Effect of a Nanocellulose Addition on the Mechanical Properties of Paper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Application of the Cellulose Nanofibrils
2.3. Mechanical Properties
2.4. Duncan’s Test
2.5. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Pre-Experiment with Kraft Pulp
3.2. Experiment with Soda Pulp
4. Conclusions
- -
- Concerning the amount of cellulose added, the modification by spraying nanocellulose on the paper appears to be the most effective. At a 3 and 5% NC content, the properties are comparable to the papers using more NC, but applied differently.
- -
- In general, it can also be observed that additions of less than 3% do not significantly affect the resulting properties, as apparently the nanocellulose fibrils are introduced into the subsieve waters of the paper machine.
- -
- When NC is added during the actual production of the paper, a positive dependence on the amount of NC added can be observed.
- -
- The application of NC using a one-layer coating is practical, even at a lower content (4.8%) of the applied NC, compared to a two-layer coating of NC (6.8%). In contrast, the coating application is not new in production. Thus, it would not be difficult to introduce this application into the production process.
- -
- In the future, it would be good to look into the composition of nanocellulose or its production, as, recently, nanofibers containing lignin in addition to cellulose have been produced, which could have a positive impact on increasing the mechanical properties.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, A.K.; Islam, M.N.; Ashaduzzaman, M.; Nazhad, M.M. Nanocellulose: Its applications, consequences and challenges in papermaking. J. Packag. Technol. Res. 2020, 4, 253–260. [Google Scholar] [CrossRef]
- Lengowski, E.C.; Júnior, E.A.B.; Kumode, M.M.N.; Carneiro, M.E.; Satyanarayana, K.G. Nanocellulose in the Paper Making. In Sustainable Polymer Composites and Nanocomposites; Inamuddin, Thomas, S., Mishra, R.K., Asiri, A.M., Eds.; Springer: Cham, Switzerland, 2019; pp. 1027–1066. [Google Scholar]
- Li, A.; Xu, D.; Luo, L.; Zhou, Y.; Yan, W.; Leng, X.; Dai, D.; Zhou, Y.; Ahmad, H.; Rao, J.; et al. Overview of nanocellulose as additives in paper processing and paper products. Nanotechnol. Rev. 2021, 10, 264–281. [Google Scholar] [CrossRef]
- Michelin, M.; Gomes, D.G.; Romani, A.; Polizeli, M.d.L.T.M.; Teixeira, J.A. Nanocellulose Production: Exploring the Enzymatic Route and Residues of Pulp and Paper Industry. Molecules 2020, 25, 3411. [Google Scholar] [CrossRef] [PubMed]
- Latifah, J.; Nurrul-Atika, M.; Sharmiza, A.; Rushdan, I. Extraction of nanofibrillated cellulose from kelempayan (neolamarckia cadamba) and its use as strength additive in papermaking. J. Trop. For. Sci. 2020, 32, 170–178. [Google Scholar] [CrossRef]
- Dinesh, G.; Kandasubramanian, B. Fabrication of tresnparent paper devices from nanocellulose fiber. Mater. Chem. Phys. 2022, 281, 125707. [Google Scholar] [CrossRef]
- Si, Y.; Lin, Q.; Zhou, F.; Qing, J.; Luo, H.; Zhang, C.; Zhang, J.; Cha, R. The interaction between nanocellulose and microorganisms for new degradable packaging: A review. Carbohydr. Polym. 2022, 295, 119899. [Google Scholar]
- Spagnuolo, L.; D’Orsi, R.; Operamolla, A. Nanocellulose for Paper and Textile Coating: The Importance of Surface Chemistry. ChemPlusChem 2022, 87, e002200204. [Google Scholar] [CrossRef]
- Schiros, T.N.; Antrobus, R.; Farías, D.; Chiu, Y.; Joseph, C.; Esdaille, S.; Sanchiricco, G.K.; Miquelon, G.; An, D.; Russell, S.T.; et al. Microbial nanocellulose biotextiles for a circular materials economy. Environ. Sci. Adv. 2022, 1, 276–284. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, H.; Xu, D.; He, Z.; Pan, X.; Gui, S.; Dai, X.; Jilong, F.; Dong, X.; Li, Y. Screening of Nanocellulose from Different Biomass Resources and Its Integration for Hydrophobic Transparent Nanopaper. Molecules 2020, 25, 227. [Google Scholar] [CrossRef]
- Deng, J.; Zhu, E.-Q.; Xu, G.-F.; Naik, N.; Murugadoss, V.; Ma, M.-G.; Guo, Z.; Shi, Z.-J. Overview of renewable polysaccharide-based composites for biodegradable food packaging applications. Green Chem. 2022, 2, 480–492. [Google Scholar] [CrossRef]
- Lim, W.-L.; Gunny, A.A.N.; Kasim, F.H.; Gopinath, S.C.B. Cellulose nanocrystal production from bleached rice straw pulp by combined alkaline and acidic deep eutectic solvents treatment: Optimization by response surface methodology. Biomass Convers. Biorefinery 2022, 12, S25–S33. [Google Scholar] [CrossRef]
- Nilsson, C. Preparation and Characterization of Nanocellulose from Wheat Bran. Master’s Thesis, Lund University, Lund, Sweden, 2017. [Google Scholar]
- Wang, L.; Zhu, X.; Chen, X.; Zhang, Y.; Yang, H.; Li, Q.; Jiang, J. Isolation and characteristic of nanocellulose from hardwood pulp via phytic acid pretreatment. Ind. Crops Prod. 2022, 182, 114921. [Google Scholar] [CrossRef]
- Chandana, A.; Mallick, S.P.; Dikshit, P.K.; Singh, B.N.; Sahi, A.K. Recent Developments in Bacterial Nanocellulose Production and its Biomedical Applications. J. Polym. Environ. 2022, 30, 4040–4067. [Google Scholar] [CrossRef]
- Babicka, M.; Woźniak, M.M.; Bartkowiak, M.; Peplińska, B.; Waliszewska, H.; Zborowska, M.; Borysiak, S.; Ratajczak, I. Miscanthus and Sorghum as sustainable biomass sources for nanocellulose production. Ind. Crops Prod. 2022, 186, 115177. [Google Scholar] [CrossRef]
- Li, P.; Zhou, M.; Jian, B.; Lei, H.; Liu, R.; Zhou, X.; Li, X.; Wang, Y.; Zhou, B. Paper material coated with soybean residue nanocellulose waterproof agent and its application in food packaging. Ind. Crops Prod. 2023, 199, 116749. [Google Scholar] [CrossRef]
- Barbash, V.A.; Yashchenko, O.V.; Gondovska, A.S.; Deykun, I.M. Preparation and characterization of nanocellulose obtained by TEMPO-mediated oxidation of organosolv pulp from reed stalks. Appl. Nanosci. 2022, 12, 835–848. [Google Scholar] [CrossRef]
- Lengowski, E.C.; Júnior, E.A.B.; Simon, L.C.; Bolzon de Muniz, G.I.; de Andrade, A.S.; Leite, A.N.; de Miranda Leite, E.L.S. Nanocellulose Coating on Kraft Paper. Coatings 2023, 13, 1705. [Google Scholar] [CrossRef]
- ISO 5269-2:1998; Pulps—Preparation of Laboratory Sheets for Physical Testing—Part 2: Rapid-Kothen Method. Sampling and Preparing Wood for Analysis. Technical Association of the Pulp and Paper Industry. International Organization for Standardization: London, UK, 1998.
- TAPPI T 402 sp-08; Standard Conditioning and Testing Atmospheres for Paper, Board, Pulp Handsheets, and Related Products. Technical Association of the Pulp and Paper Industry. Tappi Tappi Press Atlanta: Atlanta, GA, USA, 2013.
- ČSN EN ISO 1924-2 (500340); Paper and Board—Determination of tensile Properties. Czech Standard Institute: Prague, Czech Republic, 2009.
- ISO 2758:2014; Paper—Determination of Bursting Strength. International Organization for Standardization: Geneve, Switzerland, 2014.
- ISO 5636-5:2013; Paper and Board—Determination of air Permeance (Medium Range)—Part 5: Gurley Method. International Organization for Standardization: Geneve, Switzerland, 2019.
- Dafaalah, B.A. Duncan’s Multiple Range Test (DMRT). 2019. Available online: https://www.researchgate.net/publication/335602087_12_Duncan's_multiple_range_test_DMRT (accessed on 23 November 2023).
- Bambach, M.R. Compression strength of natural fibre composite plates and section of flax, jute and hemp. Thin-Walled Struct. 2017, 119, 103–113. [Google Scholar] [CrossRef]
- Lavoine, N.; Desloges, I.; Khelifi, B.; Bras, J. Impact of different coating processes of microfibrillated cellulose on the mechanical and barrier properties of paper. J. Mater. Sci. 2014, 49, 2879–2893. [Google Scholar] [CrossRef]
- Sharma, M.; Aguado, R.; Murtinho, D.; Valente, A.J.M.; De Sousa, A.P.M.; Ferreira, P.J.T. A review on cationic starch and nanocellulose as paper coating components. Int. J. Biol. Macromol. 2020, 162, 578–598. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Cao, J.; Jiang, W. Improving the performance of edible food packaging films by using nanocellulose as an additive. Int. J. Biol. Macromol. 2021, 166, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Amara, C.; Mahdi, A.E.; Medimagh, R.; Khwaldia, K. Nanocellulose-based composites for packaging applications. Curr. Opin. Green Sustain. Chem. 2021, 31, 100512. [Google Scholar] [CrossRef]
- Rahman, S.; Uddin, A.J. Unusable cotton spinning mill waste: A viable source of raw material in paper making. Heliyon 2022, 8, e10055. [Google Scholar] [CrossRef] [PubMed]
- Abou-Yousef, H.; El-Sakhawy, M.; Kamel, S. Multi-stage Bagasse pulping by using alkali/Caro’s acid treatment. Ind. Crops Prod. 2005, 21, 337–341. [Google Scholar] [CrossRef]
- Nagpal, R.; Bhardwaj, N.K.; Mishra, O.P.; Mahajan, R. Cleaner bio-pulping approach for the production of better strength rice straw paper. J. Clean. Prod. 2021, 318, 128539. [Google Scholar] [CrossRef]
- Fathi, G.; Kasmani, J.E. Prospects for the Preparation of Paper Money from Cotton Fibers and Bleached Softwood Kraft Pulp Fibers with Nanofibrillated Cellulose. BioResources 2019, 14, 2798–2811. [Google Scholar] [CrossRef]
- Navaee-Ardeh, S.; Mohammadi-Rovshandeh, J.; Pourjoozi, M. Influence of rice straw cooking conditions in the soda-ethanol-water pulping on the mechanical properties of produced paper sheets. Bioresour. Technol. 2004, 92, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Ai, J.; Tschirner, U. Fiber length and pulping characteristics of switchgrass, alfalfa stems, hybrid poplar and willow biomasses. Bioresour. Technol. 2010, 101, 215–221. [Google Scholar] [CrossRef]
- Hart, P.W. Wheat straw as an alternative pulp fiber. Tappi J. 2020, 19, 41–52. [Google Scholar] [CrossRef]
- Tripathi, S.K.; Bhardwaj, N.K.; Ghatak, H.R. Effect of introduction ozone prior to elemental chlorine free bleaching of wheat straw pulp on pulp, paper and effluent properties. Cellul. Chem. Technol. 2019, 53, 105–112. [Google Scholar] [CrossRef]
Type of Nanofibrils | Description | Dimensions | Group | Forms | |
---|---|---|---|---|---|
Width | Length | ||||
CNF–Slurry–SMC | Cellulose nanofibrils prepared using supermassive colloid | 30–80 nm | up to several hundred μm | hydroxyl | 1–20% solids in the solution |
TEMPO-Oxided | Cellulose nanofibril slurry | 20–50 nm | 0.5–80 μm | carboxyl, hydroxyl | 0.5–3% solids in the solution |
Materials/Strength Properties | Amount of Nanocellulose | BI, kPa | G, s | BL, km | ε, % | TI, Nm∙g−1 | TEAI, J∙g−1 |
---|---|---|---|---|---|---|---|
Kraft bleached pulp, κ = 19.2 | 0% | 69.48 (5.16) | 0.58 (0.04) | 0.85 (0.03) | 1.29 (0.07) | 8.37 (0.25) | 0.08 (0.01) |
0.5% | 80.98 (2.96) | 0.62 (0.04) | 1.03 (0.04) | 1.50 (0.20) | 10.07 (0.40) | 0.11 (0.02) | |
1% | 82.32 (5.25) | 0.60 (0.00) | 0.93 (0.06) | 1.57 (0.17) | 9.14 (0.60) | 0.11 (0.02) | |
3% | 101.30 (3.72) | 0.52 (0.04) | 0.86 (0.03) | 2.88 (0.19) | 8.48 (0.28) | 0.19 (0.02) | |
Kraft unbleached pulp, κ = 24.9 | 0% | 175.86 (2.72) | 1.06 (0.05) | 2.71 (0.10) | 2.40 (0.12) | 26.57 (1.03) | 0.44 (0.03) |
0.5% | 183.08 (7.05) | 1.02 (0.04) | 2.45 (0.15) | 2.62 (0.17) | 25.58 (1.36) | 0.46 (0.06) | |
1% | 219.06 (8.51) | 1.92 (0.11) | 3.05 (0.23) | 2.86 (0.21) | 29.71 (2.19) | 0.61 (0.09) | |
3% | 301.32 (8.57) | 6.26 (0.05) | 4.41 (0.12) | 3.28 (0.13) | 42.87 (1.10) | 0.95 (0.08) | |
Kraft unbleached pulp, κ = 49.7 | 0% | 35.80 (1.54) | 0.36 (0.05) | 1.85 (0.14) | 1.34 (0.15) | 11.68 (0.92) | 0.07 (0.03) |
0.5% | 49.90 (0.94) | 0.50 (0.07) | 2.03 (0.02) | 1.43 (0.12) | 19.96 (0.19) | 0.20 (0.02) | |
1% | 102.38 (7.72) | 1.22 (0.37) | 2.37 (0.05) | 1.64 (0.10) | 23.53 (0.30) | 0.02 (0.01) | |
3% | 168.60 (12.25) | 2.80 (0.14) | 2.78 (0.11) | 2.13 (0.15) | 27.23 (0.98) | 0.41 (0.05) |
Application | ε, % Mean | 1st Group | 2nd Group | BL, km Mean | 1st Group | 2nd Group | 3rd Group |
---|---|---|---|---|---|---|---|
Reference | 1.540 | **** | 1.236 | **** | |||
0.5% NC into the mass | 1.400 | **** | 2.092 | **** | |||
1% NC into the mass | 1.800 | **** | 1.878 | **** | |||
3% NC into the mass | 1.700 | **** | 2.110 | **** | |||
5% NC into the mass | 1.880 | **** | 2.876 | **** | |||
Spraying (3.5% NC) | 1.520 | **** | 2.786 | **** | |||
Coating—1 layer (4.8% NC) | 2.440 | **** | 2.932 | **** | |||
Coating—2 layers (6.8% NC) | 2.720 | **** | 2.924 | **** |
Application | TI, Nm·g−1 Mean | 1st Group | 2nd Group | 3rd Group | TEAI, J·g−1 Mean | 1st Group | 2nd Group | 3rd Group | 4th Group |
---|---|---|---|---|---|---|---|---|---|
Reference | 12.144 | **** | 0.195 | **** | |||||
0.5% nanocellulose | 20.505 | **** | 0.233 | **** | |||||
1% nanocellulose | 18.423 | **** | 0.256 | **** | **** | ||||
3% nanocellulose | 20.701 | **** | 0.260 | **** | |||||
5% nanocellulose | 28.201 | **** | 0.318 | **** | |||||
Spraying (3.5% NC) | 27.326 | **** | 0.316 | **** | |||||
Coating—1 layer (4.8% NC) | 28.750 | **** | 0.333 | **** | |||||
Coating—2 layers (6.8% NC) | 28.681 | **** | 0.338 | **** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bárta, J.; Hájková, K.; Sikora, A.; Jurczyková, T.; Popelková, D.; Kalous, P. Effect of a Nanocellulose Addition on the Mechanical Properties of Paper. Polymers 2024, 16, 73. https://doi.org/10.3390/polym16010073
Bárta J, Hájková K, Sikora A, Jurczyková T, Popelková D, Kalous P. Effect of a Nanocellulose Addition on the Mechanical Properties of Paper. Polymers. 2024; 16(1):73. https://doi.org/10.3390/polym16010073
Chicago/Turabian StyleBárta, Josef, Kateřina Hájková, Adam Sikora, Tereza Jurczyková, Daniela Popelková, and Petr Kalous. 2024. "Effect of a Nanocellulose Addition on the Mechanical Properties of Paper" Polymers 16, no. 1: 73. https://doi.org/10.3390/polym16010073
APA StyleBárta, J., Hájková, K., Sikora, A., Jurczyková, T., Popelková, D., & Kalous, P. (2024). Effect of a Nanocellulose Addition on the Mechanical Properties of Paper. Polymers, 16(1), 73. https://doi.org/10.3390/polym16010073