Experimental and Numerical Study of Computer Vision-Based Real-Time Monitoring of Polymeric Particle Mixing Process in Rotary Drum
Abstract
:1. Introduction
2. Computer Vision Process
2.1. Preliminary Discrete Element Simulation
2.2. Mixing Index Formulation
2.3. Image-Processing Algorithm for Mixing State Monitoring
3. Experimental Result and Discussion
3.1. Real-Time Data Acquisition
3.2. Data Analysis and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
d | centroidal distance between two particle groups, pixels |
initial centroidal distance, pixels | |
characteristic centroidal distance, pixels | |
linear mixing index | |
sigmoid-based MI function | |
N | number of total particles |
O | Big O notation |
Creek symbols | |
difference in standard deviation of two particle groups, pixels | |
characteristic standard deviation, pixels | |
Abbreviations | |
CSV | comma-separated values |
DEM | discrete element method |
FDM | fused deposition manufacturing |
fps | frames per second |
GLCM | gray-level co-occurrence matrix |
GMMI | generalized mean mixing index |
HSV | hue saturation value |
LED | light-emitting diode |
MI | mixing index |
RGB | red-green-blue |
ROI | region of interest |
SBC | single-board computer |
SI | segregation index |
References
- Scott, C.E.; Macosko, C.W. Morphology Development during the Initial Stages of Polymer-Polymer Blending. Polymer 1995, 36, 461–470. [Google Scholar] [CrossRef]
- Stansbury, J.W.; Idacavage, M.J. 3D Printing with Polymers: Challenges among Expanding Options and Opportunities. Dent. Mater. 2016, 32, 54–64. [Google Scholar] [CrossRef]
- Woern, A.L.; Byard, D.J.; Oakley, R.B.; Fiedler, M.J.; Snabes, S.L.; Pearce, J.M. Fused Particle Fabrication 3-D Printing: Recycled Materials’ Optimization and Mechanical Properties. Materials 2018, 11, 1413. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Zhao, Y.; Liu, G.; Zheng, J. Enhancing Mixing of Particles by Baffles in a Rotating Drum Mixer. Particuology 2011, 9, 270–278. [Google Scholar] [CrossRef]
- Alian, M.; Ein-Mozaffari, F.; Upreti, S.R. Analysis of the Mixing of Solid Particles in a Plowshare Mixer via Discrete Element Method (DEM). Powder Technol. 2015, 274, 77–87. [Google Scholar] [CrossRef]
- Zhang, Z.; Gui, N.; Ge, L.; Li, Z. Numerical Study of Particle Mixing in a Tilted Three-Dimensional Tumbler and a New Particle-Size Mixing Index. Adv. Powder Technol. 2019, 30, 2338–2351. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, M.; Liu, B.; Shao, Y. Comparative Study on the Characterization Method of Particle Mixing Index Using DEM Method. Procedia Eng. 2015, 102, 1630–1642. [Google Scholar] [CrossRef]
- Soni, R.K.; Mohanty, R.; Mohanty, S.; Mishra, B.K. Numerical Analysis of Mixing of Particles in Drum Mixers Using DEM. Adv. Powder Technol. 2016, 27, 531–540. [Google Scholar] [CrossRef]
- Cho, M.; Dutta, P.; Shim, J. A Non-Sampling Mixing Index for Multicomponent Mixtures. Powder Technol. 2017, 319, 434–444. [Google Scholar] [CrossRef]
- Chen, M.; Liu, M.; Li, T.; Tang, Y.; Liu, R.; Wen, Y.; Liu, B.; Shao, Y. A Novel Mixing Index and Its Application in Particle Mixing Behavior Study in Multiple-Spouted Bed. Powder Technol. 2018, 339, 167–181. [Google Scholar] [CrossRef]
- Jin, X.; Chandratilleke, G.R.; Wang, S.; Shen, Y. DEM Investigation of Mixing Indices in a Ribbon Mixer. Particuology 2022, 60, 37–47. [Google Scholar] [CrossRef]
- Bowler, A.L.; Bakalis, S.; Watson, N.J. A Review of In-Line and on-Line Measurement Techniques to Monitor Industrial Mixing Processes. Chem. Eng. Res. Des. 2020, 153, 463–495. [Google Scholar] [CrossRef]
- Nadeem, H.; Subramaniam, S.; Nere, N.K.; Heindel, T.J. A Particle Scale Mixing Measurement Method Using a Generalized Nearest Neighbor Mixing Index. Adv. Powder Technol. 2023, 34, 103933. [Google Scholar] [CrossRef]
- Gu, Z.; Chen, J.J.J. A Probabilistic Analysis of Some Selected Mixing Indices. Chem. Eng. Res. Des. 2015, 93, 293–303. [Google Scholar] [CrossRef]
- Aït Aissa, A.; Duchesne, C.; Rodrigue, D. Polymer Powders Mixing Part II: Multi-component Mixing Dynamics Using RGB Color Analysis. Chem. Eng. Sci. 2010, 65, 3729–3738. [Google Scholar] [CrossRef]
- Aït Aissa, A.; Duchesne, C.; Rodrigue, D. Polymer Powders Mixing Part I: Mixing Characterization in Rotating Cylinders. Chem. Eng. Sci. 2010, 65, 786–795. [Google Scholar] [CrossRef]
- Gosselin, R.; Duchesne, C.; Rodrigue, D. On the Characterization of Polymer Powders Mixing Dynamics by Texture Analysis. Powder Technol. 2008, 183, 177–188. [Google Scholar] [CrossRef]
- Huang, P.; Miao, Q.; Ding, Y.; Sang, G.; Jia, M. Research on Surface Segregation and Overall Segregation of Particles in a Rotating Drum Based on Stacked Image. Powder Technol. 2021, 382, 162–172. [Google Scholar] [CrossRef]
- Rosas, J.G.; Blanco, M. A Criterion for Assessing Homogeneity Distribution in Hyperspectral Images. Part 1: Homogeneity Index Bases and Blending Processes. J. Pharm. Biomed. Anal. 2012, 70, 680–690. [Google Scholar] [CrossRef]
- Son, K.J. A Numerical Study of the Influence of Rheology of Cohesive Particles on Blade Free Planetary Mixing. Korea-Aust. Rheol. J. 2018, 30, 199–209. [Google Scholar] [CrossRef]
- Son, K.J. A Numerical Study of the Influence of Operating Conditions of a Blade Free Planetary Mixer on Blending of Cohesive Powders. Korea-Aust. Rheol. J. 2019, 31, 15–23. [Google Scholar] [CrossRef]
- Son, K.J. Numerical Analysis of Viscous Polymer Resin Mixing Processes in High-Speed Blade-Free Planetary Blender Using Smoothed Particle Hydrodynamics. Processes 2023, 11, 2555. [Google Scholar] [CrossRef]
- Huang, A.N.; Cheng, T.H.; Kuo, H.P. A Study of the Axial and Radial Competition Segregation in a Rotating Drum with Internal Diameter Changing. AIChE J. 2020, 66, e16921. [Google Scholar] [CrossRef]
- Hlosta, J.; Jezerská, L.; Rozbroj, J.; Žurovec, D.; Nečas, J.; Zegzulka, J. DEM Investigation of the Influence of Particulate Properties and Operating Conditions on the Mixing Process in Rotary Drums: Part 1—Determination of the DEM Parameters and Calibration Process. Processes 2020, 8, 222. [Google Scholar] [CrossRef]
- Yan, Y.; Ji, S. Discrete Element Modeling of Direct Shear Tests for a Granular Material. Int. J. Numer. Anal. Methods Geomech. 2010, 34, 978–990. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Y.; Thornton, C. A Comparison of Discrete Element Simulations and Experiments for ‘Sandpiles’ Composed of Spherical Particles. Powder Technol. 2005, 160, 219–228. [Google Scholar] [CrossRef]
- Santos, C.; Urdaneta, V.; García, X.; Medina, E. Compression and Shear-Wave Velocities in Discrete Particle Simulations of Quartz Granular Packings: Improved Hertz-Mindlin Contact Model. Geophysics 2011, 76, E165–E174. [Google Scholar] [CrossRef]
- Barrios, G.K.P.; de Carvalho, R.M.; Kwade, A.; Tavares, L.M. Contact Parameter Estimation for DEM Simulation of Iron Ore Pellet Handling. Powder Technol. 2013, 248, 84–93. [Google Scholar] [CrossRef]
- Liu, D.; Lu, Y.; Lin, H.; Qiao, C.; Song, J.; Chen, S.; Yao, Z.; Du, K.; Yu, Y. Study on the Discharge Process and Mechanism of Anti-Corrosion Pill Particles in the Oil and Gas Field Wellbore Casing Annulus Based on the Discrete Element Method. Processes 2022, 10, 1737. [Google Scholar] [CrossRef]
- Ma, X.; Liu, M.; Hou, Z.; Li, J.; Gao, X.; Bai, Y.; Guo, M. Calibration and Experimental Studies on the Mixing Parameters of Red Clover Seeds and Coated Powders. Processes 2022, 10, 2280. [Google Scholar] [CrossRef]
- Hlosta, J.; Jezerská, L.; Rozbroj, J.; Žurovec, D.; Nečas, J.; Zegzulka, J. DEM Investigation of the Influence of Particulate Properties and Operating Conditions on the Mixing Process in Rotary Drums: Part 2–Process Validation and Experimental Study. Processes 2020, 8, 184. [Google Scholar] [CrossRef]
- Mellmann, J. The Transverse Motion of Solids in Rotating Cylinders–Forms of Motion and Transition Behavior. Powder Technol. 2001, 118, 251–270. [Google Scholar] [CrossRef]
- Mio, H.; Shimosaka, A.; Shirakawa, Y.; Hidaka, J. Optimum Cell Size for Contact Detection in the Algorithm of the Discrete Element Method. J. Chem. Eng. Jpn. 2005, 38, 969–975. [Google Scholar] [CrossRef]
- Seiden, G.; Thomas, P.J. Complexity, Segregation, and Pattern Formation in Rotating-Drum Flows. Rev. Mod. Phys. 2011, 83, 1323–1365. [Google Scholar] [CrossRef]
- Zhong, W.; Yu, A.; Liu, X.; Tong, Z.; Zhang, H. DEM/CFD-DEM Modelling of Non-spherical Particulate Systems: Theoretical Developments and Applications. Powder Technol. 2016, 302, 108–152. [Google Scholar] [CrossRef]
- Sakai, M. How Should the Discrete Element Method Be Applied in Industrial Systems?: A Review. KONA Powder Part. J. 2016, 33, 169–178. [Google Scholar] [CrossRef]
- Paulick, M.; Morgeneyer, M.; Kwade, A. Review on the Influence of Elastic Particle Properties on DEM Simulation Results. Powder Technol. 2015, 283, 66–76. [Google Scholar] [CrossRef]
- Kumar, S.; Khatoon, S.; Parashar, S.; Dubey, P.; Yogi, J.; Anand, A. Effect of Aspect Ratio of Ellipsoidal Particles on Segregation of a Binary Mixture in a Rotating Drum. Powder Technol. 2023, 427, 118682. [Google Scholar] [CrossRef]
Property | Ball (Polyethelene) | Vessel (Acrylic) |
---|---|---|
Mass density () | 931 | 1180 |
Modulus of elasticity (GPa) | 0.76 | 1.70 |
Poisson’s ratio | 0.25 | 0.37 |
Parameter | Ball–Ball | Ball–Vessel |
---|---|---|
Coefficient of restitution | 0.5 | 0.5 |
Coefficient of sliding friction | 0.25 | 0.25 |
Coefficient of rolling friction | 0.1 | 0.1 |
Parameter | Value |
---|---|
Drum rotation speed (rpm) | 5.0 |
Computational time step (µs) | 17.78 |
Simulation time (s) | 60 |
Number of iterations | 3,375,000 |
Computation domain size () | |
Unit length of background cells (mm) | 25.0 |
Number of cubic cells | 5625 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byun, J.; Son, K.J. Experimental and Numerical Study of Computer Vision-Based Real-Time Monitoring of Polymeric Particle Mixing Process in Rotary Drum. Polymers 2024, 16, 1524. https://doi.org/10.3390/polym16111524
Byun J, Son KJ. Experimental and Numerical Study of Computer Vision-Based Real-Time Monitoring of Polymeric Particle Mixing Process in Rotary Drum. Polymers. 2024; 16(11):1524. https://doi.org/10.3390/polym16111524
Chicago/Turabian StyleByun, Junghyun, and Kwon Joong Son. 2024. "Experimental and Numerical Study of Computer Vision-Based Real-Time Monitoring of Polymeric Particle Mixing Process in Rotary Drum" Polymers 16, no. 11: 1524. https://doi.org/10.3390/polym16111524
APA StyleByun, J., & Son, K. J. (2024). Experimental and Numerical Study of Computer Vision-Based Real-Time Monitoring of Polymeric Particle Mixing Process in Rotary Drum. Polymers, 16(11), 1524. https://doi.org/10.3390/polym16111524