Organic Nanoparticles in Progressing Cardiovascular Disease Treatment and Diagnosis
Abstract
:1. Introduction
2. Lipid Nanoparticles
2.1. Types of Lipid-Based Nanoformulations and Their Relevant Features for CVDs
2.2. Liposomes—Drug/Gene Delivery Systems
2.3. Liposomes—Imaging Tools
3. Micelles
3.1. Types of Micelle-Based Nanoformulations and Their Relevant Features for CVDs
3.2. Micelles—Drug/Gene Delivery Systems
4. Polymeric Nanoparticles
4.1. Types of Polymer-Based Nanoformulations and Their Relevant Features for CVDs
4.2. Polymeric Nanoparticles—Drug/Gene Delivery Systems
4.3. Dendrimers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADM-2 | Adrenomedullin-2 |
AMI | Acute myocardial infarction |
ASCs | Adipose-derived stem cells |
AT1R | Angiotensin II receptor type 1 |
ATP-L | ATP-liposomes |
CAD | Coronary artery disease |
CARPA | C activation related pseudoallergy |
CREKA | Cysteine-arginine-glutamic acid lysine alanine |
CSC | Cardiac stem cells |
CVDs | Cardiovascular diseases |
DDS | Drug delivery system |
Doxil | Doxorubicin |
DTPA | Diethylenetriaminepentaacetic acid |
ECP | Engineered cardiac patches |
ECS 304 | Endothelial cells |
GD | Gadolinium |
GelMA/Ppy | Gelatin methacrylate/polypyrrole |
HA | Hydroxyapatite |
HABP | 12-amino acid HA-binding peptide |
HAECs | Human aortic endothelial cells |
HCTZ | Hydrochlorothiazide |
HSRs | Hypersensitivity responses |
IGF-1 | Insulin-like growth factor-1 |
IHD | Ischemic heart disease |
KH | Krebs-Henseleit buffer |
Mel | Melatonin |
MI | Myocardial infarction |
MRI | Magnetic resonance imaging |
mTHPC | m-tetra(hydroxyphenyl)chlorin |
NADPH | Nicotinamide adenine dinucleotide phosphate |
Neu-LPs | Biomimetic liposomes |
NK | Nattokinase |
NO | Nitric oxide |
NOX2 | NADPH oxidase 2 |
NPs | Nanoparticles |
PAMAM | Poly(amidoamine) |
PAMs | Peptide amphiphile micelles |
PCSK9 | Proprotein convertase subtilisin–kexin type 9 |
PEG | Polyethylene glycol |
PEI | Poly ethylenimine |
PGA | Polyglycolic acid |
PIGF | Placental growth factor |
PLA | Polylactic acid |
PLGA | Poly lactic-co-glycolic acid |
PLGA-mPEG | Poly(lactide-co-glycolide)-monomethoxy-poly(polyethylene glycol) |
PPS | Propylene sulfide |
RAPL | Ramipril |
ROS | Reactive oxygen species |
siRNA | Small interfering ribonucleic acid |
SMC | Smooth muscle cells |
SRs | Scavenger receptors |
TATp | Transactivating transcriptional activator peptide |
t-PA | Tissue plasminogen activator |
VEGF | Vascular endothelial growth factor |
VSMCs | Vascular smooth muscle cells |
References
- Chen, Y.; Freedman, N.D.; Albert, P.S.; Huxley, R.R.; Shiels, M.S.; Withrow, D.R.; Spillane, S.; Powell-Wiley, T.M.; Berrington de González, A. Association of Cardiovascular Disease With Premature Mortality in the United States. JAMA Cardiol. 2019, 4, 1230–1238. [Google Scholar] [CrossRef]
- Khan, M.A.B.; Hashim, M.J.; Mustafa, H.; Baniyas, M.Y.; Al Suwaidi, S.K.B.M.; AlKatheeri, R.; Alblooshi, F.M.K.; Almatrooshi, M.E.A.H.; Alzaabi, M.E.H.; Al Darmaki, R.S. Global epidemiology of ischemic heart disease: Results from the global burden of disease study. Cureus 2020, 12, e9349. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Q.; Han, X.; Wang, S.; Li, P.; Ding, Y.; Zhang, T.; Zhao, J.; Chen, Y.; Liu, J.; et al. Associations of socioeconomic factors with cause-specific Mortality and burden of cardiovascular diseases: Findings from the vital registration in urban Shanghai, China, during 1974–2015. BMC Public Health 2020, 20, 1291. [Google Scholar] [CrossRef]
- Masaebi, F.; Salehi, M.; Kazemi, M.; Vahabi, N.; Azizmohammad Looha, M.; Zayeri, F. Trend analysis of disability adjusted life years due to cardiovascular diseases: Results from the global burden of disease study 2019. BMC Public Health 2021, 21, 1268. [Google Scholar] [CrossRef] [PubMed]
- Flora, G.D.; Nayak, M.K. A Brief Review of Cardiovascular Diseases, Associated Risk Factors and Current Treatment Regimes. Curr. Pharm. Des. 2019, 25, 4063–4084. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.G.; Fox, K.M.; Bullano, M.F.; Grandy, S.; the SHIELD Study Group. Atherosclerosis profile and incidence of cardiovascular events: A population-based survey. BMC Cardiovasc. Disord. 2009, 9, 46. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, K.; Song, J. Targeted Therapy in Cardiovascular Disease: A Precision Therapy Era. Front. Pharmacol. 2021, 12, 623674. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.; Amato, A.; Pucci, M.; Infusino, F.; Adamo, F.; Birtolo, L.I.; Netti, L.; Montefusco, G.; Chimenti, C.; Lavalle, C.; et al. Ischemic Heart Disease Pathophysiology Paradigms Overview: From Plaque Activation to Microvascular Dysfunction. Int. J. Mol. Sci. 2020, 21, 8118. [Google Scholar] [CrossRef]
- Hu, Q.; Fang, Z.; Ge, J.; Li, H. Nanotechnology for cardiovascular diseases. Innovation 2022, 3, 100214. [Google Scholar] [CrossRef]
- Stanner, S.; Coe, S.; Frayn, K.N. Cardiovascular Disease: Diet, Nutrition and Emerging Risk Factors; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- World Health Organization. Hearts: Technical Package for Cardiovascular Disease Management in Primary Health Care; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- George, C.E.; Ramadas, D.; Norman, G.; Mukherjee, D.; Rao, T. Barriers to cardiovascular disease risk reduction: Does physicians’ perspective matter? Indian Heart J. 2016, 68, 278–285. [Google Scholar] [CrossRef]
- Mukundan, S.; Ghaghada, K.B.; Badea, C.T.; Kao, C.-Y.; Hedlund, L.W.; Provenzale, J.M.; Johnson, G.A.; Chen, E.; Bellamkonda, R.V.; Annapragada, A. A Liposomal Nanoscale Contrast Agent for Preclinical CT in Mice. Am. J. Roentgenol. 2006, 186, 300–307. [Google Scholar] [CrossRef]
- Gupta, P.; Garcia, E.; Sarkar, A.; Kapoor, S.; Rafiq, K.; Chand, H.S.; Jayant, R.D. Nanoparticle Based Treatment for Cardiovascular Diseases. Cardiovasc. Hematol. Disord. Drug Targets 2019, 19, 33–44. [Google Scholar] [CrossRef]
- Flores, A.M.; Ye, J.; Jarr, K.-U.; Hosseini-Nassab, N.; Smith, B.R.; Leeper, N.J. Nanoparticle Therapy for Vascular Diseases. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 635–646. [Google Scholar] [CrossRef]
- Murthy, S.K. Nanoparticles in modern medicine: State of the art and future challenges. Int. J. Nanomed. 2007, 2, 129–141. [Google Scholar]
- Salem, S.S.; Hammad, E.N.; Mohamed, A.A.; El-Dougdoug, W. A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Res. Appl. Chem 2023, 13, 41. [Google Scholar]
- Evers, M.J.W.; Du, W.; Yang, Q.; Kooijmans, S.A.A.; Vink, A.; van Steenbergen, M.; Vader, P.; de Jager, S.C.A.; Fuchs, S.A.; Mastrobattista, E.; et al. Delivery of modified mRNA to damaged myocardium by systemic administration of lipid nanoparticles. J. Control. Release 2022, 343, 207–216. [Google Scholar] [CrossRef]
- Fan, C.; Joshi, J.; Li, F.; Xu, B.; Khan, M.; Yang, J.; Zhu, W. Nanoparticle-Mediated Drug Delivery for Treatment of Ischemic Heart Disease. Front. Bioeng. Biotechnol. 2020, 8, 687. [Google Scholar] [CrossRef]
- Chen, H.-A.; Ma, Y.-H.; Hsu, T.-Y.; Chen, J.-P. Preparation of Peptide and Recombinant Tissue Plasminogen Activator Conjugated Poly(Lactic-Co-Glycolic Acid) (PLGA) Magnetic Nanoparticles for Dual Targeted Thrombolytic Therapy. Int. J. Mol. Sci. 2020, 21, 2920. [Google Scholar] [CrossRef]
- Chopra, H.; Bibi, S.; Mishra, A.K.; Tirth, V.; Yerramsetty, S.V.; Murali, S.V.; Ahmad, S.U.; Mohanta, Y.K.; Attia, M.S.; Algahtani, A.; et al. Nanomaterials: A Promising Therapeutic Approach for Cardiovascular Diseases. J. Nanomater. 2022, 2022, 4155729. [Google Scholar] [CrossRef]
- Shen, M.; Wang, Y.; Hu, F.; Lv, L.; Chen, K.; Xing, G. Thrombolytic Agents: Nanocarriers in Targeted Release. Molecules 2021, 26, 6776. [Google Scholar] [CrossRef]
- Yu, H.; Palazzolo, J.S.; Zhou, J.; Hu, Y.; Niego, B.; Pan, S.; Ju, Y.; Wang, T.Y.; Lin, Z.; Hagemeyer, C.E.; et al. Bioresponsive Polyphenol-Based Nanoparticles as Thrombolytic Drug Carriers. ACS Appl. Mater. Interfaces 2022, 14, 3740–3751. [Google Scholar] [CrossRef]
- Liu, H.; Pietersz, G.; Peter, K.; Wang, X. Nanobiotechnology approaches for cardiovascular diseases: Site-specific targeting of drugs and nanoparticles for atherothrombosis. J. Nanobiotechnology 2022, 20, 75. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.R.; Edelman, E.R. Nanomedicines for cardiovascular disease. Nat. Cardiovasc. Res. 2023, 2, 351–367. [Google Scholar] [CrossRef]
- Devries, S. Chapter 26—Coronary Artery Disease. In Integrative Medicine, 4th ed.; Rakel, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 253–263.e252. [Google Scholar]
- Niculescu, A.-G.; Grumezescu, A.M. Polymer-Based Nanosystems—A Versatile Delivery Approach. Materials 2021, 14, 6812. [Google Scholar] [CrossRef]
- Kumar, R. Chapter 8—Lipid-Based Nanoparticles for Drug-Delivery Systems. In Nanocarriers for Drug Delivery; Mohapatra, S.S., Ranjan, S., Dasgupta, N., Mishra, R.K., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 249–284. [Google Scholar]
- Baccile, N.; Cuvier, A.-S.; Prévost, S.; Stevens, C.V.; Delbeke, E.; Berton, J.; Soetaert, W.; Van Bogaert, I.N.A.; Roelants, S. Self-Assembly Mechanism of pH-Responsive Glycolipids: Micelles, Fibers, Vesicles, and Bilayers. Langmuir 2016, 32, 10881–10894. [Google Scholar] [CrossRef] [PubMed]
- Labonia, C.; Estape Senti, M.; Brans, M.; Snijders, C.; Sluijter, J.P.G.; Vader, P. Modified mRNA delivery to the heart using Lipid Nanoparticles. Cardiovasc. Res. 2022, 118, cvac066.083. [Google Scholar] [CrossRef]
- Bitounis, D.; Fanciullino, R.; Iliadis, A.; Ciccolini, J. Optimizing druggability through liposomal formulations: New approaches to an old concept. Int. Sch. Res. Not. 2012, 2012, 738432. [Google Scholar] [CrossRef]
- Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomed. 2015, 10, 975–999. [Google Scholar] [CrossRef]
- Xu, H.; Li, S.; Liu, Y.-S. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct. Target. Ther. 2022, 7, 231. [Google Scholar] [CrossRef]
- Mulder, W.J.; Strijkers, G.J.; van Tilborg, G.A.; Griffioen, A.W.; Nicolay, K. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed. 2006, 19, 142–164. [Google Scholar] [CrossRef]
- Cruz-Samperio, R.; Hicks, C.L.; Scott, A.; Gispert Contamina, I.; Elani, Y.; Richardson, R.J.; Perriman, A.W. Modular Bioorthogonal Lipid Nanoparticle Modification Platforms for Cardiac Homing. J. Am. Chem. Soc. 2023, 145, 22659–22670. [Google Scholar] [CrossRef]
- Paulis, L.E.; Geelen, T.; Kuhlmann, M.T.; Coolen, B.F.; Schäfers, M.; Nicolay, K.; Strijkers, G.J. Distribution of lipid-based nanoparticles to infarcted myocardium with potential application for MRI-monitored drug delivery. J. Control. Release 2012, 162, 276–285. [Google Scholar] [CrossRef]
- Shade, C.W. Liposomes as Advanced Delivery Systems for Nutraceuticals. Integr. Med. 2016, 15, 33–36. [Google Scholar]
- Gök Yurttaş, A.; Gökduman, K.; Hekim, N. Liposomes loaded with activatable disulfide bridged photosensitizer: Towards targeted and effective photodynamic therapy on breast cancer cells. Biointerface Res. Appl. Chem. 2022, 12, 304–325. [Google Scholar]
- Mukhamadiyarov, R.A.; Senokosova, E.A.; Krutitsky, S.S.; Voevoda, D.V.; Pyshnaya, I.A.; Ivanov, V.V.; Lewis, M.J.; Khaliulin, I. Size-Dependent Ability of Liposomes to Accumulate in the Ischemic Myocardium and Protect the Heart. J. Cardiovasc. Pharmacol. 2018, 72. [Google Scholar] [CrossRef]
- Bowey, K.; Md, J.-F.; Tabrizian, M. Liposome technology for cardiovascular disease treatment and diagnosis. Expert Opin. Drug Deliv. 2012, 9, 249–265. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.; Guo, J.; Huang, Q. Liposomes for Tumor Targeted Therapy: A Review. Int. J. Mol. Sci. 2023, 24, 2643. [Google Scholar] [CrossRef]
- Mitragotri, S.; Patrick, S. Organic nanoparticles for drug delivery and imaging. MRS Bull. 2014, 39, 219–223. [Google Scholar] [CrossRef]
- Barenholz, Y.C. Doxil®—The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134. [Google Scholar] [CrossRef]
- Geng, Y.A.N.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D.E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2007, 2, 249–255. [Google Scholar] [CrossRef]
- Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al Bawab, A.; Alshaer, W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022, 8, e09394. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Yang, H.; Zhao, M.; Liu, Y.; Zhao, R.; Li, Z.; Sun, M. PEG-modified nano liposomes co-deliver Apigenin and RAGE-siRNA to protect myocardial ischemia injury. Int. J. Pharm. 2024, 649, 123673. [Google Scholar] [CrossRef]
- Levchenko, T.S.; Hartner, W.C.; Torchilin, V.P. Liposomes in diagnosis and treatment of cardiovascular disorders. Methodist DeBakey Cardiovasc. J. 2012, 8, 36–41. [Google Scholar] [CrossRef]
- Wan, J.; Yang, J.; Lei, W.; Xiao, Z.; Zhou, P.; Zheng, S.; Zhu, P. Anti-Oxidative, Anti-Apoptotic, and M2 Polarized DSPC Liposome Nanoparticles for Selective Treatment of Atherosclerosis. Int. J. Nanomed. 2023, 18, 579–594. [Google Scholar] [CrossRef]
- Eloy, J.O.; Petrilli, R.; Trevizan, L.N.F.; Chorilli, M. Immunoliposomes: A review on functionalization strategies and targets for drug delivery. Colloids Surf. B: Biointerfaces 2017, 159, 454–467. [Google Scholar] [CrossRef]
- Skourtis, D.; Stavroulaki, D.; Athanasiou, V.; Fragouli, P.G.; Iatrou, H. Nanostructured polymeric, liposomal and other materials to control the drug delivery for cardiovascular diseases. Pharmaceutics 2020, 12, 1160. [Google Scholar] [CrossRef]
- Chandarana, M.; Curtis, A.; Hoskins, C. The use of nanotechnology in cardiovascular disease. Appl. Nanosci. 2018, 8, 1607–1619. [Google Scholar] [CrossRef]
- Urban, D.; Pöss, J.; Böhm, M.; Laufs, U. Targeting the Proprotein Convertase Subtilisin/Kexin Type 9 for the Treatment of Dyslipidemia and Atherosclerosis. J. Am. Coll. Cardiol. 2013, 62, 1401–1408. [Google Scholar] [CrossRef]
- Niculescu, A.-G.; Bîrcă, A.C.; Grumezescu, A.M. New Applications of Lipid and Polymer-Based Nanoparticles for Nucleic Acids Delivery. Pharmaceutics 2021, 13, 2053. [Google Scholar] [CrossRef]
- Turnbull, I.C.; Eltoukhy, A.A.; Fish, K.M.; Hajjar, R.J.; Anderson, D.G.; Costa, K.D. Myocardial Delivery of Lipidoid Nanoparticle mRNA Designed for Tailored Expression of Cardiogenic Factors. Circulation 2013, 128, 18088. [Google Scholar] [CrossRef]
- Conway, A.; Mendel, M.; Kim, K.; McGovern, K.; Boyko, A.; Zhang, L.; Miller, J.C.; DeKelver, R.C.; Paschon, D.E.; Mui, B.L. Non-viral delivery of zinc finger nuclease mRNA enables highly efficient in vivo genome editing of multiple therapeutic gene targets. Mol. Ther. 2019, 27, 866–877. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, G.; Bruno, I.G.; Cooke, J.P. Telomerase mRNA reverses senescence in progeria cells. J. Am. Coll. Cardiol. 2017, 70, 804–805. [Google Scholar] [CrossRef]
- Chanda, P.K.; Sukhovershin, R.; Cooke, J.P. mRNA-enhanced cell therapy and cardiovascular regeneration. Cells 2021, 10, 187. [Google Scholar] [CrossRef]
- Kulkarni, P.; Rawtani, D.; Kumar, M.; Lahoti, S.R. Cardiovascular drug delivery: A review on the recent advancements in nanocarrier based drug delivery with a brief emphasis on the novel use of magnetoliposomes and extracellular vesicles and ongoing clinical trial research. J. Drug Deliv. Sci. Technol. 2020, 60, 102029. [Google Scholar] [CrossRef]
- Al-Darraji, A.; Donahue, R.R.; Tripathi, H.; Peng, H.; Levitan, B.M.; Chelvarajan, L.; Haydar, D.; Gao, E.; Henson, D.; Gensel, J.C.; et al. Liposomal delivery of azithromycin enhances its immunotherapeutic efficacy and reduces toxicity in myocardial infarction. Sci. Rep. 2020, 10, 16596. [Google Scholar] [CrossRef] [PubMed]
- Seidlitz, A. Drug-Eluting Stents. In In Vitro Drug Release Testing of Special Dosage Forms; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; pp. 87–117. [Google Scholar]
- Chen, J.; Song, Y.; Wang, Q.; Li, Q.; Tan, H.; Gao, J.; Zhang, N.; Weng, X.; Sun, D.; Yakufu, W.; et al. Targeted neutrophil-mimetic liposomes promote cardiac repair by adsorbing proinflammatory cytokines and regulating the immune microenvironment. J. Nanobiotechnology 2022, 20, 218. [Google Scholar] [CrossRef]
- Brito, L.A.; Chandrasekhar, S.; Little, S.R.; Amiji, M.M. In vitro and in vivo studies of local arterial gene delivery and transfection using lipopolyplexes-embedded stents. J. Biomed. Mater. Res. Part A 2010, 93, 325–336. [Google Scholar] [CrossRef]
- Allijn, I.E.; Czarny, B.M.S.; Wang, X.; Chong, S.Y.; Weiler, M.; da Silva, A.E.; Metselaar, J.M.; Lam, C.S.P.; Pastorin, G.; de Kleijn, D.P.V.; et al. Liposome encapsulated berberine treatment attenuates cardiac dysfunction after myocardial infarction. J. Control. Release 2017, 247, 127–133. [Google Scholar] [CrossRef]
- Ko, Y.T.; Hartner, W.C.; Kale, A.; Torchilin, V.P. Gene delivery into ischemic myocardium by double-targeted lipoplexes with anti-myosin antibody and TAT peptide. Gene Ther. 2009, 16, 52–59. [Google Scholar] [CrossRef]
- Verma, D.D.; Levchenko, T.S.; Bernstein, E.A.; Torchilin, V.P. ATP-loaded liposomes effectively protect mechanical functions of the myocardium from global ischemia in an isolated rat heart model. J. Control. Release Off. J. Control. Release Soc. 2005, 108, 460–471. [Google Scholar] [CrossRef]
- Verma, D.; Levchenko, T.; Bernstein, E.; Mongayt, D.; Torchilin, V. ATP-loaded immunoliposomes specific for cardiac myosin provide improved protection of the mechanical functions of myocardium from global ischemia in an isolated rat heart model. J. Drug Target. 2006, 14, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Harel-Adar, T.; Mordechai, T.B.; Amsalem, Y.; Feinberg, M.S.; Leor, J.; Cohen, S. Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc. Natl. Acad. Sci. USA 2011, 108, 1827–1832. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, N.; Bouvet, C.; Moreau, P.; Leroux, J.-C. Transmembrane pH-Gradient Liposomes To Treat Cardiovascular Drug Intoxication. ACS Nano 2010, 4, 7552–7558. [Google Scholar] [CrossRef] [PubMed]
- Gyöngyösi, M.; Lukovic, D.; Zlabinger, K.; Spannbauer, A.; Gugerell, A.; Pavo, N.; Traxler, D.; Pils, D.; Maurer, G.; Jakab, A.; et al. Liposomal doxorubicin attenuates cardiotoxicity via induction of interferon-related DNA damage resistance. Cardiovasc. Res. 2020, 116, 970–982. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.; Lynd, T.O.; Jun, C.; Shin, J.; Millican, R.C.; Estep, B.K.; Chen, J.; Zhang, X.; Brott, B.C.; Kim, D.W.; et al. MiR-146a encapsulated liposomes reduce vascular inflammatory responses through decrease of ICAM-1 expression, macrophage activation, and foam cell formation. Nanoscale 2023, 15, 3461–3474. [Google Scholar] [CrossRef] [PubMed]
- Dorostkar, H.; Haghiralsadat, B.F.; Hemati, M.; Safari, F.; Hassanpour, A.; Naghib, S.M.; Roozbahani, M.H.; Mozafari, M.R.; Moradi, A. Reduction of Doxorubicin-Induced Cardiotoxicity by Co-Administration of Smart Liposomal Doxorubicin and Free Quercetin: In Vitro and In Vivo Studies. Pharmaceutics 2023, 15, 1920. [Google Scholar] [CrossRef] [PubMed]
- Onishchenko, N.R.; Moskovtsev, A.A.; Kobanenko, M.K.; Tretiakova, D.S.; Alekseeva, A.S.; Kolesov, D.V.; Mikryukova, A.A.; Boldyrev, I.A.; Kapkaeva, M.R.; Shcheglovitova, O.N.; et al. Protein Corona Attenuates the Targeting of Antitumor Sialyl Lewis X-Decorated Liposomes to Vascular Endothelial Cells under Flow Conditions. Pharmaceutics 2023, 15, 1754. [Google Scholar] [CrossRef] [PubMed]
- Alhaja, M.; Chen, S.; Chin, A.C.; Schulte, B.; Legasto, C.S.; Chin, A.; Legasto, C. Cardiac Safety of Pegylated Liposomal Doxorubicin After Conventional Doxorubicin Exposure in Patients with Sarcoma and Breast Cancer. Cureus 2023, 15, e44837. [Google Scholar]
- Yusuf, A.; Almotairy, A.R.Z.; Henidi, H.; Alshehri, O.Y.; Aldughaim, M.S. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers 2023, 15, 1596. [Google Scholar] [CrossRef]
- Woodside, D.G.; Tanifum, E.A.; Ghaghada, K.B.; Biediger, R.J.; Caivano, A.R.; Starosolski, Z.A.; Khounlo, S.; Bhayana, S.; Abbasi, S.; Craft, J.W.; et al. Magnetic Resonance Imaging of Atherosclerotic Plaque at Clinically Relevant Field Strengths (1T) by Targeting the Integrin α4β1. Sci. Rep. 2018, 8, 3733. [Google Scholar] [CrossRef]
- Ayyagari, A.L.; Zhang, X.; Ghaghada, K.B.; Annapragada, A.; Hu, X.; Bellamkonda, R.V. Long-circulating liposomal contrast agents for magnetic resonance imaging. Magn. Reson. Med. 2006, 55, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Howles, G.P.; Ghaghada, K.B.; Qi, Y.; Mukundan, S., Jr.; Johnson, G.A. High-resolution magnetic resonance angiography in the mouse using a nanoparticle blood-pool contrast agent. Magn. Reson. Med. 2009, 62, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- Maiseyeu, A.; Mihai, G.; Kampfrath, T.; Simonetti, O.P.; Sen, C.K.; Roy, S.; Rajagopalan, S.; Parthasarathy, S. Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis. J. Lipid Res. 2009, 50, 2157–2163. [Google Scholar] [CrossRef] [PubMed]
- Wrobeln, A.; Schlüter, K.D.; Linders, J.; Zähres, M.; Mayer, C.; Kirsch, M.; Ferenz, K.B. Functionality of albumin-derived perfluorocarbon-based artificial oxygen carriers in the Langendorff-heart. Artif. Cells Nanomed. Biotechnol. 2017, 45, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Liu, Q.; Liu, W.; Yuan, F.; Feng, J.; Jin, Y.; Tu, L. Engineering micelles for the treatment and diagnosis of atherosclerosis. J. Drug Deliv. Sci. Technol. 2021, 63, 102473. [Google Scholar] [CrossRef]
- Yang, F.; Xue, J.; Wang, G.; Diao, Q. Nanoparticle-based drug delivery systems for the treatment of cardiovascular diseases. Front. Pharmacol. 2022, 13, 999404. [Google Scholar] [CrossRef] [PubMed]
- Peters, D.; Kastantin, M.; Kotamraju, V.R.; Karmali, P.P.; Gujraty, K.; Tirrell, M.; Ruoslahti, E. Targeting atherosclerosis by using modular, multifunctional micelles. Proc. Natl. Acad. Sci. USA 2009, 106, 9815–9819. [Google Scholar] [CrossRef]
- Sabir, F.; Barani, M.; Mukhtar, M.; Rahdar, A.; Cucchiarini, M.; Zafar, M.N.; Behl, T.; Bungau, S. Nanodiagnosis and Nanotreatment of Cardiovascular Diseases: An Overview. Chemosensors 2021, 9, 67. [Google Scholar] [CrossRef]
- Wu, B.; Huang, W.-Q.; Nie, X.; Zhang, Z.; Chen, G.; Wang, H.-L.; Wang, F.; Ding, S.-G.; Hao, Z.-Y.; You, Y.-Z. The effect of topology of PEG chain on the stability of micelles in brine and serum. Colloid Interface Sci. Commun. 2021, 41, 100386. [Google Scholar] [CrossRef]
- Beilvert, A.; Cormode, D.P.; Chaubet, F.; Briley-Saebo, K.C.; Mani, V.; Mulder, W.J.; Vucic, E.; Toussaint, J.F.; Letourneur, D.; Fayad, Z.A. Tyrosine polyethylene glycol (PEG)-micelle magnetic resonance contrast agent for the detection of lipid rich areas in atherosclerotic plaque. Magn. Reson. Med. 2009, 62, 1195–1201. [Google Scholar] [CrossRef]
- Cormode, D.P.; Naha, P.C.; Fayad, Z.A. Nanoparticle contrast agents for computed tomography: A focus on micelles. Contrast Media Mol. Imaging 2014, 9, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Karademir, F.; Ayhan, F. Antimicrobial Surface Functionality of PEG Coated and AgNPs Immobilized Extracorporeal Biomaterials. Biointerface Res. Appl. Chem 2021, 12, 1039–1052. [Google Scholar]
- Szebeni, J.; Alving, C.; Rosivall, L.; Bünger, R.; Baranyi, L.; Bedocs, P.; Tóth, M.; Barenholz, Y. Animal Models of Complement-Mediated Hypersensitivity Reactions to Liposomes and Other Lipid-Based Nanoparticles. J. Liposome Res. 2007, 17, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Szebeni, J. Complement activation-related pseudoallergy: A new class of drug-induced acute immune toxicity. Toxicology 2005, 216, 106–121. [Google Scholar] [CrossRef] [PubMed]
- Nakashiro, S.; Matoba, T.; Umezu, R.; Koga, J.; Tokutome, M.; Katsuki, S.; Nakano, K.; Sunagawa, K.; Egashira, K. Pioglitazone-Incorporated Nanoparticles Prevent Plaque Destabilization and Rupture by Regulating Monocyte/Macrophage Differentiation in ApoE−/− Mice. Arter. Thromb. Vasc. Biol. 2016, 36, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Chin, D.D.; Poon, C.; Wang, J.; Joo, J.; Ong, V.; Jiang, Z.; Cheng, K.; Plotkin, A.; Magee, G.A.; Chung, E.J. miR-145 micelles mitigate atherosclerosis by modulating vascular smooth muscle cell phenotype. Biomaterials 2021, 273, 120810. [Google Scholar] [CrossRef] [PubMed]
- Wennink, J.W.H.; Liu, Y.; Mäkinen, P.I.; Setaro, F.; de la Escosura, A.; Bourajjaj, M.; Lappalainen, J.P.; Holappa, L.P.; van den Dikkenberg, J.B.; Al Fartousi, M.; et al. Macrophage selective photodynamic therapy by meta-tetra(hydroxyphenyl)chlorin loaded polymeric micelles: A possible treatment for cardiovascular diseases. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2017, 107, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.P.; Pineda, F.; Barrett, J.C.; Poon, C.; Tirrell, M.; Chung, E.J. Gadolinium-Functionalized Peptide Amphiphile Micelles for Multimodal Imaging of Atherosclerotic Lesions. ACS Omega 2016, 1, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Kirana, C.; Rogers, P.F.; Bennett, L.E.; Abeywardena, M.Y.; Patten, G.S. Naturally derived micelles for rapid in vitro screening of potential cholesterol-lowering bioactives. J. Agric. Food Chem. 2005, 53, 4623–4627. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.S.; Lau, C.M.; Barham, W.J.; Onishko, H.M.; Nelson, C.E.; Li, H.; Smith, C.A.; Yull, F.E.; Duvall, C.L.; Giorgio, T.D. Macrophage-Specific RNA Interference Targeting via “Click”, Mannosylated Polymeric Micelles. Mol. Pharm. 2013, 10, 975–987. [Google Scholar] [CrossRef]
- Hyatt, D.; Chung, E.J.; Tirrell, M.; Alenghat, F.J. Monocyte and macrophage-directed peptide amphiphile micelles modulate cytoskeletal organization and target atherosclerosis. Circulation 2014, 130, A13358. [Google Scholar]
- Chin, D.D.; Poon, C.; Trac, N.; Wang, J.; Cook, J.; Joo, J.; Jiang, Z.; Sta Maria, N.S.; Jacobs, R.E.; Chung, E.J. Collagenase-cleavable peptide Amphiphile micelles as a novel Theranostic strategy in atherosclerosis. Adv. Ther. 2020, 3, 1900196. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.H.; Leon, L.; Chung, E.J.; Huang, R.T.; Sontag, T.J.; Reardon, C.A.; Getz, G.S.; Tirrell, M.; Fang, Y. Inhibition of atherosclerosis-promoting microRNAs via targeted polyelectrolyte complex micelles. J. Mater. Chem. B 2014, 2, 8142–8153. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.H.; Muktabar, A.; Tang, J.; Dravid, V.P.; Thaxton, C.S.; Venkatraman, S.; Ng, K.W. Engineered nanoparticles for the detection, treatment and prevention of atherosclerosis: How close are we? Drug Discov. Today 2017, 22, 1438–1446. [Google Scholar] [CrossRef]
- Gupta, M.K.; Martin, J.R.; Werfel, T.A.; Shen, T.; Page, J.M.; Duvall, C.L. Cell Protective, ABC Triblock Polymer-Based Thermoresponsive Hydrogels with ROS-Triggered Degradation and Drug Release. J. Am. Chem. Soc. 2014, 136, 14896–14902. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.D.; Liu, Y.-G.; Kim, T.; Bobbala, S.; Yi, S.; Zhang, X.; Choi, J.; Scott, E.A. Celastrol-loaded PEG-b-PPS nanocarriers as an anti-inflammatory treatment for atherosclerosis. Biomater. Sci. 2019, 7, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Chin, D.D.; Wang, J.; Mel de Fontenay, M.; Plotkin, A.; Magee, G.A.; Chung, E.J. Hydroxyapatite-binding micelles for the detection of vascular calcification in atherosclerosis. J. Mater. Chem. B 2019, 7, 6449–6457. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, X.; Millican, R.; Sherwood, J.; Martin, S.; Jo, H.; Yoon, Y.-s.; Brott, B.C.; Jun, H.-W. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv. Drug Deliv. Rev. 2021, 170, 142–199. [Google Scholar] [CrossRef] [PubMed]
- Soumya, R.S.; Raghu, K.G. Recent advances on nanoparticle-based therapies for cardiovascular diseases. J. Cardiol. 2023, 81, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yu, X.; Cui, J.; Yu, F.; Liu, M.; Chen, Y.; Wu, J.; Sun, B.; Mo, X. Development of Biodegradable Polymeric Stents for the Treatment of Cardiovascular Diseases. Biomolecules 2022, 12, 1245. [Google Scholar] [CrossRef]
- Hsissou, R.; Hilali, M.; Dagdag, O.; Adder, F.; Elbachiri, A.; Rafik, M. Rheological behavior models of polymers. Biointerface Res. Appl. Chem. 2021, 12, 1263–1272. [Google Scholar]
- Al Meslmani, B.M.; Mahmoud, G.F.; Bakowsky, U. Development of expanded polytetrafluoroethylene cardiovascular graft platform based on immobilization of poly lactic-co-glycolic acid nanoparticles using a wet chemical modification technique. Int. J. Pharm. 2017, 529, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Ahadian, S.; Davenport Huyer, L.; Estili, M.; Yee, B.; Smith, N.; Xu, Z.; Sun, Y.; Radisic, M. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Acta Biomater. 2017, 52, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.Y.; Yang, Y.J.; Chang, C.H.; Tang, A.C.; Liao, W.Y.; Cheng, F.Y.; Yeh, C.S.; Lai, J.J.; Stayton, P.S.; Hsieh, P.C. Functionalized nanoparticles provide early cardioprotection after acute myocardial infarction. J. Control. Release Off. J. Control. Release Soc. 2013, 170, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Dvir, T.; Bauer, M.; Schroeder, A.; Tsui, J.H.; Anderson, D.G.; Langer, R.; Liao, R.; Kohane, D.S. Nanoparticles Targeting the Infarcted Heart. Nano Lett. 2011, 11, 4411–4414. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wang, X.; Liang, H.; He, W.; Zhao, X. Mechanism of miR-30b-5p-Loaded PEG-PLGA Nanoparticles for Targeted Treatment of Heart Failure. Front. Pharmacol. 2021, 12, 745429. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Yang, J.; Huang, X.; Guo, W.; Li, S.; Zhou, H.; Li, J.; Cao, F.; Chen, Y. Poly(Lactide-Co-Glycolide)-Monomethoxy-Poly-(Polyethylene Glycol) Nanoparticles Loaded with Melatonin Protect Adipose-Derived Stem Cells Transplanted in Infarcted Heart Tissue. Stem Cells 2018, 36, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Kesavan, S.; Meena, K.S.; Dhakshinamoorthy, R. Bioactive polysaccharides based graphene oxide nanoparticle as a promising carrier for anticancer drug delivery. Biointerface Res. Appl. Chem 2022, 12, 3429–3445. [Google Scholar]
- Shi, W.; Fuad, A.R.M.; Li, Y.; Wang, Y.; Huang, J.; Du, R.; Wang, G.; Wang, Y.; Yin, T. Biodegradable polymeric nanoparticles increase risk of cardiovascular diseases by inducing endothelium dysfunction and inflammation. J. Nanobiotechnology 2023, 21, 65. [Google Scholar] [CrossRef]
- Sun, K.; Yuan, R.; He, J.; Zhuo, Y.; Yang, M.; Hao, E.; Hou, X.; Yao, C.; Yang, S.; Gao, H. Sugarcane leaf polysaccharide exerts a therapeutic effect on cardiovascular diseases through necroptosis. Heliyon 2023, 9, e21889. [Google Scholar] [CrossRef]
- Dormont, F.; Varna, M.; Couvreur, P. Nanoplumbers: Biomaterials to fight cardiovascular diseases. Mater. Today 2018, 21, 122–143. [Google Scholar] [CrossRef]
- Luong-Van, E.; Grøndahl, L.; Chua, K.N.; Leong, K.W.; Nurcombe, V.; Cool, S.M. Controlled release of heparin from poly(ε-caprolactone) electrospun fibers. Biomaterials 2006, 27, 2042–2050. [Google Scholar] [CrossRef] [PubMed]
- Karam, M.; Fahs, D.; Maatouk, B.; Safi, B.; Jaffa, A.A.; Mhanna, R. Polymeric nanoparticles in the diagnosis and treatment of myocardial infarction: Challenges and future prospects. Mater. Today. Bio 2022, 14, 100249. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Larsson, M.; Huang, W.-T.; Chiou, S.-H.; Nicholls, S.J.; Chao, J.-I.; Liu, D.-M. The use of polymer-based nanoparticles and nanostructured materials in treatment and diagnosis of cardiovascular diseases: Recent advances and emerging designs. Prog. Polym. Sci. 2016, 57, 153–178. [Google Scholar] [CrossRef]
- Leal, B.B.J.; Wakabayashi, N.; Oyama, K.; Kamiya, H.; Braghirolli, D.I.; Pranke, P. Vascular Tissue Engineering: Polymers and Methodologies for Small Caliber Vascular Grafts. Front. Cardiovasc. Med. 2021, 7, 592361. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Gao, Z.; Liu, Y.; Zhao, J.; Ou, H.; Xu, F.; Ding, D. Polymeric Nitric Oxide Delivery Nanoplatforms for Treating Cancer, Cardiovascular Diseases, and Infection. Adv. Healthc. Mater. 2021, 10, 2001550. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hong, G.; Zhao, G.; Pei, H.; Qu, J.; Chun, C.; Huang, Z.; Lu, Z. Red Blood Cell Membrane-Camouflaged PLGA Nanoparticles Loaded With Basic Fibroblast Growth Factor for Attenuating Sepsis-Induced Cardiac Injury. Front. Pharmacol. 2022, 13, 881320. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.S.; Song, J.Y.; Yoon, S.J.; Park, Y.; Kim, D.; Yuk, S.H. Temperature-induced gel formation of core/shell nanoparticles for the regeneration of ischemic heart. J. Control. Release Off. J. Control. Release Soc. 2010, 146, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Nenna, A.; Nappi, F.; Larobina, D.; Verghi, E.; Chello, M.; Ambrosio, L. Polymers and Nanoparticles for Statin Delivery: Current Use and Future Perspectives in Cardiovascular Disease. Polymers 2021, 13, 711. [Google Scholar] [CrossRef] [PubMed]
- Pechanova, O.; Dayar, E.; Cebova, M. Therapeutic potential of polyphenols-loaded polymeric nanoparticles in cardiovascular system. Molecules 2020, 25, 3322. [Google Scholar] [CrossRef]
- Kim, S.M.; Patel, M.; Patel, R. PLGA Core-Shell Nano/Microparticle Delivery System for Biomedical Application. Polymers 2021, 13, 3471. [Google Scholar] [CrossRef]
- Banik, B.L.; Fattahi, P.; Brown, J.L. Polymeric nanoparticles: The future of nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnology 2016, 8, 271–299. [Google Scholar] [CrossRef]
- Jarai, B.M.; Kolewe, E.L.; Stillman, Z.S.; Raman, N.; Fromen, C.A. Polymeric nanoparticles. In Nanoparticles for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 303–324. [Google Scholar]
- Wang, W.; Chen, J.; Li, M.; Jia, H.; Han, X.; Zhang, J.; Zou, Y.; Tan, B.; Liang, W.; Shang, Y.; et al. Rebuilding Postinfarcted Cardiac Functions by Injecting TIIA@PDA Nanoparticle-Cross-linked ROS-Sensitive Hydrogels. ACS Appl. Mater. Interfaces 2019, 11, 2880–2890. [Google Scholar] [CrossRef]
- Shapoval, O.; Brandmeier, J.C.; Nahorniak, M.; Oleksa, V.; Makhneva, E.; Gorris, H.H.; Farka, Z.; Horák, D. PMVEMA-coated upconverting nanoparticles for upconversion-linked immunoassay of cardiac troponin. Talanta 2022, 244, 123400. [Google Scholar] [CrossRef]
- He, Y.; Ye, G.; Song, C.; Li, C.; Xiong, W.; Yu, L.; Qiu, X.; Wang, L. Mussel-inspired conductive nanofibrous membranes repair myocardial infarction by enhancing cardiac function and revascularization. Theranostics 2018, 8, 5159–5177. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, J.; Hua, W.; Darabi, A.; Song, X.; Song, C.; Zhong, W.; Xing, M.M.Q.; Qiu, X. Mussel-Inspired Conductive Cryogel as Cardiac Tissue Patch to Repair Myocardial Infarction by Migration of Conductive Nanoparticles. Adv. Funct. Mater. 2016, 26, 4293–4305. [Google Scholar] [CrossRef]
- Zenych, A.; Jacqmarcq, C.; Aid, R.; Fournier, L.; Forero Ramirez, L.M.; Chaubet, F.; Bonnard, T.; Vivien, D.; Letourneur, D.; Chauvierre, C. Fucoidan-functionalized polysaccharide submicroparticles loaded with alteplase for efficient targeted thrombolytic therapy. Biomaterials 2021, 277, 121102. [Google Scholar] [CrossRef]
- Tetali, S.S.V.; Fricker, A.T.R.; van Domburg, Y.A.; Roy, I. Intelligent biomaterials for cardiovascular applications. Curr. Opin. Biomed. Eng. 2023, 28, 100474. [Google Scholar] [CrossRef]
- Chung, T.W.; Wang, S.S.; Tsai, W.J. Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide) (PLGA) nanoparticles. Biomaterials 2008, 29, 228–237. [Google Scholar] [CrossRef]
- Yu, M.; Zhu, Y.; Lin, C.-J.; Wang, S.; Xing, J.; Jang, C.; Huang, J.; Huang, J.; Jin, J.; Yu, L. Effects of air pollution control measures on air quality improvement in Guangzhou, China. J. Environ. Manag. 2019, 244, 127–137. [Google Scholar] [CrossRef]
- Beldman, T.J.; Senders, M.L.; Alaarg, A.; Pérez-Medina, C.; Tang, J.; Zhao, Y.; Fay, F.; Deichmöller, J.; Born, B.; Desclos, E.; et al. Hyaluronan Nanoparticles Selectively Target Plaque-Associated Macrophages and Improve Plaque Stability in Atherosclerosis. ACS Nano 2017, 11, 5785–5799. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-F.; Gao, C.; Lü, S.; He, J.; Liu, M.; Wu, C.; Liu, Y.; Zhang, X.; Liu, Z. Synthesis of PEGylated polyglutamic acid peptide dendrimer and its application in dissolving thrombus. Colloids Surf. B: Biointerfaces 2017, 159, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Schulz, R.; Kelm, M.; Heusch, G. Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc. Res. 2004, 61, 402–413. [Google Scholar] [CrossRef] [PubMed]
- Bolli, R.; Becker, L.; Gross, G.; Mentzer Jr, R.; Balshaw, D.; Lathrop, D.A. Myocardial protection at a crossroads: The need for translation into clinical therapy. Circ. Res. 2004, 95, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Hogg, N. Biological chemistry and clinical potential of S-nitrosothiols. Free Radic. Biol. Med. 2000, 28, 1478–1486. [Google Scholar] [CrossRef]
- Stasko, N.A.; Fischer, T.H.; Schoenfisch, M.H. S-nitrosothiol-modified dendrimers as nitric oxide delivery vehicles. Biomacromolecules 2008, 9, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Kulhari, H.; Pooja, D.; Prajapati, S.; Chauhan, A.S. Performance evaluation of PAMAM dendrimer based simvastatin formulations. Int. J. Pharm. 2011, 405, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Devarakonda, B.; Hill, R.A.; de Villiers, M.M. The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. Int. J. Pharm. 2004, 284, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.K.; Pooja, D.; Kulhari, H.; Jain, S.K.; Sistla, R.; Chauhan, A.S. Poly (amidoamine) dendrimer-mediated hybrid formulation for combination therapy of ramipril and hydrochlorothiazide. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2017, 96, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Nitecki, D.E.; Maltby, D.; Simon, G.H.; Berejnoi, K.; Raatschen, H.-J.; Yeh, B.M.; Shames, D.M.; Brasch, R.C. Dendritic iodinated contrast agents with PEG-cores for CT imaging: Synthesis and preliminary characterization. Bioconjugate Chem. 2006, 17, 1043–1056. [Google Scholar] [CrossRef]
- Ardestani, M.S.; Bitarafan-Rajabi, A.; Mohammadzadeh, P.; Mortazavi-Derazkola, S.; Sabzevari, O.; Azar, A.D.; Kazemi, S.; Hosseini, S.R.; Ghoreishi, S.M. Synthesis and characterization of novel 99mTc-DGC nano-complexes for improvement of heart diagnostic. Bioorganic Chem. 2020, 96, 103572. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, C.M.; Strawn, W.B. Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. Am. J. Cardiol. 2006, 98, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Gu, C.; Cabigas, E.B.; Pendergrass, K.D.; Brown, M.E.; Luo, Y.; Davis, M.E. Functionalized dendrimer-based delivery of angiotensin type 1 receptor siRNA for preserving cardiac function following infarction. Biomaterials 2013, 34, 3729–3736. [Google Scholar] [CrossRef]
- Xue, X.; Shi, X.; Dong, H.; You, S.; Cao, H.; Wang, K.; Wen, Y.; Shi, D.; He, B.; Li, Y. Delivery of microRNA-1 inhibitor by dendrimer-based nanovector: An early targeting therapy for myocardial infarction in mice. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 619–631. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. MicroRNA: A matter of life or death. World J. Biol. Chem. 2010, 1, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Gothwal, A.; Kesharwani, P.; Gupta, U.; Khan, I.; Iqbal Mohd Amin, M.C.; Banerjee, S.; Iyer, A.K. Dendrimers as an Effective Nanocarrier in Cardiovascular Disease. Curr. Pharm. Des. 2015, 21, 4519–4526. [Google Scholar] [CrossRef]
Type of Treatment | Medical Applications | References |
---|---|---|
Vesicles formulated with phospholipids and PEG-HS and istaroxime | Acute and chronic heart failure | [47] |
Biomimetic liposomes | Anti-inflammatory treatment of MI | [61] |
Liposome/DNA complexes immobilized on the stainless steel surface | Coronary restenosis | [62] |
Liposome plasmid DNA complexes with TATp | Transfection of cardiomyocytes in the ischemic zone | [68] |
Targeted liposomes loaded with ATP | Cardioprotective effect | [79] |
Liposomes coated with polyethylene glycol with gadodiamide | Enhance MR angiography | [76] |
Type of Treatment | Medical Applications | References |
---|---|---|
Surface-modified polymeric micelles | Drug delivery and theranostic | [83] |
PEG-based lipid micelle system | Delivery of anticoagulant drugs | [86] |
Gd-encapsulated micelles functionalized with anti-CD36 antibodies | Identifying macrophages in human atherosclerotic aortic tissues | [87] |
pH-responsive polymeric micelles with siRNA and mannose receptor-CD206 decoration | siRNA delivery to macrophages | [95] |
Multimodal theranostic peptide amphiphile micelles | Enhancing the visualization of MRI | [97] |
ROS-responsive micelles | Atherosclerosis treatment | [99] |
Type of Treatment | Medical Applications | References |
---|---|---|
PLGA nanoparticles | Vascular grafts Drug delivery systems Myocardial infarction | [107,108,109] |
Polysaccharide nanoparticles | Thrombolysis Reduction in inflammation associated with atherosclerotic plaque | [116,117,133,134,135,136,137] |
Chitosan nanoparticles | Antiatherosclerosis properties Drug delivery systems | [117,136] |
GelMA | Pro-angiogenic and cardioprotective properties Improvement in cardiac function Superelastic properties | [83,124,125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udriște, A.S.; Burdușel, A.C.; Niculescu, A.-G.; Rădulescu, M.; Balaure, P.C.; Grumezescu, A.M. Organic Nanoparticles in Progressing Cardiovascular Disease Treatment and Diagnosis. Polymers 2024, 16, 1421. https://doi.org/10.3390/polym16101421
Udriște AS, Burdușel AC, Niculescu A-G, Rădulescu M, Balaure PC, Grumezescu AM. Organic Nanoparticles in Progressing Cardiovascular Disease Treatment and Diagnosis. Polymers. 2024; 16(10):1421. https://doi.org/10.3390/polym16101421
Chicago/Turabian StyleUdriște, Alexandru Scafa, Alexandra Cristina Burdușel, Adelina-Gabriela Niculescu, Marius Rădulescu, Paul Cătălin Balaure, and Alexandru Mihai Grumezescu. 2024. "Organic Nanoparticles in Progressing Cardiovascular Disease Treatment and Diagnosis" Polymers 16, no. 10: 1421. https://doi.org/10.3390/polym16101421
APA StyleUdriște, A. S., Burdușel, A. C., Niculescu, A. -G., Rădulescu, M., Balaure, P. C., & Grumezescu, A. M. (2024). Organic Nanoparticles in Progressing Cardiovascular Disease Treatment and Diagnosis. Polymers, 16(10), 1421. https://doi.org/10.3390/polym16101421