Smartphone-Based Rapid Quantitative Detection Platform with Imprinted Polymer for Pb (II) Detection in Real Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Ion Imprinted Polymer (IIP)
2.2. Adsorption Test
2.3. Image Acquicition and SMARTPHONE Procesing
2.4. Study of Figures of Merit
2.5. Applicability
3. Results and Discussions
3.1. Synthesis of Polymeric Material (IIP)
3.2. Adsorption Study
3.3. Colorimetric Sensor Implementation and SMARTPHONE Processing
Multivariate Analysis by PLS Regression
3.4. Applicability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fasae, K.; Abolaji, A. Interactions and Toxicity of non-essential heavy metals (Cd, Pb and Hg): Lessons from Drosophila melanogaster. Curr. Opin. Insect Sci. 2022, 51, 100900. [Google Scholar] [CrossRef] [PubMed]
- Lyer, S.; Sengupta, C.; Velumani, A. Lead toxicity: An overview of prevalence in Indians. Clin. Chim. Acta 2015, 451, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Uslu, H.; Büyükpınar, C.; Unutkan, T.; Serbest, H.; San, N.; Turak, F.; Bakırdere, S. A novel analytical method for sensitive determination of lead: Hydrogen assisted T-shape slotted quartz tube-atom trap-flame atomic absorption spectrometry. Microchem. J. 2018, 137, 155–159. [Google Scholar] [CrossRef]
- Xianglong, A.; Hongzhi, G. Preparation of Pb(II) ion-imprinted polymers and their application in selective removal from wastewater. Adsorpt. Sci. Technol. 2018, 36, 774–787. [Google Scholar] [CrossRef]
- Tarley, C.; Montani, A.; Gava, M.; Prete, M.; Cajamarca, A.; Goncalves, L. Preparation and application of nanocomposite based on imprinted poly (methacrylic acid)-PAN/MWCNT as a new electrochemical selective sensing platform of Pb2+ in water samples. J. Electroanal. Chem. 2017, 801, 114–121. [Google Scholar] [CrossRef]
- Satarpai, T.; Shiowatana, J.; Siripinyanond, A. Paper-based analytical device for sampling, on-site preconcentration and detection of ppb lead in water. Talanta 2016, 154, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.; Lee, M.; Kim, J.; Kim, J.; Kim, J. Rhodamine-based chemosensing monolayers on glass as a facile fluorescent “turn-on” sensing film for selective detection of Pb2+. Talanta 2011, 83, 1359–1363. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, K.; Li, C.; Li, Y.; Niu, S. A novel fluorescent chemosensor based on a rhodamine 6G derivative for the detection of Pb2+ ion. Sens. Actuators B Chem. 2017, 246, 696–702. [Google Scholar] [CrossRef]
- Li, C.; Zhou, Y.; Kong, X.; Zou, C.; Weng, C. Colorimetric and fluorescent chemosensor for citrate based on a rhodamine and Pb2+ complex in aqueous solution. Anal. Chim. Acta 2013, 774, 79–84. [Google Scholar] [CrossRef]
- Alizadeh, T.; Hamidi, N.; Ganjali, M.; Rafiei, F. An extraordinarily sensitive voltammetric sensor with picomolar detection limit for Pb2+ determination based on carbon paste electrode impregnated with nanosized imprinted polymer and multi-walled carbon nanotubes. J. Environ. Chem. Eng. 2017, 5, 4327–4336. [Google Scholar] [CrossRef]
- Foguel, M.; Ton, X.; Zanoni, M.; Sotomayor, M.D.P.; Haupt, K.; Sum, B.T. A molecularly imprinted polymer-based evanescent wave fiber optic sensor for the detection of basic red 9 dye. Sens. Actuators B Chem. 2015, 218, 222–228. [Google Scholar] [CrossRef]
- Gentile, G.; Tambuzzi, S.; Andreola, S.; Boracchi, M.; Gibelli, L.; Migliorini, A.S.; Zoja, R. Is it possible to detect lead derived from gunshot residues on decalcified human bone by means of a histochemical staining with sodium rhodizonate? Forensic Sci. Int. 2020, 316, 110474. [Google Scholar] [CrossRef] [PubMed]
- De Souza, H.; Faria, L.F.; Scaldin, F.M.; Diniz, R.; Edwards, H.; De Oliveira, L.F. Rhodizonate complexes with transition metal ions: A new vision from an old building block. J. Mol. Struct. 2021, 1238, 130407. [Google Scholar] [CrossRef]
- Su, C.; Gelius, S. An improved barium-rhodizonate method for determination of sulfate ion in biological fluids. Anal. Biochem. 2020, 598, 113703. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Yuan, Z.; Deng, X.; Huang, Y.; Jiang, G.; Xiong, J.; Wu, H.; Yuan, S. Disodium Rhodizonate/Reduced Graphene Oxide-Sodium Alginate Composite as a Cathode Material for Sodium-ion Batteries with High Cyclic Performance. Int. J. Electrochem. Sci. 2021, 16, 210361. [Google Scholar] [CrossRef]
- Meza, F.; Khan, S.; Picasso, G.; Sotomayor, M.D.P.T. A novel highly sensitive imprinted polymer-based optical sensor for the detection of Pb(II) in water samples. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100497. [Google Scholar] [CrossRef]
- Hou, L.; Yang, C.; Rao, X.; Hu, L.; Bao, Y.; Gao, Y.; Zhu, X. Fabrication of recoverable magnetic surface ion-imprinted polymer based on graphene oxide for fast and selective removal of lead ions from aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 126949. [Google Scholar] [CrossRef]
- Shakerian, F.; Kim, k.; Kwon, E.; Szulejko, J.; Kumar, P.; Dadfarnia, S.; Shabani, A. Advanced polymeric materials: Synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions. Trends Anal. Chem. 2016, 83, 55–69. [Google Scholar] [CrossRef]
- Meza, F.; Khan, S.; Anchieta, J.; Picasso, G.; Sotomayor, M.D.P.T. Systematic study on the synthesis of novel ion-imprinted polymers based on rhodizonate for the highly selective removal of Pb (II). React. Funct. Polym. 2021, 159, 104805. [Google Scholar] [CrossRef]
- Lowdon, J.; Dilien, H.; Singla, P.; Peeters, M.; Cleij, T.; Grinsven, B.; Eersels, K. MIPs for commercial application in low-cost sensors and assays—An overview of the current status quo. Sens. Anda Actuators B Chem. 2020, 325, 128973. [Google Scholar] [CrossRef]
- Tarley, C.; Andrade, F.; Santana, H.; Zaia, D.; Beijo, L.; Segatelli, M. Ion-imprinted polyvinylimidazole-silica hybrid copolymer for selctive extractión of Pb(II): Characterization and metal adsorption kinetic and thermodynamic studies. React. Funct. Polym. 2012, 72, 83–91. [Google Scholar] [CrossRef]
- René, W.; Lenoble, V.; Laatikainen, K.; Branger, C. Influence of the synthesis parameters on the efficiency of fluorescent ion-imprinted polymers for lead detection. React. Funct. Polym. 2022, 170, 105134. [Google Scholar] [CrossRef]
- Gatabi, J.; Sarrafi, Y.; Lakouraj, M.; Taghavi, M. Facile and efficient removal of Pb(II) from aqueous solution by chitosan-lead ion imprinted polymer network. Chemosphere 2020, 240, 124772. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, X.; Yu, L.; Li, H.; Chen, L.; Kang, Q.; Shen, D. Monitoring of reaction kinetics and determination of trace water in hydrophobic organic solvents by a smartphone-based ratiometric fluorescence device. Microchim. Acta 2020, 187, 564. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Liu, Z.; Xiao, M.; Jiang, L.; Yi, C. A smartphone-based quantitative point-of-care testing (POCT) system for simultaneous detection of multiple heavy metal ions. Chem. Eng. J. 2020, 394, 124966. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, G.; Zilberman, Y.; Ruan, W.; Ameri, S.K.; Zhang, Y.S.; Miller, E.; Sonkusale, S. Low-cost smart phone diagnostics for food using paper-based colorimetric sensor arrays. Food Control 2017, 82, 227–232. [Google Scholar] [CrossRef]
- Dadkhah, S.; Mehdinia, A.; Jabbari, A. Manbohi, Rapid and sensitive fluorescence and smartphone dual-mode detection of dopamine based on nitrogen-boron co-doped carbon quantum dots. Microchim. Acta 2020, 187, 569. [Google Scholar] [CrossRef]
- Maruthupandi, M.; Thiruppathi, D.; Vasimalai, N. One minute synthesis of green fluorescent copper nanocluster: The preparation of smartphone aided paper-based kit for on-site monitoring of nanomolar level mercury and sulfide ions in environmental samples. J. Hazard. Mater. 2020, 392, 122294. [Google Scholar] [CrossRef]
- Kathirvel, R.; Poongodi, M.; Vetriarasu, V.; Vivekanandan, K.E.; Selvakumar, K.; Al obaid, S.; Pugazhendhi, A.; Venkatesan, G. Quinoline-quinoline schiff-base as an effective chromogenic, fluorogenic, and smartphone assisted RGB detection of Pb2+ ion in near aqueous medium. Environ. Res. 2024, 250, 118530. [Google Scholar] [CrossRef]
- Xia, L.; Luo, F.; Niu, X.; Tang, Y.; Wu, Y. Facile colorimetric sensor using oxidase-like activity of octahedral Ag2O particles for highly selective detection of Pb(II) in wáter. Sci. Total Environ. 2024, 915, 170025. [Google Scholar] [CrossRef]
- Srisukjaroen, R.; Wechekorn, K.; Teepoo, S. A smartphone based-paper test strip chemosensor coupled with gold nanoparticles for the Pb2+ detection in highly contaminated meat samples. Microchem. J. 2022, 179, 107438. [Google Scholar] [CrossRef]
- Mohanty, S.; Chowdary, G.; Singh, S.G. Smartphone-powered portable chemiresistive sensing system for label free detection of lead ions in wáter. Microchem. J. 2023, 194, 109239. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, J.; Zhang, M.; Shi, G. Lanthanide metal-organic framework as a paper strip sensor for visual detection of sulfonamide with smartphone-based point-of-care platform. Talanta 2022, 237, 122920. [Google Scholar] [CrossRef] [PubMed]
- Yaqin, Z.; Qian, L.; Ke, D. A smartphone-integrated colorimetric sensor of total volatile basic nitrogen (TVB-N) based on Au@MnO2 core-shell nanocomposites incorporated into hydrogel and its application in fish spoilage monitoring. Sens. Actuators B Chem. 2021, 335, 129708. [Google Scholar] [CrossRef]
- Jacinto, C.; Maza, I.; Khan, S.; López, R.; Sotomayor, M.D.P.T.; Picasso, G. Using a Smartphone-Based Colorimetric Device with Molecularly Imprinted Polymer for the Quantification of Tartrazine in Soda Drinks. Biosensors 2023, 13, 639. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shen, F.; Zhang, Z.; Xing, Y.; Ren, X. Synthesis of a novel cross-linker doubles as a functional monomer for preparing a water compatible molecularly imprinted polymer. Anal. Methods 2014, 6, 9483–9489. [Google Scholar] [CrossRef]
- Gaffney, J.; Marley, N.; Jones, D. Fourier Transform Infrared (FTIR) Spectroscopy. Charact. Mater. 2012, 1104–1135. [Google Scholar]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, X. Adsorption isotherms models: Physical meanings, applications, and solving methods. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Musah, M.; Azeh, Y.; Mathew, J.; Umar, M.; Abdulhamid, Z.; Muhammad, A. Adsorption Kinetics and Isotherm Models: A Review. Caliphate J. Sci. Technol. 2022, 1, 20–26. [Google Scholar] [CrossRef]
- Gauden, P.A.; Terzyk, A.P.; Kowalczyk, P.; Aranovich, G.L.; Donohue, M.D.; Ćwiertnia, M.S.; Furmaniak, S.; Rychlicki, G. Giles’ classification of solute adsorption isotherms for binary non-electrolyte solutions via lattice DFT supported by experimental sorption data from aqueous solutions on carbonaceous materials. In Carbon Materials—Theory and Practice; Terzyk, A., Gauden, P., Kowalczyk, P., Eds.; Research Signpost: Kerala, India, 2008; pp. 517–570. [Google Scholar]
- Tjandra, A.D.; Heywood, T.; Chandrawati, R. Trigit: A free web application for rapid colorimetric analysis of images. Biosens. Bioelectron. X 2023, 14, 100361. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Schwaighofer, A.; Ramer, G.; Lendl, B. Multivariate curve resolution-alternating least squares augmented with partial least squares baseline correction applied to mid-IR laser spectra resolves protein denaturation by reducing rotational ambiguity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 315, 124228. [Google Scholar] [CrossRef] [PubMed]
Pseudo–Second–Order | |||||
---|---|---|---|---|---|
Sorbents | 1 qe (exp) (mg g−1) | 2 qe (cal) (mg g−1) | k2 × 10−3 (g mg−1 min−1) | R2 | Error % |
IIP–AMPS | 9.31 ± 0.12 | 9.30 | 8.84 | 1.00 | 0.14 |
NIP–AMPS | 7.16 ± 0.20 | 7.16 | 2.68 | 1.00 | 0.01 |
Standard (mg L−1) | R | G | B | M | Y | K | H | S | V | I |
---|---|---|---|---|---|---|---|---|---|---|
0.5 | 242.9 ± 0.8 | 233.1 ± 0.7 | 207.9 ± 0.7 | 4.0 ± 0.1 | 14.0 ± 0.9 | 5.0 ± 0.2 | 43.1 ± 0.8 | 14.5 ± 0.9 | 95.3 ± 0.6 | 228.0 ± 0.2 |
0.8 | 243.3 ± 1.2 | 232.7 ± 1.4 | 208.1 ± 0.6 | 4.0 ± 0.5 | 14.0 ± 1.0 | 5.0 ± 0.3 | 42.0 ± 1.2 | 14.5 ± 0.8 | 95.4 ± 1.5 | 228.0 ± 0.0 |
1 | 239.2 ± 1.0 | 228.3 ± 1.1 | 201.2 ± 1.3 | 5.0 ± 0.8 | 16.0 ± 0.5 | 6.0 ± 0.7 | 42.8 ± 0.9 | 15.9 ± 1.0 | 93.8 ± 1.3 | 222.9 ± 0.3 |
2 | 245.3 ± 1.1 | 230.9 ± 1.3 | 204.7 ± 1.1 | 6.0 ± 0.3 | 17.0 ± 0.6 | 4.0 ± 0.5 | 38.8 ± 1.1 | 16.6 ± 0.8 | 96.2 ± 1.2 | 227.0 ± 1.4 |
3 | 242.6 ± 1.5 | 231.3 ± 1.3 | 203.1 ± 1.0 | 5.0 ± 0.4 | 16.0 ± 0.7 | 5.0 ± 0.2 | 42.8 ± 1.2 | 16.3 ± 1.1 | 95.2 ± 1.3 | 225.7 ± 1.2 |
4 | 252.1 ± 1.6 | 238.6 ± 1.2 | 204.8 ± 0.8 | 5.0 ± 0.2 | 19.0 ± 0.4 | 1.0 ± 0.2 | 42.8 ± 0.9 | 18.8 ± 1.3 | 98.9 ± 0.4 | 231.8 ± 0.6 |
5 | 245.3 ± 1.2 | 228.1 ± 0.9 | 200.4 ± 0.8 | 7.0 ± 0.3 | 18.0 ± 0.5 | 4.0 ± 0.1 | 36.9 ± 1.3 | 18.3 ± 0.7 | 96.2 ± 0.9 | 224.6 ± 0.7 |
8 | 245.0 ± 1.2 | 224.5 ± 1.1 | 193.0 ± 1.1 | 8.0 ± 0.4 | 21.0 ± 0.5 | 4.0 ± 0.0 | 36.3 ± 0.9 | 21.2 ± 0.4 | 96.1 ± 0.9 | 220.9 ± 0.9 |
10 | 246.1 ± 0.9 | 227.7 ± 1.5 | 195.1 ± 0.9 | 8.0 ± 0.6 | 21.0 ± 0.1 | 3.0 ± 0.3 | 38.3 ± 1.0 | 20.7 ± 0.6 | 96.5 ± 1.0 | 223.0 ± 1.2 |
Samples (mg L−1) | Repeatability (n = 7) Concentration Found (mg L−1) | RSD (%) | Limit of Detection (LOD) (mg L−1) |
---|---|---|---|
1 | 0.98 | 3.5 | 0.215 |
5 | 4.86 | 4.8 | |
8 | 8.01 | 4.6 |
Samples | Concentration Added (mg L−1) | Smartphone Sensor | ICP–MS | RSD (%) | ||
---|---|---|---|---|---|---|
Concentration Found (mg L−1) | Recovery (%) | Concentration Found (mg L−1) | Recovery (%) | |||
Paranapura River | - | 0.21 ± 0.02 | 96 | 0.23 ± 0.01 | 98 | 1.12 |
1 | 1.05 ± 0.02 | 85 | 1.21 ± 0.02 | 98 | 7.08 | |
5 | 5.08 ± 0.03 | 97 | 5.22 ± 0.01 | 100 | 1.36 | |
Huallaga River | - | 0.23 ± 0.02 | 96 | 0.25 ± 0.03 | 104 | 4.17 |
1 | 1.18 ± 0.01 | 95 | 1.22 ± 0.03 | 98 | 1.67 | |
5 | 5.01 ± 0.02 | 96 | 5.41 ± 0.02 | 103 | 3.84 | |
Tap water | - | 0.22 ± 0.03 | 96 | 0.228 ± 0.01 | 99 | 1.79 |
1 | 1.16 ± 0.02 | 94 | 1.29 ± 0.02 | 105 | 5.31 | |
5 | 5.11 ± 0.03 | 98 | 5.30 ± 0.03 | 101 | 1.83 | |
Well water | - | 0.28 ± 0.01 | 85 | 0.33 ± 0.02 | 100 | 8.20 |
1 | 1.36 ± 0.04 | 102 | 1.52 ± 0.01 | 99 | 5.56 | |
5 | 5.09 ± 0.02 | 95 | 5.12 ± 0.02 | 98 | 1.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meza López, F.d.L.; Hernández, C.J.; Vega-Chacón, J.; Tuesta, J.C.; Picasso, G.; Khan, S.; Sotomayor, M.D.P.T.; López, R. Smartphone-Based Rapid Quantitative Detection Platform with Imprinted Polymer for Pb (II) Detection in Real Samples. Polymers 2024, 16, 1523. https://doi.org/10.3390/polym16111523
Meza López FdL, Hernández CJ, Vega-Chacón J, Tuesta JC, Picasso G, Khan S, Sotomayor MDPT, López R. Smartphone-Based Rapid Quantitative Detection Platform with Imprinted Polymer for Pb (II) Detection in Real Samples. Polymers. 2024; 16(11):1523. https://doi.org/10.3390/polym16111523
Chicago/Turabian StyleMeza López, Flor de Liss, Christian Jacinto Hernández, Jaime Vega-Chacón, Juan C. Tuesta, Gino Picasso, Sabir Khan, María D. P. T. Sotomayor, and Rosario López. 2024. "Smartphone-Based Rapid Quantitative Detection Platform with Imprinted Polymer for Pb (II) Detection in Real Samples" Polymers 16, no. 11: 1523. https://doi.org/10.3390/polym16111523
APA StyleMeza López, F. d. L., Hernández, C. J., Vega-Chacón, J., Tuesta, J. C., Picasso, G., Khan, S., Sotomayor, M. D. P. T., & López, R. (2024). Smartphone-Based Rapid Quantitative Detection Platform with Imprinted Polymer for Pb (II) Detection in Real Samples. Polymers, 16(11), 1523. https://doi.org/10.3390/polym16111523