An Electronic Structure Investigation of PEDOT with AlCl4− Anions—A Promising Redox Combination for Energy Storage Applications
Abstract
:1. Introduction
1.1. Structure and Electronic Properties of PEDOT and the Bipolaron Model
1.2. Progress from Density Functional Theory
2. Methodology
3. Results and Discussion
3.1. Functional Comparison
3.2. Limits of Computational Approach and Choice of Functional
3.3. Bond Length and Partial Charge Analysis
3.4. Energy Level Structure of Neutral and Oxidised 6- and 12-PEDOT with Anions
3.5. Effect of Coulombic Repulsion between Anions on Conductivity
3.6. Study of the Anion in Isolation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, W.; Zhao, T.; Xi, J.; Wang, D.; Shuai, Z. Unravelling Doping Effects on PEDOT at the Molecular Level: From Geometry to Thermoelectric Transport Properties. J. Am. Chem. Soc. 2015, 137, 12929–12938. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-G.; Brédas, J.-L. Electronic Evolution of Poly(3,4-ethylenedioxythiophene) (PEDOT): From the Isolated Chain to the Pristine and Heavily Doped Crystals. J. Am. Chem. Soc. 2008, 130, 16880–16889. [Google Scholar] [CrossRef] [PubMed]
- Gueye, M.N.; Carella, A.; Massonnet, N.; Yvenou, E.; Brenet, S.; Faure-Vincent, J.; Pouget, S.; Rieutord, F.; Okuno, H.; Benayad, A.; et al. Structure and Dopant Engineering in PEDOT Thin Films: Practical Tools for a Dramatic Conductivity Enhancement. J. Chem. Mater. 2016, 28, 3462–3468. [Google Scholar] [CrossRef]
- Gueye, M.N.; Carella, A.; Faure-Vincent, J.; Demadrille, R.; Simonato, J.-P. Progress in understanding structure and transport properties of PEDOT-based materials: A critical review. Prog. Mater. Sci. 2020, 108, 100616. [Google Scholar] [CrossRef]
- Le, T.H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9, 150. [Google Scholar] [CrossRef]
- Zozoulenko, I.; Singh, A.; Singh, S.K.; Gueskine, V.; Crispin, X.; Berggren, M. Polarons, Bipolarons, And Absorption Spectroscopy of PEDOT. ACS Appl. Polym. Mater. 2018, 1, 83–94. [Google Scholar] [CrossRef]
- Hudak, N.S. Chloroaluminate-Doped Conducting Polymers as Positive Electrodes in Rechargeable Aluminum Batteries. J. Phys. Chem. C 2014, 118, 5203–5215. [Google Scholar] [CrossRef]
- Ando, K.; Watanabe, S.; Mooser, S.; Saitoh, E.; Sirringhaus, H. Solution-processed organic spin-charge converter. Nat. Mater. 2013, 12, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Schoetz, T.; Craig, B.; de Leon, C.P.; Bund, A.; Ueda, M.; Low, C.T.J. Aluminium-poly(3,4-ethylenedioxythiophene) rechargeable battery with ionic liquid electrolyte. J. Energy Storage 2020, 28, 101176–101185. [Google Scholar] [CrossRef]
- Zamoshchik, N.; Salzner, U.; Bendikov, M. Nature of Charge Carriers in Long Doped Oligothiophenes: The Effect of Counterions. J. Phys. Chem. C 2008, 112, 8408–8418. [Google Scholar] [CrossRef]
- Salzner, U. Modelling photoelectron spectra of conjugated oligomers with time dependent density functional theory. J. Phys. Chem. A 2010, 114, 10997–11007. [Google Scholar] [CrossRef] [PubMed]
- Salzner, U.; Aydin, A. Improved Prediction of Properties of pi-Conjugated Oligomers with Range-Separated Hybrid Density Functionals. J. Chem. Theory Comput. 2011, 7, 2568–2583. [Google Scholar] [CrossRef] [PubMed]
- Modarresi, M.; Franco-Gonzalez, J.F.; Zozoulenko, I. Morphology and ion diffusion in PEDOT:Tos. A coarse grained molecular dynamics simulation. Phys. Chem. Chem. Phys. 2018, 20, 17188–17198. [Google Scholar] [CrossRef] [PubMed]
- Salzner, U. Electronic structure of conducting organic polymers: Insights from time-dependent density functional theory. Comput. Mol. Sci. 2014, 4, 601–622. [Google Scholar] [CrossRef]
- Craig, B.; Skylaris, C.-K.; de Leon, C.P.; Kramer, D. Ab initio molecular dynamics study of AlCl4− adsorption on PEDOT conducting polymer chains. Energy Rep. 2021, 7, 111–119. [Google Scholar] [CrossRef]
- Craig, B.; Skylaris, C.-K.; Schoetz, T.; de Leon, C.P. A computational chemistry approach to modelling conducting polymers in ionic liquids for next generation batteries. Energy Rep. 2020, 6, 198–208. [Google Scholar] [CrossRef]
- Heinze, J.; Frontana-Uribe, B.; Ludwigs, S. Electrochemistry of Conducting Polymers-Persistent Models and New Concepts. Chem. Rev. 2010, 110, 4724–4771. [Google Scholar] [CrossRef] [PubMed]
- Brédas, J.; Street, G. Polarons, Bipolarons, and Solitons in Conducting Polymers. ACC Chem. Res. 1985, 18, 309–315. [Google Scholar] [CrossRef]
- Fisher, A.J.; Hayes, W.; Wallace, D.S. Polarons and solitons. J. Phys. Condens. Matter. 1989, 1, 5567–5593. [Google Scholar] [CrossRef]
- Fletcher, S. Contribution to the theory of conducting-polymer electrodes in electrolyte solutions. J. Chem. Soc. Faraday Trans. 1993, 89, 311–320. [Google Scholar] [CrossRef]
- Bubnova, O.; Khan, Z.U.; Wang, H.; Braun, S.; Evans, D.R.; Fabretto, M.; Hojati-Talemi, P.; Dagnelund, D.; Arlin, J.-B.; Geerts, Y.H.; et al. Semi-metallic polymers. Nat. Mater. 2014, 13, 190–194. [Google Scholar] [CrossRef]
- Zykwinska, A.; Domagala, W.; Czardybon, A.; Pilawa, B.; Lapkowski, M. In situ EPR spectroelectrochemical studies of paramagnetic centres in poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4-butylenedioxythiophene) (PBuDOT) films. Chem. Phys. 2003, 292, 31–45. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Das, B.; Banerji, P.; Banerjee, D.; Bhattacharya, R. Bipolaron saturation in polypyrrole. Phys. Rev. B 1999, 60, 7691–7694. [Google Scholar] [CrossRef]
- Castiglioni, C.; Zerbi, G.; Gussoni, M. Peierls distortion in trans polyacetylene: Evidence from infrared intensities. Solid State Commun. 1985, 56, 863–866. [Google Scholar] [CrossRef]
- Heeger, A.J.; Kivelson, S.; Schrieffer, J.R.; Su, W.P. Solitons in conducting polymers. Rev. Mod. Phys. 1988, 60, 781–850. [Google Scholar] [CrossRef]
- Heeger, A. Charge Storage in Conducting Polymers: Solitons, Polarons and Bipolarons. Polym. J. 1985, 17, 201–208. [Google Scholar] [CrossRef]
- Muñoz, W.A.; Singh, S.K.; Franco-Gonzalez, J.F.; Linares, M.; Crispin, X.; Zozoulenko, I.V. Insulator to semimetallic transition in conducting polymers. Phys. Rev. B 2016, 94, 205202. [Google Scholar] [CrossRef]
- Furukawa, Y. Electronic Absorption and Vibrational Spectroscopies of Conjugated Conducting Polymers. J. Phys. Chem. 1996, 100, 15644–15653. [Google Scholar] [CrossRef]
- Brédas, J.L.; Scott, J.C.; Yakushi, K.; Street, G.B. Polarons and bipolarons in polypyrrole: Evolution of the band structure and optical spectrum upon doping. Phys. Rev. B 1984, 30, 1023–1025. [Google Scholar] [CrossRef]
- Stafstrom, S.; Bredas, J.L. Evolution of the electronic structure of polyacetylene and polythiophene as a function of doping level and lattice conformation. Phys. Rev. B Condens. Matter. 1988, 38, 4180–4191. [Google Scholar] [CrossRef]
- Mott, N.F. Conduction in non-crystalline materials. Philos. Mag. A J. Theor. Exp. Appl. Phys. 1969, 19, 835–852. [Google Scholar] [CrossRef]
- Sheng, P. Fluctuation-induced tunneling conduction in disordered materials. Phys. Rev. B 1980, 21, 2180–2195. [Google Scholar] [CrossRef]
- Zuppiroli, L.; Bussac, M.N.; Paschen, S.; Chauvet, O.; Forro, L. Hopping in disordered conducting polymers. Phys. Rev. B Condens. Matter. 1994, 50, 5196–5203. [Google Scholar] [CrossRef] [PubMed]
- Ofer, D.; Crooks, R.; Wrighton, M. Potential Dependence of the Conductivity of Highly Oxidized Polythiophenes, Polypyrroles, and Polyaniline: Finite Windows of High Conductivity. J. Am. Chem. Soc. 1990, 112, 7869–7879. [Google Scholar] [CrossRef]
- John, H.; Bauer, R.; Espindola, P.; Sonar, P.; Heinze, J.; Mullen, K. 3D-hybrid networks with controllable electrical conductivity from the electrochemical deposition of terthiophene-functionalized polyphenylene dendrimers. Angew. Chem. Int. Ed. Engl. 2005, 44, 2447–2451. [Google Scholar] [CrossRef]
- Torrance, J. The Difference between Metallic and Insulating Salts of Tetracyanoquinodimethane (TCNQ): How to Design an Organic Metal. ACC Chem. Res. 1977, 12, 79–86. [Google Scholar] [CrossRef]
- Stöcker, T.; Köhler, A.; Moos, R. Why does the electrical conductivity in PEDOT:PSS decrease with PSS content? A study combining thermoelectric measurements with impedance spectroscopy. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 976–983. [Google Scholar] [CrossRef]
- Bubnova, O.; Khan, Z.U.; Malti, A.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 2011, 10, 429–433. [Google Scholar] [CrossRef]
- Wei, Q.; Mukaida, M.; Kirihara, K.; Naitoh, Y.; Ishida, T. Photoinduced Dedoping of Conducting Polymers: An Approach to Precise Control of the Carrier Concentration and Understanding Transport Properties. ACS Appl. Mater. Interfaces 2016, 8, 2054–2060. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Q.; Wen, L.; Liu, W. Enhanced thermoelectric performances of flexible PEDOT:PSS film by synergistically tuning the ordering structure and oxidation state. J. Mater. 2020, 6, 119–127. [Google Scholar] [CrossRef]
- Yu, Z.; Xia, Y.; Du, D.; Ouyang, J. PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells. ACS Appl. Mater. Interfaces 2016, 8, 11629–11638. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Zhou, Z.; Gao, H.; Liang, G.; Rauber, D.; Kay, C.W.M.; Zhang, P. Effects of Cationic Species in Salts on the Electrical Conductivity of Doped PEDOT:PSS Films. ACS Appl. Polym. Mater. 2020, 3, 98–103. [Google Scholar] [CrossRef]
- Cao, G.; Cai, S.; Chen, Y.; Zhou, D.; Zhang, H.; Tian, Y. Facile synthesis of highly conductive and dispersible PEDOT particles. Polymer 2022, 252, 124952. [Google Scholar] [CrossRef]
- Cornil, J.; Beljonne, D.; Brédas, J.L. Nature of optical transitions in conjugated oligomers. I. Theoretical characterization of neutral and doped oligo(phenylenevinylene)s. J. Chem. Phys. 1995, 103, 834–841. [Google Scholar] [CrossRef]
- Heimel, G. The Optical Signature of Charges in Conjugated Polymers. ACS Cent. Sci. 2016, 2, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Zamoshchik, N.; Bendikov, M. Doped Conductive Polymers: Modeling of Polythiophene with Explicitly Used Counterions. Adv. Funct. Mater. 2008, 18, 3377–3385. [Google Scholar] [CrossRef]
- van Haare, J.A.E.H.; Havinga, E.E.; van Dongen, J.L.J.; Janssen, R.A.J.; Cornil, J.; Brédas, J.L. Redox States of Long Oligothiophenes: Two Polarons on a Single Chain. Chem.–A Eur. J. 1998, 4, 1509–1522. [Google Scholar] [CrossRef]
- Kaloni, T.P.; Giesbrecht, P.K.; Schreckenbach, G.; Freund, M.S. Polythiophene: From Fundamental Perspectives to Applications. Chem. Mater. 2017, 29, 10248–10283. [Google Scholar] [CrossRef]
- Salzner, U. Investigation of Charge Carriers in Doped Thiophene Oligomers through Theoretical Modeling of their UV/Vis Spectra. J. Phys. Chem. A 2008, 112, 5458–5466. [Google Scholar] [CrossRef]
- Sahalianov, I.; Hynynen, J.; Barlow, S.; Marder, S.R.; Muller, C.; Zozoulenko, I. UV-to-IR Absorption of Molecularly p-Doped Polythiophenes with Alkyl and Oligoether Side Chains: Experiment and Interpretation Based on Density Functional Theory. J. Phys. Chem. B 2020, 124, 11280–11293. [Google Scholar] [CrossRef]
- Massonnet, N.; Carella, A.; Jaudouin, O.; Rannou, P.; Laval, G.; Celle, C.; Simonato, J.-P. Improvement of the Seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films. J. Mater. Chem. C 2014, 2, 1278–1283. [Google Scholar] [CrossRef]
- Enengl, C.; Enengl, S.; Pluczyk, S.; Havlicek, M.; Lapkowski, M.; Neugebauer, H.; Ehrenfreund, E. Doping-Induced Absorption Bands in P3HT: Polarons and Bipolarons. Chemphyschem 2016, 17, 3836–3844. [Google Scholar] [CrossRef] [PubMed]
- Voss, M.G.; Scholes, D.T.; Challa, J.R.; Schwartz, B.J. Ultrafast transient absorption spectroscopy of doped P3HT films: Distinguishing free and trapped polarons. Faraday Discuss. 2019, 216, 339–362. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, J.; Furukawa, Y. Electronic and vibrational spectra of positive polarons and bipolarons in regioregular poly(3-hexylthiophene) doped with ferric chloride. J. Phys. Chem. B 2015, 119, 4788–4794. [Google Scholar] [CrossRef] [PubMed]
- Kalagi, S.S.; Patil, P.S. Secondary electrochemical doping level effects on polaron and bipolaron bands evolution and interband transition energy from absorbance spectra of PEDOT: PSS thin films. Synth. Met. 2016, 220, 661–666. [Google Scholar] [CrossRef]
- Hwang, J.; Schwendeman, I.; Ihas, B.C.; Clark, R.J.; Cornick, M.; Nikolou, M.; Argun, A.; Reynolds, J.R.; Tanner, D.B. In situ measurements of the optical absorption of dioxythiophene-based conjugated polymers. Phys. Rev. B 2011, 83, 195121. [Google Scholar] [CrossRef]
- Amb, C.M.; Dyer, A.L.; Reynolds, J.R. Navigating the Color Palette of Solution-Processable Electrochromic Polymers. Chem. Mater. 2010, 23, 397–415. [Google Scholar] [CrossRef]
- Rudd, S.; Franco-Gonzalez, J.F.; Singh, S.K.; Khan, Z.U.; Crispin, X.; Andreasen, J.W.; Zozoulenko, I.; Evans, D. Charge transport and structure in semimetallic polymers. J. Polym. Sci. B Polym. Phys. 2018, 56, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Takano, T.; Masunaga, H.; Fujiwara, A.; Okuzaki, H.; Sasaki, T. PEDOT Nanocrystal in Highly Conductive PEDOT:PSS Polymer Films. Macromolecules 2012, 45, 3859–3865. [Google Scholar] [CrossRef]
- Kim, D.; Franco-Gonzalez, J.F.; Zozoulenko, I. How Long are Polymer Chains in Poly(3,4-ethylenedioxythiophene):Tosylate Films? An Insight from Molecular Dynamics Simulations. J. Phys. Chem. B 2021, 125, 10324–10334. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Perdew, J.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982–9985. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Rassolov, V.A.; Pople, J.A.; Ratner, M.A.; Windus, T.L. 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 1998, 109, 1223–1229. [Google Scholar] [CrossRef]
- Grimme, S.; Hansen, A.; Brandenburg, J.G.; Bannwarth, C. Dispersion-Corrected Mean-Field Electronic Structure Methods. Chem. Rev. 2016, 116, 5105–5154. [Google Scholar] [CrossRef] [PubMed]
- Aprà, E.; Bylaska, E.J.; de Jong, W.A.; Govind, N.; Kowalski, K.; Straatsma, T.P.; Valiev, M.; van Dam, H.J.J.; Alexeev, Y.; Anchell, J.; et al. NWChem: Past, present, and future. J. Chem. Phys. 2020, 152, 184102. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.C.; Kollman, P.A. An approach to computing electrostatic charges for molecules. J. Comput. Chem. 1984, 5, 129–145. [Google Scholar] [CrossRef]
- Zheng, Z.; Egger, D.A.; Brédas, J.L.; Kronik, L.; Coropceanu, V. Effect of Solid-State Polarization on Charge-Transfer Excitations and Transport Levels at Organic Interfaces from a Screened Range-Separated Hybrid Functional. J. Phys. Chem. Lett. 2017, 8, 3277–3283. [Google Scholar] [CrossRef]
- Zade, S.; Bendikov, M. From Oligomers to Polymer: Convergence in the HOMO−LUMO Gaps of Conjugated Oligomers. Org. Lett. 2006, 8, 5243–5246. [Google Scholar] [CrossRef] [PubMed]
- Bally, T.; Hrovat, D.A.; Borden, W.T. Attempts to model neutral solitons in polyacetylene by ab initio and density functional methods. The nature of the spin distribution in polyenyl radicals. Phys. Chem. Chem. Phys. 2000, 2, 3363–3371. [Google Scholar] [CrossRef]
- Kertesz, M.; Choi, C.H.; Yang, S. Conjugated polymers and aromaticity. Chem. Rev. 2005, 105, 3448–3481. [Google Scholar] [CrossRef]
- Bryenton, K.R.; Adeleke, A.A.; Dale, S.G.; Johnson, E.R. Delocalization error: The greatest outstanding challenge in density-functional theory. WIREs Comput. Mol. Sci. 2022, 13, e1631. [Google Scholar] [CrossRef]
- Cohen, A.J.; Mori-Sánchez, P.; Yang, W. Insights into current limitations of density functional theory. Science 2008, 321, 792–794. [Google Scholar] [CrossRef] [PubMed]
- Elia, G.A.; Hasa, I.; Greco, G.; Diemant, T.; Marquardt, K.; Hoeppner, K.; Behm, R.J.; Hoell, A.; Passerini, S.; Hahn, R. Insights into the reversibility of aluminum graphite batteries. J. Mater. Chem. A 2017, 5, 9682–9690. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Craig, B.; Townsend, P.; de Leon, C.P.; Skylaris, C.-K.; Kramer, D. An Electronic Structure Investigation of PEDOT with AlCl4− Anions—A Promising Redox Combination for Energy Storage Applications. Polymers 2024, 16, 1376. https://doi.org/10.3390/polym16101376
Craig B, Townsend P, de Leon CP, Skylaris C-K, Kramer D. An Electronic Structure Investigation of PEDOT with AlCl4− Anions—A Promising Redox Combination for Energy Storage Applications. Polymers. 2024; 16(10):1376. https://doi.org/10.3390/polym16101376
Chicago/Turabian StyleCraig, Ben, Peter Townsend, Carlos Ponce de Leon, Chris-Kriton Skylaris, and Denis Kramer. 2024. "An Electronic Structure Investigation of PEDOT with AlCl4− Anions—A Promising Redox Combination for Energy Storage Applications" Polymers 16, no. 10: 1376. https://doi.org/10.3390/polym16101376
APA StyleCraig, B., Townsend, P., de Leon, C. P., Skylaris, C. -K., & Kramer, D. (2024). An Electronic Structure Investigation of PEDOT with AlCl4− Anions—A Promising Redox Combination for Energy Storage Applications. Polymers, 16(10), 1376. https://doi.org/10.3390/polym16101376