Numerical Simulation of Mold Filling of Polymeric Materials with Friction Effect during Hot Embossing Process at Micro Scale
Abstract
:1. Introduction
2. Manufacturing Process, Experimental Tests and Behavior Law
2.1. Description of HE
2.2. Differential Scanning Calorimetry (DSC)
2.3. Description of TLVP Behavior Law
2.4. Uniaxial Compression Test
2.5. Description of Simulation Approach
3. Characterization Results of PMMA and PC
3.1. Results of Compression Tests
3.2. Identification of TLVP Parameters
4. Simulation Results of the Mold Filling in HE
4.1. Effect of Imposed Displacement
4.2. Effect of Plasticity of PC
4.3. Effect of TLVP Model
4.4. Effect of Friction
4.5. Effect of Temperature
5. Experimental Validation
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
DSC | Differential scanning calorimetry |
FEM | Finite element method |
HE | Hot embossing |
PC | Polycarbonate |
PMMA | Poly (methyl methacrylate) |
TLVP | Two-layer viscoplastic model |
Notation | |
Strength coefficient | |
a, b | Constants |
c | Equilibrium stress |
D | Diameter of specimen |
Mold displacement | |
Elastic modulus | |
Ep | Elastic modulus in elastoplastic |
E(X) | Assessment function |
Ev | Elastic modulus in viscoelastic |
F | Force |
Proportion of elasticity in viscoelastic to total elasticity | |
Power law hardening | |
Initial height | |
Final height | |
Material constants | |
L | Length of specimen |
Time hardening | |
N | Number of parameters |
Work hardening exponent | |
Strain hardening exponent | |
Final cross section | |
Initial cross section | |
Tg | Glass transition temperature |
Time | |
X | Constant vector |
Calculated true stress–strain | |
Measured true stress–strain | |
Total strain | |
Strain rate | |
Elastic strain in viscoelastic | |
Elastic strain in elastoplastic | |
Elastic strain | |
Plastic strain | |
Viscous strain | |
Strain at the initial yield stress | |
Elastic strain rate | |
Plastic strain rate | |
Viscoplastic strain rate | |
Stress | |
Stress rate | |
Plastic stress | |
Viscous stress | |
Relaxation stress | |
Yield stress | |
Viscosity | |
Poisson’s ratio | |
µ | Friction coefficient |
Inverse analysis space |
References
- Li, K.; Hernández-Castro, J.A.; Morton, K.; Veres, T. Facile fabrication of flexible polymeric membranes with micro and nano apertures over large areas. Polymers 2022, 14, 4228. [Google Scholar] [CrossRef]
- Deshmukh, S.S.; Goswami, A. Hot embossing of polymers—A review. Mater. Today Proc. 2020, 26, 405–414. [Google Scholar] [CrossRef]
- Kim, J.; Zhang, T.; Zhou, P.; Guan, Q.; Xu, Y.; Sartori, J.; Linderman, L.; Mandic, V.; Cui, T. Polymer tunneling vibration sensors using hot embossing technique. Sens. Actuator A Phys. 2022, 344, 113705. [Google Scholar] [CrossRef]
- Deshmukh, S.S.; Kar, T.; Som, S.; Goswami, A. Investigation of replication accuracy of embossed micro-channel through hot embossing using laser patterned copper mold. Mater. Today Proc. 2022, 60, 2222–2229. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Gong, F.; Yang, G. In-situ observation on the real-time filling deformation of PMMA into microchannel during hot embossing. Opt. Laser Technol. 2023, 167, 109694. [Google Scholar] [CrossRef]
- Liu, C.; Li, J.M.; Liu, J.S.; Wang, L.D. Deformation behavior of solid polymer during hot embossing process. Microelectron. Eng. 2010, 87, 200–207. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Zhang, G.; Xu, B.; Zhao, Z.; Yin, T. Fabrication of polymethyl methacrylate (PMMA) hydrophilic surfaces using combined offset-tool-servo flycutting and hot embossing methods. Polymers 2023, 15, 4532. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Yu, C.H. A basic experimental study of ultrasonic assisted hot embossing process for rapid fabrication of microlens arrays. J. Micromech. Microeng. 2015, 25, 025010. [Google Scholar] [CrossRef]
- Yang, S.Y.; Huang, T.C.; Ciou, J.K.; Chan, B.D.; Loeser, J.G. CO2-assisted embossing for the fabrication of PMMA components under low temperature and with low pressure. J. Micromech. Microeng. 2008, 18, 025024. [Google Scholar] [CrossRef]
- Wu, J.T.; Chu, Y.T.; Yang, S.Y.; Li, C.C. Low-temperature embossing technique for fabrication of large-area polymeric microlens array with supercritical carbon dioxide. Microelectron. Eng. 2010, 87, 2620–2624. [Google Scholar] [CrossRef]
- Çoğun, F.; Yıldırım, E.; Sahir Arikan, M.A. Investigation on replication of microfluidic channels by hot embossing. Mater. Manuf. Process 2017, 32, 1838–1844. [Google Scholar] [CrossRef]
- Berezvai, S.; Kossa, A. Characterization of a thermoplastic foam material with the two-layer viscoplastic model. Mater. Today Proc. 2017, 4, 5749–5754. [Google Scholar] [CrossRef]
- Kichenin, J.; Dang, V.K.; Boytard, K. Finite-element simulation of a new two-dissipative mechanisms model for bulk medium-density polyethylene. J. Mater. Sci. 1996, 31, 1653–1661. [Google Scholar] [CrossRef]
- Bianca, B.S.; Marysilvia, F.C.; Ilson, P.P.; Celio, A.C.N. Application of two-layer viscoplasticity model to predict a semicrystalline polymer response under compression and microindentation. Polym. Eng. Sci. 2022, 62, 1013–1022. [Google Scholar] [CrossRef]
- Zhang, W.; Cho, C.; Xiao, Y. An effective inverse procedure for identifying viscoplastic material properties of polymer Nafion. Comput. Mater. Sci. 2014, 95, 159–165. [Google Scholar] [CrossRef]
- Solasi, R.; Zou, Y.; Huang, X.; Reifsnider, K. A time and hydration dependent viscoplastic model for polyelectrolyte membranes in fuel cells. Mech. Time-Depend Mater. 2008, 12, 15–30. [Google Scholar] [CrossRef]
- Rabhi, F.; Cheng, G.; Barriere, T.; Hocine, N.A. Influence of elastic-viscoplastic behaviour on the filling efficiency of amorphous thermoplastic polymer during the micro hot embossing process. J. Manuf. Process. 2020, 59, 487–499. [Google Scholar] [CrossRef]
- Abdel-Wahab, A.A.; Ataya, S.; Silberschmidt, V.V. Temperature-dependent mechanical behaviour of PMMA: Experimental analysis and modelling. Polym. Test. 2017, 58, 86–95. [Google Scholar] [CrossRef]
- Yun, D.; Kim, J.B. Material modeling of PMMA film for hot embossing process. Polymers 2021, 13, 3398. [Google Scholar] [CrossRef] [PubMed]
- Gomez, J.A.; Conner, G.T.; Chun, D.H.; Kim, Y.J.; Song, I.H.; You, B.H. Mold filling analysis of an alignment structure in micro hot embossing. Fibers Polym. 2014, 15, 197–1201. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, G.; Zhu, X.; Tian, Y. Analysis of the demolding forces during hot embossing. Microsyst. Technol. 2007, 13, 411–415. [Google Scholar] [CrossRef]
- Kiew, C.M.; Lin, W.J.; Teo, T.J.; Tan, J.L.; Lin, W.; Yang, G. Finite element analysis of PMMA pattern formation during hot embossing process. In Proceedings of the 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, 14–17 July 2009; pp. 314–319. [Google Scholar]
- Wang, X.; Li, W.; Chen, T. Simulation and experimental validation of the hot embossing process of poly(lactic-co-glycolic acid) microstructures. Int. J. Polym. Sci. 2015, 2015, 520512. [Google Scholar] [CrossRef]
- Mondal, P.P.; Ferreira, P.M.; Kapoor, S.G.; Bless, P. Numerical modeling, experimental investigation and optimization of a micro hot embossing process. In Proceedings of the World Congress on Micro and Nano Manufacturing WCMNM 2023, Evanston, IL, USA, 18–21 September 2023. [Google Scholar]
- Cheng, G.; Sahli, M.; Gelin, J.C.; Barriere, T. Physical modelling, numerical simulation and experimental investigation of microfluidic devices with amorphous thermoplastic polymers using a hot embossing process. J. Mater. Process. Technol. 2016, 229, 36–53. [Google Scholar] [CrossRef]
- Song, P.; Trivedi, A.R.; Siviour, C.R. Mechanical response of four polycarbonates at a wide range of strain rates and temperatures. Polym. Test. 2023, 121, 107986. [Google Scholar] [CrossRef]
- Melentiev, R.; Lubineau, G. Large-scale hot embossing of 1 µm high-aspect-ratio textures on ABS polymer. CIRP J. Manuf. Sci. Technol. 2022, 38, 340–349. [Google Scholar] [CrossRef]
- Toosi, S.F.; Moradi, S.; Ebrahimi, M.; Hatzikiriakos, S.G. Microfabrication of polymeric surfaces with extreme wettability using hot embossing. Appl. Surf. Sci. 2016, 378, 426–434. [Google Scholar] [CrossRef]
- Palacios-Cuesta, M.; Vasiev, I.; Gadegaard, N.; Rodríguez-Hernandez, J.; García, O. Direct micrometer patterning and functionalization of polymer blend surfaces by using hot embossing. Eur. Polym. J. 2014, 59, 333–340. [Google Scholar] [CrossRef]
- Tan, N.Y.J.; Zhang, X.; Neo, D.W.K.; Huang, R.; Liu, K.; Kumar, A.S. A review of recent advances in fabrication of optical Fresnel lenses. J. Manuf. Process. 2021, 71, 113–133. [Google Scholar] [CrossRef]
- Jiang, K.; Li, K.; Xu, G.; Gong, F.; Wu, X.; Diao, D.; Zhu, L. A novel and flexible processing for hot embossing of glass micro fluidic channels. Ceram. Int. 2021, 47, 1447–1455. [Google Scholar] [CrossRef]
- Jaishree; Bhandari, A.; Khatri, N.; Mishra, Y.K.; Goyat, M.S. Superhydrophobic coatings by the hot embossing approach: Recent developments and state-of-art applications. Mater. Today Chem. 2023, 30, 101553. [Google Scholar] [CrossRef]
- Kossa, A.; Horvath, A.L. Powerful calibration strategy for the two-layer viscoplastic model. Polym. Test. 2021, 99, 107206. [Google Scholar] [CrossRef]
- Kang, J.; Becker, A.; Sun, W. Determination of elastic and viscoplastic material properties obtained from indentation tests using a combined finite element analysis and optimization approach. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 2015, 229, 175–188. [Google Scholar] [CrossRef]
- Federico, C.E.; Bouvard, J.L.; Combeaud, C.; Billon, N. Modelling strain rate and temperature dependent mechanical response of PMMAs at large deformation from below to above Tg. Polymer 2020, 202, 122710. [Google Scholar] [CrossRef]
- Tang, Z.; Fujimoto, K.; Okazaki, S. A comparison of the brittle PMMA with the ductile PC on the elasticity and yielding from a molecular dynamic’s perspective. Polymer 2021, 226, 123809. [Google Scholar] [CrossRef]
- Al-Haik, M.S.; Garmestani, H.; Savran, A. Explicit and implicit viscoplastic models for polymeric composite. Int. J. Plast. 2004, 20, 1875–1907. [Google Scholar] [CrossRef]
- Nuño, N.; Groppetti, R.; Senin, N. Static coefficient of friction between stainless steel and PMMA used in cemented hip and knee implants. Clin. Biomech. 2006, 21, 956–962. [Google Scholar] [CrossRef] [PubMed]
Polymer | Transition Interval (°C) | Tg (°C) |
---|---|---|
PMMA | 112–117 | 114 ± 1 |
PC | 137–144 | 140 ± 1 |
Polymer | Tg + 20 °C | Tg + 30 °C | ||||
---|---|---|---|---|---|---|
E (MPa) ±0.005 | (MPa) ±0.005 | ±0.005 | E (MPa) ±0.005 | (MPa) ±0.005 | ±0.005 | |
PMMA | 3.61 | 0.50 | 0 | 2.81 | 0.05 | 0 |
0.80 | 0.01 | 0.20 | 0.03 | |||
1.10 | 0.04 | 0.40 | 0.07 | |||
1.40 | 0.08 | 0.50 | 0.10 | |||
PC | 2.17 | 0.12 | 0 | 0.97 | 0.09 | 0 |
0.20 | 0.05 | 0.10 | 0.10 | |||
0.27 | 0.10 | 0.12 | 0.15 | |||
0.60 | 0.13 | 0.18 | 0.20 |
Strain | a | b | c (MPa) | R2 |
---|---|---|---|---|
0.06 | 0.081 | 0.1802 | 0.0010 | 0.9772 |
0.12 | 0.101 | 0.2201 | 0.0020 | 0.9830 |
0.18 | 0.153 | 0.1901 | 0.0038 | 0.9797 |
0.25 | 0.169 | 0.2301 | 0.0040 | 0.9903 |
0.33 | 0.174 | 0.2001 | 0.0050 | 0.9899 |
0.40 | 0.170 | 0.1801 | 0.0060 | 0.9944 |
Identification | PMMA | PC | |
---|---|---|---|
Parameter | Equation | ||
Ep (Pa) | (7) | 3.61 × 106 | 2.17 × 106 |
E (Pa) | (7) | 3.338 × 107 | 3.173 × 107 |
f | (8) | 0.89 | 0.93 |
A (Pa) | (16), (18) | 6.63 × 10−6 | 1.71 × 10−4 |
n2 | 0.88 | 0.70 | |
m1 | (19) | 0.84 | 0.93 |
K (Pa) | 3.338 × 107 | 3.173 × 107 | |
v | - | 0.4 | 0.37 |
Imposed Displacement (mm) | Elastic | Elastic–Viscoplastic | ||
---|---|---|---|---|
PC | PMMA | PC | PMMA | |
0.05 | 43.22% | 43.00% | 52.10% | 98.40% |
0.10 | 76.15% | 88.00% | 90.50% | 98.90% |
0.15 | 89.10% | 91.50% | 96.60% | 99.16% |
0.20 | 97.30% | 95.34% | 98.00% | 99.99% |
Polymer | With Friction | Without Friction |
---|---|---|
PMMA | 99.99% | 100% |
PC | 98.00% | 98.45% |
Imposed Displacement (mm) | Elastic | Elastic–Viscoplastic | ||
---|---|---|---|---|
Tg + 20 °C | Tg + 30 °C | Tg + 20 °C | Tg + 30 °C | |
0.05 | 43.22% | 44.12% | 52.10% | 53.00% |
0.10 | 76.15% | 77.15% | 90.50% | 91.20% |
0.15 | 89.10% | 89.96% | 96.60% | 97.90% |
0.20 | 97.30% | 97.83% | 98.00% | 98.93% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabhi, F.; Cheng, G.; Barriere, T. Numerical Simulation of Mold Filling of Polymeric Materials with Friction Effect during Hot Embossing Process at Micro Scale. Polymers 2024, 16, 1417. https://doi.org/10.3390/polym16101417
Rabhi F, Cheng G, Barriere T. Numerical Simulation of Mold Filling of Polymeric Materials with Friction Effect during Hot Embossing Process at Micro Scale. Polymers. 2024; 16(10):1417. https://doi.org/10.3390/polym16101417
Chicago/Turabian StyleRabhi, Faleh, Gang Cheng, and Thierry Barriere. 2024. "Numerical Simulation of Mold Filling of Polymeric Materials with Friction Effect during Hot Embossing Process at Micro Scale" Polymers 16, no. 10: 1417. https://doi.org/10.3390/polym16101417
APA StyleRabhi, F., Cheng, G., & Barriere, T. (2024). Numerical Simulation of Mold Filling of Polymeric Materials with Friction Effect during Hot Embossing Process at Micro Scale. Polymers, 16(10), 1417. https://doi.org/10.3390/polym16101417