± 0.010 | −12.6 ± 1.8 | 28.1 ± 0.1 | 14 ± 1 |
4-fold | 222 ± 1 | 0.143 ± 0.012 | −13.1 ± 1.4 | 26.0 ± 0.2 | 17 ± 2 |
8-fold | 245 ± 2 | 0.116 ± 0.021 | −10.9 ± 1.5 | 18.5 ± 0.2 | 16 ± 3 |
12-fold | 215 ± 2 | 0.210 ± 0.029 | −11.8 ± 2.1 | 21.3 ± 0.3 | 13 ± 3 |
TLA-NPs | |||||
1-fold | 243 ± 3 | 0.212 ± 0.020 | −10.8 ± 3.8 | 8.1 ± 0.4 | 86 ± 2 |
4-fold | 222 ± 1 | 0.243 ± 0.012 | −12.8 ± 1.4 | 9.2 ± 0.2 | 88 ± 2 |
8-fold | 287 ± 3 | 0.235 ± 0.031 | −14.6 ± 1.8 | 8.0 ± 0.3 | 81 ± 1 |
12-fold | 227 ± 3 | 0.208 ± 0.019 | −11.2 ± 2.6 | 8.9 ± 0.3 | 93 ± 4 |
TOA-NPs | |||||
1-fold | 282 ± 2 | 0.289 ± 0.038 | −7.2 ± 1.1 | 18.7 ± 0.2 | 83 ± 3 |
4-fold | 224 ± 1 | 0.227 ± 0.012 | −17.6 ± 1.4 | 13.4 ± 0.2 | 77 ± 3 |
8-fold | 267 ± 3 | 0.282 ± 0.025 | −14.5 ± 1.0 | 15.4 ± 0.2 | 64 ± 2 |
12-fold | 212 ± 2 | 0.180 ± 0.015 | −10.4 ± 1.6 | 16.5 ± 0.3 | 71 ± 3 |
Media | Sample | Mathematical Model | ||||
---|---|---|---|---|---|---|
Zero Order | First Order | Higuchi | H-C 1 | Weibull | ||
pH 1.2–6.8 (gastrointestinal tract) | OA-NP | −1.4674 | 0.7613 | 0.5211 | 0.6235 | 0.9506 |
LA-NP | −0.3605 | 0.9214 | 0.6710 | 0.8276 | 0.9252 | |
TOA-NP | 0.6000 | 0.7980 | 0.7159 | 0.7696 | 0.8271 | |
TLA-NP | 0.4020 | 0.7412 | 0.7112 | 0.7780 | 0.8017 | |
pH 7.4 (blood) | OA-NP | −4.6362 | 0.6894 | −1.9383 | −2.8339 | 0.9980 |
LA-NP | −4.5278 | 0.4694 | −1.8589 | −2.6963 | 0.9971 | |
TOA-NP | −3.7303 | 0.1173 | −1.3627 | −2.2060 | 0.9946 | |
TLA-NP | −3.5261 | −0.6163 | −1.2422 | −2.3814 | 0.9896 |
Media | OA-NP | LA-NP | TOA-NP | TLA-NP |
---|---|---|---|---|
pH 1.2–6.8 | 0.418 | 1.863 | 3.270 | 2.631 |
pH 7.4 | 0.275 | 0.220 | 0.182 | 0.160 |
Test Samples | E. coli ATCC 25922 | B. cereus ATCC 10702 | S. aureus ATCC 29213 | |||
---|---|---|---|---|---|---|
MIC, µg/mL | MBC, µg/mL | MIC, µg/mL | MBC, µg/mL | MIC, µg/mL | MBC, µg/mL | |
Thymol | 15,000 | 15,000 | 937.5 | 937.5 | 937.5 | 937.5 |
OA | 15,000 | 15,000 | 937.5–468.75 | 1875 | 15,000 | 15,000 |
OA-NP | ND 1 | 15,000 | ND | 468.75 | ND | 3750 |
LA | 15,000 | 15,000 | 3750–1875 | 3750 | 15,000 | 15,000 |
LA-NP | ND | 15,000 | ND | 468.75 | ND | 15,000 |
TOA | 15,000 | 15,000 | 15,000 | 15,000 | 15,000 | 15,000 |
TOA-NP | ND | 15,000 | ND | 15,000 | ND | 15,000 |
TLA | 15,000 | 15,000 | 1875 | 1875 | 1875 | 15,000 |
TLA-NP | ND | 15,000 | ND | 468.75 | ND | 3750 |
Test Samples | Candida albicans ATCC 10231 | Aspergillus niger 37a | ||
---|---|---|---|---|
MIC, µg/mL | MBC, µg/mL | MIC, µg/mL | MBC, µg/mL | |
Thymol | 234.38 | 234.38 | 234.38 | 234.38 |
OA | 7500 | 15,000 | 937.5–468.75 | 468.75 |
OA-NP | ND 1 | 1875 | ND | 15,000 |
LA | 7500 | 15,000 | 7500 | 15,000 |
LA-NP | ND | 15,000 | ND | 468.75 |
TOA | 7500 | 15,000 | 15,000 | 15,000 |
TOA-NP | ND | 15,000 | ND | 3750 |
TLA | 468.75 | 937.5 | 234.38 | 1875 |
TLA-NP | ND | 7500 | ND | 15,000 |
Sample | IC50, µM | ||
---|---|---|---|
MCF-7 | K562 | A549 | |
Doxorubicin | 34.3 | 7.9 | 4.6 |
OA | 1390 | 731 | 487 |
OA-NP | 1263 | 694 | 349 |
LA | 796.2 | 498 | 986.3 |
LA-NP | 490 | 372 | 766.8 |
TOA | 1520 | 1328.4 | 657 |
TOA-NP | 94.5 | 112.2 | 205 |
TLA | 1103 | 1246 | 754 |
TLA-NP | 39.0 | 25.2 | 189 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokol, M.B.; Sokhraneva, V.A.; Groza, N.V.; Mollaeva, M.R.; Yabbarov, N.G.; Chirkina, M.V.; Trufanova, A.A.; Popenko, V.I.; Nikolskaya, E.D. Thymol-Modified Oleic and Linoleic Acids Encapsulated in Polymeric Nanoparticles: Enhanced Bioactivity, Stability, and Biomedical Potential. Polymers 2024, 16, 72. https://doi.org/10.3390/polym16010072
Sokol MB, Sokhraneva VA, Groza NV, Mollaeva MR, Yabbarov NG, Chirkina MV, Trufanova AA, Popenko VI, Nikolskaya ED. Thymol-Modified Oleic and Linoleic Acids Encapsulated in Polymeric Nanoparticles: Enhanced Bioactivity, Stability, and Biomedical Potential. Polymers. 2024; 16(1):72. https://doi.org/10.3390/polym16010072
Chicago/Turabian StyleSokol, Maria B., Vera A. Sokhraneva, Nataliya V. Groza, Mariia R. Mollaeva, Nikita G. Yabbarov, Margarita V. Chirkina, Anna A. Trufanova, Vladimir I. Popenko, and Elena D. Nikolskaya. 2024. "Thymol-Modified Oleic and Linoleic Acids Encapsulated in Polymeric Nanoparticles: Enhanced Bioactivity, Stability, and Biomedical Potential" Polymers 16, no. 1: 72. https://doi.org/10.3390/polym16010072
APA StyleSokol, M. B., Sokhraneva, V. A., Groza, N. V., Mollaeva, M. R., Yabbarov, N. G., Chirkina, M. V., Trufanova, A. A., Popenko, V. I., & Nikolskaya, E. D. (2024). Thymol-Modified Oleic and Linoleic Acids Encapsulated in Polymeric Nanoparticles: Enhanced Bioactivity, Stability, and Biomedical Potential. Polymers, 16(1), 72. https://doi.org/10.3390/polym16010072