Industrial Two-Phase Olive Pomace Slurry-Derived Hydrochar Fuel for Energy Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Experiments for Hydrochar Production
2.3. Characterization of Raw Material and Hydrochar
2.4. Slagging and Fouling Risks Evaluation
2.5. Combustion Performance Analysis of Raw Material and Hydrochar
3. Results
3.1. Molecular Structure and Formation of Hydrochar
3.2. Characteristics of Raw Material and Hydrochars
3.3. Slagging and Fouling Risks of Raw Materials and Hydrochars
3.4. Optimal HTC Process Conditions and Combustion Performance of Hydrochar
3.5. TGA–DSC Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
OP = Olive pomace |
HTC = Hydrothermal carbonisation |
180-2 = Hydrochar produced at 180 °C with 2 min holding time |
180-16 = Hydrochar produced at 180 °C with 16 min holding time |
180-30 = Hydrochar produced at 180 °C with 30 min holding time |
215-2 = Hydrochar produced at 215 °C with 2 min holding time |
215-16 = Hydrochar produced at 215 °C with 16 min holding time |
215-30 = Hydrochar produced at 215 °C with 30 min holding time |
250-2 = Hydrochar produced at 250 °C with 2 min holding time |
250-16 = Hydrochar produced at 250 °C with 16 min holding time |
250-30 = Hydrochar produced at 250 °C with 30 min holding time |
NMR = Nuclear magnetic resonance |
FTIR = Fourier transform infrared spectroscopy |
TGA = Thermogravimetric analysis |
DSC = Differential scanning calorimetry |
βi = Model parameters for response surface |
Ti = Ignition temperature |
Tb = Burnout temperature |
E = Extractives obtained by hexane solvent extraction |
AIL = Acid insoluble lignin |
HY = Hydrochar yield |
VM = Volatile matter |
FC = Fixed carbon |
FCI = Fixed carbon index |
CDF = Carbon densification factor |
HHV = Higher heating value |
EDR = Energy densification ratio |
EY = Energy yield |
AI = Alkali index |
B/A = Base to acid ratio |
SI = Slagging index |
FI = Fouling index |
SVI = Slag viscosity index |
BAI = Bed agglomeration index |
References
- IRENA. World Energy Transitions Outlook 2023—1.5 °C Pathway—Preview; International Renewable Energy Agency: Masdar City, Abu Dhabi, 2023. [Google Scholar]
- IRENA. Agricultural Residue-Based Bioenergy: Regional Potential and Scale-up Strategies; International Renewable Energy Agency: Masdar City, Abu Dhabi, 2023. [Google Scholar]
- Khan, N.; Mohan, S.; Dinesha, P. Regimes of Hydrochar Yield from Hydrothermal Degradation of Various Lignocellulosic Biomass: A Review. J. Clean. Prod. 2021, 288, 125629. [Google Scholar] [CrossRef]
- González-Arias, J.; Sánchez, M.E.; Cara-Jiménez, J.; Baena-Moreno, F.M.; Zhang, Z. Hydrothermal Carbonization of Biomass and Waste: A Review. Environ. Chem. Lett. 2022, 20, 211–221. [Google Scholar] [CrossRef]
- Petrović, J.; Ercegović, M.; Simić, M.; Koprivica, M.; Dimitrijević, J.; Jovanović, A.; Janković Pantić, J. Hydrothermal Carbonization of Waste Biomass: A Review of Hydrochar Preparation and Environmental Application. Processes 2024, 12, 207. [Google Scholar] [CrossRef]
- Kambo, H.S.; Dutta, A. Strength, Storage, and Combustion Characteristics of Densified Lignocellulosic Biomass Produced via Torrefaction and Hydrothermal Carbonization. Appl. Energy 2014, 135, 182–191. [Google Scholar] [CrossRef]
- Wang, L.; Chang, Y.; Li, A. Hydrothermal Carbonization for Energy-Efficient Processing of Sewage Sludge: A Review. Renew. Sustain. Energy Rev. 2019, 108, 423–440. [Google Scholar] [CrossRef]
- Ischia, G.; Fiori, L. Hydrothermal Carbonization of Organic Waste and Biomass: A Review on Process, Reactor, and Plant Modeling. Waste Biomass Valorization 2021, 12, 2797–2824. [Google Scholar] [CrossRef]
- MAPA. Spanish Ministry of Agriculture, Fisheries and Food. Anuario de estadística 2022. Chapter 07: Crop Surfaces and Crop Production. 2021. Available online: https://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/default.aspx (accessed on 10 May 2024).
- Altieri, G.; Di Renzo, G.C.; Genovese, F. Horizontal Centrifuge with Screw Conveyor (Decanter): Optimization of Oil/Water Levels and Differential Speed during Olive Oil Extraction. J. Food Eng. 2013, 119, 561–572. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; Gonzálvez, J.; García, D.; Cegarra, J. Agrochemical Characterisation of “Alperujo”, a Solid by-Product of the Two-Phase Centrifugation Method for Olive Oil Extraction. Bioresour. Technol. 2004, 91, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Perete, D.; Hermoso-Orzáez, M.J.; Carmo-Calado, L.; Martín-Doñate, C.; Terrados-Cepeda, J. Energy Recovery from Polymeric 3D Printing Waste and Olive Pomace Mixtures via Thermal Gasification—Effect of Temperature. Polymers 2023, 15, 750. [Google Scholar] [CrossRef]
- Gimenez, M.; Rodríguez, M.; Montoro, L.; Sardella, F.; Rodríguez-Gutierrez, G.; Monetta, P.; Deiana, C. Two Phase Olive Mill Waste Valorization. Hydrochar Production and Phenols Extraction by Hydrothermal Carbonization. Biomass Bioenergy 2020, 143, 105875. [Google Scholar] [CrossRef]
- Jurado-Contreras, S.; Navas-Martos, F.J.; Rodríguez-Liébana, J.A.; Moya, A.J.; La Rubia, M.D. Manufacture and Characterization of Recycled Polypropylene and Olive Pits Biocomposites. Polymers 2022, 14, 4206. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Contreras, S.; Navas-Martos, F.J.; García-Ruiz, Á.; Rodríguez-Liébana, J.A.; La Rubia, M.D. Obtaining Cellulose Nanocrystals from Olive Tree Pruning Waste and Evaluation of Their Influence as a Reinforcement on Biocomposites. Polymers 2023, 15, 4251. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, L.; Prestes, O.D.; Augusti, P.R.; Fonseca Moreira, J.C. Phenolic Compounds and Contaminants in Olive Oil and Pomace—A Narrative Review of Their Biological and Toxic Effects. Food Biosci. 2023, 53, 102626. [Google Scholar] [CrossRef]
- Berbel, J.; Posadillo, A. Review and Analysis of Alternatives for the Valorisation of Agro-Industrial Olive Oil by-Products. Sustainability 2018, 10, 237. [Google Scholar] [CrossRef]
- Dahdouh, A.; Khay, I.; Le Brech, Y.; El Maakoul, A.; Bakhouya, M. Olive Oil Industry: A Review of Waste Stream Composition, Environmental Impacts, and Energy Valorization Paths. Environ. Sci. Pollut. Res. 2023, 30, 45473–45497. [Google Scholar] [CrossRef] [PubMed]
- Aharonov-Nadborny, R.; Raviv, M.; Graber, E.R. Soil Spreading of Liquid Olive Mill Processing Wastes Impacts Leaching of Adsorbed Terbuthylazine. Chemosphere 2016, 156, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Christofi, A.; Fella, P.; Agapiou, A.; Barampouti, E.M.; Mai, S.; Moustakas, K.; Loizidou, M. The Impact of Drying and Storage on the Characteristics of Two-Phase Olive Pomace. Sustainability 2024, 16, 1116. [Google Scholar] [CrossRef]
- Micali, F.; Mendecka, B.; Lombardi, L.; Milanese, M.; Ferrara, G.; De Risi, A. Experimental Investigation on High-Temperature Hydrothermal Carbonization of Olive Pomace in Batch Reactor. AIP Conf. Proc. 2019, 2191, 020112. [Google Scholar]
- Erses Yay, A.S.; Birinci, B.; Açıkalın, S.; Yay, K. Hydrothermal Carbonization of Olive Pomace and Determining the Environmental Impacts of Post-Process Products. J. Clean. Prod. 2021, 315, 128087. [Google Scholar] [CrossRef]
- Semaan, J.N.; Belandria, V.; Missaoui, A.; Sarh, B.; Gökalp, I.; Bostyn, S. Energy Analysis of Olive Pomace Valorization via Hydrothermal Carbonization. Biomass Bioenergy 2022, 165, 106590. [Google Scholar] [CrossRef]
- Dahdouh, A.; Le Brech, Y.; Khay, I.; El Maakoul, A.; Bakhouya, M. Hydrothermal Liquefaction of Moroccan Two-Phase Olive Mill Waste (Alperujo): Parametric Study and Products Characterizations. Ind. Crops Prod. 2023, 205, 117519. [Google Scholar] [CrossRef]
- Al Afif, R.; Kapidžić, M.; Pfeifer, C. Evaluation of Biochar and Hydrocar Energy Potential Derived from Olive Mills Waste: The Case of Montenegro. Energy 2024, 290, 130234. [Google Scholar] [CrossRef]
- Azzaz, A.A.; Jeguirim, M.; Marks, E.A.N.; Rad, C.; Jellali, S.; Goddard, M.L.; Ghimbeu, C.M. Physico-Chemical Properties of Hydrochars Produced from Raw Olive Pomace Using Olive Mill Wastewater as Moisture Source. C. R. Chim. 2020, 23, 635–652. [Google Scholar] [CrossRef]
- Ncube, A.; Fiorentino, G.; Panfilo, C.; De Falco, M.; Ulgiati, S. Circular Economy Paths in the Olive Oil Industry: A Life Cycle Assessment Look into Environmental Performance and Benefits. Int. J. Life Cycle Assess. 2022. [Google Scholar] [CrossRef]
- Negro, M.J.; Manzanares, P.; Ruiz, E.; Castro, E.; Ballesteros, M. The Biorefinery Concept for the Industrial Valorization of Residues from Olive Oil Industry. In Olive Mill Waste: Recent Advances for Sustainable Management; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Gómez-Cruz, I.; del Mar Contreras, M.; Romero, I.; Castro, E. Towards the Integral Valorization of Olive Pomace-Derived Biomasses through Biorefinery Strategies. ChemBioEng Rev. 2024, 11, 253–277. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy. Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Missaoui, A.; Bostyn, S.; Belandria, V.; Cagnon, B.; Sarh, B.; Gökalp, I. Hydrothermal Carbonization of Dried Olive Pomace: Energy Potential and Process Performances. J. Anal. Appl. Pyrolysis 2017, 128, 281–290. [Google Scholar] [CrossRef]
- Köchermann, J.; Görsch, K.; Wirth, B.; Mühlenberg, J.; Klemm, M. Hydrothermal Carbonization: Temperature Influence on Hydrochar and Aqueous Phase Composition during Process Water Recirculation. J. Environ. Chem. Eng. 2018, 6, 5481–5487. [Google Scholar] [CrossRef]
- TAPPI T 222; Acid-Insoluble Lignin in Wood and Pulp (Reaffirmation of T 222 Om-02). TAPPI: Peachtree Corners, GA, USA, 2011.
- USEPA Method 9071B; n-Hexane Extractable Material (Hem) for Sludge, Sediment, and Solid Samples. U.S. Environmental Protection Agency: Washington, DC, USA, 1998.
- UNE-EN 15148:2010; Solid Biofuels—Determination of the Content of Volatile Matter. Spanish Association for Standardization and Certification (AENOR): Madrid, Spain, 2010.
- Park, S.; Kim, S.J.; Oh, K.C.; Cho, L.H.; Jeon, Y.K.; Lee, C.; Kim, D.H. Thermogravimetric Analysis-Based Proximate Analysis of Agro-Byproducts and Prediction of Calorific Value. Energy Rep. 2022, 8, 12038–12044. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass-NREL/TP-510-42622; National Renewable Energy Laboratory: Golden, CO, USA, 2008; Volume 36.
- ASTM E870-82; Standard Test Methods for Analysis of Wood Fuels. ASTM International: West Conshohocken, PA, USA, 2019.
- Xu, X.; Tu, R.; Sun, Y.; Wu, Y.; Jiang, E.; Gong, Y.; Li, Y. The Correlation of Physicochemical Properties and Combustion Performance of Hydrochar with Fixed Carbon Index. Bioresour. Technol. 2019, 294, 122053. [Google Scholar] [CrossRef]
- Tu, R.; Sun, Y.; Wu, Y.; Fan, X.; Cheng, S.; Jiang, E.; Xu, X. A New Index for Hydrochar Based on Fixed Carbon Content to Predict Its Structural Properties and Thermal Behavior. Energy 2021, 229, 120572. [Google Scholar] [CrossRef]
- Wang, G.; Li, R.; Dan, J.; Yuan, X.; Shao, J.; Liu, J.; Xu, K.; Li, T.; Ning, X.; Wang, C. Preparation of Biomass Hydrochar and Application Analysis of Blast Furnace Injection. Energies 2023, 16, 1216. [Google Scholar] [CrossRef]
- Oxide—Carbonate—Element Conversion Table. Available online: https://jepspectro.com/electron_microprobe/oxide_conversion.htm (accessed on 5 February 2024).
- Lachman, J.; Baláš, M.; Lisý, M.; Lisá, H.; Milčák, P.; Elbl, P. An Overview of Slagging and Fouling Indicators and Their Applicability to Biomass Fuels. Fuel Process. Technol. 2021, 217, 106804. [Google Scholar] [CrossRef]
- Liu, H.; Lyczko, N.; Nzihou, A.; Eskicioglu, C. Phosphorus Extracted Municipal Sludge-Derived Hydrochar as a Potential Solid Fuel: Effects of Acidic Leaching and Combustion Mechanism. Chem. Eng. J. 2023, 473, 145191. [Google Scholar] [CrossRef]
- Benedetti, V.; Pecchi, M.; Baratieri, M. Combustion Kinetics of Hydrochar from Cow-Manure Digestate via Thermogravimetric Analysis and Peak Deconvolution. Bioresour. Technol. 2022, 353, 127142. [Google Scholar] [CrossRef]
- Cuevas, M.; Martínez Cartas, M.L.; Sánchez, S. Effect of Short-Time Hydrothermal Carbonization on the Properties of Hydrochars Prepared from Olive-Fruit Endocarps. Energy Fuels 2019, 33, 313–322. [Google Scholar] [CrossRef]
- Biswas, S.; Rahaman, T.; Gupta, P.; Mitra, R.; Dutta, S.; Kharlyngdoh, E.; Guha, S.; Ganguly, J.; Pal, A.; Das, M. Cellulose and Lignin Profiling in Seven, Economically Important Bamboo Species of India by Anatomical, Biochemical, FTIR Spectroscopy and Thermogravimetric Analysis. Biomass Bioenergy 2022, 158, 106362. [Google Scholar] [CrossRef]
- Gao, P.; Zhou, Y.; Meng, F.; Zhang, Y.; Liu, Z.; Zhang, W.; Xue, G. Preparation and Characterization of Hydrochar from Waste Eucalyptus Bark by Hydrothermal Carbonization. Energy 2016, 97, 238–245. [Google Scholar] [CrossRef]
- Gierlinger, N.; Goswami, L.; Schmidt, M.; Burgert, I.; Coutand, C.; Rogge, T.; Schwanninger, M. In Situ FT-IR Microscopic Study on Enzymatic Treatment of Poplar Wood Cross-Sections. Biomacromolecules 2008, 9, 2194–2201. [Google Scholar] [CrossRef]
- Ibrahim, R.H.H.; Darvell, L.I.; Jones, J.M.; Williams, A. Physicochemical Characterisation of Torrefied Biomass. J. Anal. Appl. Pyrolysis 2013, 103, 21–30. [Google Scholar] [CrossRef]
- Park, J.; Meng, J.; Lim, K.H.; Rojas, O.J.; Park, S. Transformation of Lignocellulosic Biomass during Torrefaction. J. Anal. Appl. Pyrolysis 2013, 100, 199–206. [Google Scholar] [CrossRef]
- Popescu, C.M.; Popescu, M.C.; Singurel, G.; Vasile, C.; Argyropoulos, D.S.; Willfor, S. Spectral Characterization of Eucalyptus Wood. Appl. Spectrosc. 2007, 61, 1168–1177. [Google Scholar] [CrossRef] [PubMed]
- Aguado, R.; Cuevas, M.; Pérez-Villarejo, L.; Martínez-Cartas, M.L.; Sánchez, S. Upgrading Almond-Tree Pruning as a Biofuel via Wet Torrefaction. Renew. Energy 2020, 145, 2091–2100. [Google Scholar] [CrossRef]
- Faix, O. Condensation Indices of Lignins Determined by FTIR-Spectroscopy. Eur. J. Wood Wood Prod. 1991, 49, 356. [Google Scholar] [CrossRef]
- Petrakis, L. Spectral Line Shapes: Gaussian and Lorentzian Functions in Magnetic Resonance. J. Chem. Educ. 1967, 44, 432. [Google Scholar] [CrossRef]
- Saito, T.; Nakaie, S.; Kinoshita, M.; Ihara, T.; Kinugasa, S.; Nomura, A.; Maeda, T. Practical Guide for Accurate Quantitative Solution State NMR Analysis. Metrologia 2004, 41, 213–218. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, K.; Sun, H.; Yang, Y.; Han, L.; Zheng, H.; Xing, B. Investigation on Parameters Optimization to Produce Hydrochar without Carbohydrate Carbon. Sci. Total Environ. 2020, 748, 141354. [Google Scholar] [CrossRef]
- Kostryukov, S.G.; Petrov, P.S.; Masterova, Y.Y.; Idris, T.D.; Hamdamov, S.S.; Yunusov, I.A.; Kostryukov, N.S. CP MAS 13C NMR Spectroscopy in Determination of Species-Specific Differences in Wood Composition. Russ. J. Bioorg. Chem. 2022, 48, 1441–1447. [Google Scholar] [CrossRef]
- Kostryukov, S.G.; Petrov, P.S.; Kalyazin, V.A.; Masterova, Y.Y.; Tezikova, V.S.; Khluchina, N.A.; Labzina, L.Y.; Alalvan, D.K. Determination of Lignin Content in Plant Materials Using Solid-State 13C NMR Spectroscopy. Polym. Sci.—Ser. B 2021, 63, 544–552. [Google Scholar] [CrossRef]
- Falco, C.; Baccile, N.; Titirici, M.M. Morphological and Structural Differences between Glucose, Cellulose and Lignocellulosic Biomass Derived Hydrothermal Carbons. Green Chem. 2011, 13, 3273–3281. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, X.; Peng, X.; Yu, Z. A Mechanism Study on Hydrothermal Carbonization of Waste Textile. Energy Fuels 2016, 30, 7746–7754. [Google Scholar] [CrossRef]
- Zhuang, X.; Zhan, H.; Song, Y.; He, C.; Huang, Y.; Yin, X.; Wu, C. Insights into the Evolution of Chemical Structures in Lignocellulose and Non-Lignocellulose Biowastes during Hydrothermal Carbonization (HTC). Fuel 2019, 236, 960–974. [Google Scholar] [CrossRef]
- Tekin, K.; Karagöz, S.; Bektaş, S. A Review of Hydrothermal Biomass Processing. Renew. Sustain. Energy Rev. 2014, 40, 673–687. [Google Scholar] [CrossRef]
- Funke, A.; Ziegler, F. Hydrothermal Carbonization of Biomass: A Summary and Discussion of Chemical Mechanisms for Process Engineering. Biofuels Bioprod. Biorefining 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Shi, N.; Liu, Q.; He, X.; Wang, G.; Chen, N.; Peng, J.; Ma, L. Molecular Structure and Formation Mechanism of Hydrochar from Hydrothermal Carbonization of Carbohydrates. Energy Fuels 2019, 33, 9904–9915. [Google Scholar] [CrossRef]
- Bobleter, O. Hydrothermal Degradation of Polymers Derived from Plants. Prog. Polym. Sci. 1994, 19, 797–841. [Google Scholar] [CrossRef]
- Calucci, L.; Forte, C. Influence of Process Parameters on the Hydrothermal Carbonization of Olive Tree Trimmings: A 13C Solid-State NMR Study. Appl. Sci. 2023, 13, 1515. [Google Scholar] [CrossRef]
- Volpe, M.; Fiori, L. From Olive Waste to Solid Biofuel through Hydrothermal Carbonisation: The Role of Temperature and Solid Load on Secondary Char Formation and Hydrochar Energy Properties. J. Anal. Appl. Pyrolysis 2017, 124, 63–72. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, K.; Bhaskar, T. Hydochar and Biochar: Production, Physicochemical Properties and Techno-Economic Analysis. Bioresour. Technol. 2020, 310, 123442. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. The Production of Carbon Materials by Hydrothermal Carbonization of Cellulose. Carbon 2009, 4, 2281–2289. [Google Scholar] [CrossRef]
- Markič, M.; Kalan, Z.; Pezdič, J.; Faganeli, J. H/C versus O/C Atomic Ratio Characterization of Selected Coals in Slovenia. Geologija 2007, 50, 403–426. [Google Scholar] [CrossRef]
- Demirbas, A. Relationships between Heating Value and Lignin, Moisture, Ash and Extractive Contents of Biomass Fuels. Energy Explor. Exploit. 2002, 20, 105–111. [Google Scholar] [CrossRef]
- Esteves, B.; Sen, U.; Pereira, H. Influence of Chemical Composition on Heating Value of Biomass: A Review and Bibliometric Analysis. Energies 2023, 16, 4226. [Google Scholar] [CrossRef]
- Nutalapati, D.; Gupta, R.; Moghtaderi, B.; Wall, T.F. Assessing Slagging and Fouling during Biomass Combustion: A Thermodynamic Approach Allowing for Alkali/Ash Reactions. Fuel Process. Technol. 2007, 88, 1044–1052. [Google Scholar] [CrossRef]
- Zhu, Y.; Si, Y.; Wang, X.; Zhang, W.; Shao, J.; Yang, H.; Chen, H. Characterization of Hydrochar Pellets from Hydrothermal Carbonization of Agricultural Residues. Energy Fuels 2018, 32, 11538–11546. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, X.; Peng, X.; Hu, S.; Yu, Z.; Fang, S. Effect of Hydrothermal Carbonization Temperature on Combustion Behavior of Hydrochar Fuel from Paper Sludge. Appl. Therm. Eng. 2015, 91, 574–582. [Google Scholar] [CrossRef]
- Liu, Z.; Balasubramanian, R. Upgrading of Waste Biomass by Hydrothermal Carbonization (HTC) and Low Temperature Pyrolysis (LTP): A Comparative Evaluation. Appl. Energy 2014, 114, 857–864. [Google Scholar] [CrossRef]
- Smith, A.M.; Singh, S.; Ross, A.B. Fate of Inorganic Material during Hydrothermal Carbonisation of Biomass: Influence of Feedstock on Combustion Behaviour of Hydrochar. Fuel 2016, 169, 135–145. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, F.; Shen, X.; Yi, W.; Li, Z.; Li, Y.; Tian, C. Comparison Study on Fuel Properties of Hydrochars Produced from Corn Stalk and Corn Stalk Digestate. Energy 2018, 165, 527–536. [Google Scholar] [CrossRef]
- Wang, J.; Minami, E.; Asmadi, M.; Kawamoto, H. Effect of Delignification on Thermal Degradation Reactivities of Hemicellulose and Cellulose in Wood Cell Walls. J. Wood Sci. 2021, 67, 19. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
Indicator | Equations | Slagging and Fouling Risks | ||
---|---|---|---|---|
Low | Medium | High | ||
Alkali index (AI) | <0.17 | 0.17–0.34 | >0.34 | |
Base-to-acid ratio (B/A) | - | - | - | |
Slagging index (SI) | <0.6 | 0.6–2.0 | 2.0–2.6 | |
Fouling index (FI) | 0.2 | 0.2–0.5 | 0.51.0 | |
Slag viscosity index (SVI) | >72 | 65–72 | <65 | |
Bed agglomeration index (BAI) | - | - | - |
Samples | HY (%) | AIL (%) | E (%) | Ash (%) | VM (%) | FC (%) | Fuel Ratio | FCI |
---|---|---|---|---|---|---|---|---|
OP | - | 36.82 ± 2.58 | 11.03 ± 0.86 | 4.25 ± 0.14 | 80.32 ± 1.41 | 15.43 ± 1.54 | 0.19 | 0.00 |
180-2 | 77.34 | 58.54 ± 0.07 | 18.04 ± 0.07 | 3.92 ± 0.04 | 77.60 ± 0.06 | 18.48 ± 0.10 | 0.24 | 0.11 |
180-16 | 75.31 | 58.22 ± 0.01 | 16.00 ± 0.15 | 3.86 ± 0.08 | 77.91 ± 0.19 | 18.23 ± 0.26 | 0.23 | 0.10 |
180-30 | 72.22 | 61.39 ± 0.05 | 18.19 ± 0.15 | 3.88 ± 0.15 | 78.20 ± 1.36 | 17.92 ± 1.51 | 0.23 | 0.09 |
215-2 | 74.01 | 63.73 ± 0.08 | 20.32 ± 0.01 | 3.83 ± 0.13 | 76.16 ± 1.19 | 20.01 ± 1.32 | 0.27 | 0.18 |
215-16 | 69.34 | 64.43 ± 0.29 | 19.41 ± 0.07 | 3.74 ± 0.04 | 74.94 ± 0.84 | 21.32 ± 0.80 | 0.28 | 0.21 |
215-16 | 66.33 | 65.10 ± 0.05 | 21.18 ± 0.67 | 3.86 ± 0.02 | 74.20 ± 1.13 | 21.94 ± 1.15 | 0.30 | 0.23 |
215-16 | 71.65 | 64.64 ± 0.12 | 19.17 ± 0.30 | 3.70 ± 0.12 | 73.31 ± 0.66 | 23.07 ± 0.66 | 0.31 | 0.27 |
215-30 | 67.99 | 66.49 ± 0.28 | 20.41 ± 0.23 | 3.78 ± 0.01 | 72.98 ± 0.13 | 23.24 ± 0.14 | 0.32 | 0.28 |
250-2 | 54.47 | 72.53 ± 0.34 | 25.84 ± 0.04 | 3.52 ± 0.27 | 70.65 ± 0.37 | 25.83 ± 0.64 | 0.37 | 0.37 |
250-16 | 52.66 | 73.96 ± 0.16 | 23.14 ± 0.31 | 3.40 ± 0.02 | 69.55 ± 0.33 | 27.05 ± 0.31 | 0.39 | 0.42 |
250-30 | 50.19 | 76.01 ± 0.35 | 24.67 ± 0.07 | 2.78 ± 0.05 | 69.35 ± 0.88 | 27.87 ± 0.83 | 0.40 | 0.45 |
Samples | C (%) | H (%) | N (%) | O (%) | CDF | HHV (MJ·Kg−1) | EDR | EY (%) |
---|---|---|---|---|---|---|---|---|
OP | 57.44 ± 0.98 | 7.39 ± 0.14 | 1.64 ± 0.35 | 29.32 ± 1.30 | 1.00 | 22.92 ± 0.26 | 1.00 | 100.00 |
180-2 | 59.80 ± 0.70 | 7.55 ± 0.08 | 1.47 ± 0.05 | 27.26 ± 0.82 | 1.04 | 24.62 ± 0.01 | 1.07 | 83.07 |
180-16 | 60.47 ± 0.14 | 7.61 ± 0.04 | 1.64 ± 0.07 | 26.42 ± 0.25 | 1.05 | 25.57 ± 0.00 | 1.12 | 84.01 |
180-30 | 61.43 ± 0.75 | 7.67 ± 0.04 | 1.66 ± 0.08 | 25.36 ± 0.88 | 1.07 | 26.29 ± 0.01 | 1.15 | 82.82 |
215-2 | 65.42 ± 0.10 | 7.92 ± 0.07 | 1.79 ± 0.08 | 21.03 ± 0.08 | 1.14 | 27.34 ± 0.02 | 1.19 | 88.26 |
215-16 | 64.95 ± 1.32 | 7.70 ± 0.02 | 1.72 ± 0.13 | 22.01 ± 1.38 | 1.13 | 27.87 ± 0.00 | 1.22 | 84.30 |
215-16 | 65.78 ± 0.04 | 7.76 ± 0.05 | 1.71 ± 0.02 | 21.06 ± 0.01 | 1.15 | 27.92 ± 0.00 | 1.22 | 84.63 |
215-16 | 64.00 ± 1.37 | 7.71 ± 0.18 | 1.63 ± 0.10 | 22.79 ± 1.65 | 1.11 | 27.84 ± 0.00 | 1.21 | 87.00 |
215-30 | 65.61 ± 1.87 | 7.79 ± 0.15 | 1.74 ± 0.15 | 21.07 ± 2.17 | 1.14 | 28.18 ± 0.04 | 1.23 | 83.58 |
250-2 | 68.50 ± 0.40 | 7.89 ± 0.14 | 1.79 ± 0.08 | 18.42 ± 0.34 | 1.19 | 31.34 ± 0.01 | 1.37 | 74.47 |
250-16 | 71.26 ± 0.03 | 8.16 ± 0.13 | 1.80 ± 0.04 | 15.26 ± 0.12 | 1.24 | 31.89 ± 0.01 | 1.39 | 73.25 |
250-30 | 71.83 ± 0.73 | 7.98 ± 0.12 | 1.90 ± 0.01 | 15.51 ± 0.87 | 1.25 | 32.20 ± 0.01 | 1.40 | 70.49 |
Samples | Na2O | MgO | Al2O3 | SiO2 | P2O5 | K2O | CaO | Fe2O3 | AI | B/A | SI | FI | SVI | BAI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OP | 0.28 | 0.15 | 0.06 | 0.12 | 0.18 | 2.41 | 0.64 | 0.11 | 1.17 | 20.59 | 0.21 | 55.43 | 12.07 | 0.04 |
180-2 | 0.33 | 0.07 | 0.03 | 0.02 | 0.68 | 1.40 | 0.68 | 0.03 | 0.70 | 60.10 | 0.60 | 103.71 | 2.51 | 0.02 |
180-16 | 0.39 | 0.10 | 0.05 | 0.07 | 0.65 | 1.39 | 0.80 | 0.04 | 0.70 | 28.12 | 0.28 | 50.10 | 7.25 | 0.02 |
180-30 | 0.45 | 0.10 | 0.06 | 0.12 | 0.70 | 1.32 | 1.16 | 0.04 | 0.67 | 21.03 | 0.21 | 37.24 | 8.22 | 0.03 |
215-2 | 0.60 | 0.11 | 0.05 | 0.07 | 0.77 | 1.42 | 0.89 | 0.04 | 0.74 | 30.79 | 0.31 | 62.25 | 6.29 | 0.02 |
215-16 | 0.39 | 0.09 | 0.05 | 0.08 | 0.75 | 1.22 | 0.86 | 0.04 | 0.58 | 24.67 | 0.25 | 39.57 | 7.54 | 0.03 |
215-30 | 0.27 | 0.09 | 0.06 | 0.10 | 0.73 | 1.35 | 0.78 | 0.05 | 0.57 | 19.95 | 0.20 | 32.23 | 10.08 | 0.03 |
250-2 | 0.80 | 0.12 | 0.05 | 0.02 | 0.49 | 0.75 | 0.94 | 0.04 | 0.49 | 48.72 | 0.49 | 75.32 | 1.58 | 0.03 |
250-16 | 0.44 | 0.10 | 0.07 | 0.11 | 0.92 | 0.84 | 0.96 | 0.06 | 0.40 | 17.83 | 0.18 | 22.69 | 8.93 | 0.05 |
250-30 | 0.07 | 0.09 | 0.08 | 0.17 | 1.06 | 0.49 | 0.81 | 0.06 | 0.17 | 10.53 | 0.11 | 5.91 | 14.60 | 0.11 |
Parameters | HY (%) | EDR | EY (%) |
---|---|---|---|
β0 | 69.9 ± 0.8 | 1.210 ± 0.000 | 85.50 ± 0.60 |
β1 | −11.3 ± 0.7 | 0.107 ± 0.002 | −5.28 ± 0.53 |
β2 | −2.6 ± 0.7 | 0.019 ± 0.002 | −1.49 ± 0.53 |
β3 | −6.2 ± 1.0 | 0.022 ± 0.002 | −7.50 ± 0.79 |
β4 | NS | NS | NS |
β5 | NS | −0.005 ± 0.002 | NS |
R2 | 0.979 | 0.998 | 0.965 |
R2 adjust | 0.970 | 0.997 | 0.951 |
F ratio | 107.9 | 901.5 | 65.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karim, A.A.; Martínez-Cartas, M.L.; Cuevas-Aranda, M. Industrial Two-Phase Olive Pomace Slurry-Derived Hydrochar Fuel for Energy Applications. Polymers 2024, 16, 1529. https://doi.org/10.3390/polym16111529
Karim AA, Martínez-Cartas ML, Cuevas-Aranda M. Industrial Two-Phase Olive Pomace Slurry-Derived Hydrochar Fuel for Energy Applications. Polymers. 2024; 16(11):1529. https://doi.org/10.3390/polym16111529
Chicago/Turabian StyleKarim, Adnan Asad, Mᵃ Lourdes Martínez-Cartas, and Manuel Cuevas-Aranda. 2024. "Industrial Two-Phase Olive Pomace Slurry-Derived Hydrochar Fuel for Energy Applications" Polymers 16, no. 11: 1529. https://doi.org/10.3390/polym16111529
APA StyleKarim, A. A., Martínez-Cartas, M. L., & Cuevas-Aranda, M. (2024). Industrial Two-Phase Olive Pomace Slurry-Derived Hydrochar Fuel for Energy Applications. Polymers, 16(11), 1529. https://doi.org/10.3390/polym16111529