Thermochromic Polymer Nanocomposites for the Heat Detection System: Recent Progress on Properties, Applications, and Challenges
Abstract
:1. Introduction
2. Reversible Thermochromic
2.1. Fundamental of the Reversible Thermochromism
2.2. Thermochromic Mechanism and Classification
- a.
- Crystal transition mechanism
- b.
- Ligand geometry mechanism
- c.
- Coordination number mechanism
- d.
- Liquid crystal mechanism
2.3. Synthesis Techniques for Reversible Thermochromic
2.4. Characterization of Reversible Thermochromic Materials
2.5. Advance Properties of Reversible Thermochromic Materials
3. Application in Heat Detection Systems
3.1. Thermochromic Materials in Fire Alarm System Applications
3.2. Coating and Smart Window Systems Applications
Material | Description | Type of Smart Window Mechanism | Important Parameter/Value | References |
---|---|---|---|---|
Liquid Crystal Polymers | Polymer Materials with Liquid Crystal Structures | Thermochromic Windows—liquid crystals in the polymer reorient with temperature changes, altering optical properties. | Reorientation temperature range (−20 °C to 50 °C) | [60,62] |
Hydrogels | Water-based materials with thermochromic properties | Smart Windows—swelling and shrinking of the hydrogel matrix with temperature variation causes optical changes. | Temperature-induced matrix swelling ratio (20% to 150%) | [63,202,203,204] |
Nanoparticles | Tiny particles with reversible thermochromism | Nanoparticle Windows—nanoparticles change their arrangement or properties in response to temperature, affecting light interaction. | Temperature-triggered nanoparticle aggregation temperature (50 °C) | [112,126,144,205] |
Microcapsules | Tiny capsules containing thermochromic substances | Microcapsule Windows—the contents of microcapsules change phase or properties with temperature, influencing light transmission. | Phase transition temperature (40 °C to 70 °C) | [113,154] |
Polymer-Based Materials | Polymers engineered to exhibit thermochromism | Polymer Smart Windows—the polymer matrix undergoes structural changes with temperature, altering optical characteristics. | Mechanical flexibility rating (excellent, good, fair, or poor) | [32,49,142,155] |
Vanadium Dioxide (VO2) | Inorganic compound known for its thermochromic properties. | VO2 Smart Windows—VO2 undergoes a semiconductor-to-metal transition at a critical temperature, affecting its optical properties. | Critical transition temperature (68 °C) | [112,126,147,205] |
Liquid Crystal Mixtures | Mixtures of liquid crystals with thermochromic behaviour | Liquid Crystal Windows—liquid crystals in the mixture change orientation and optical properties as temperature varies. | Temperature range for liquid crystal reorientation (25 °C to 60 °C) | [46,64,156] |
3.3. Food Packaging Application
3.4. Industrial Equipment and Manufacturing
3.5. Health and Medical Device Application
3.6. Textiles and Fabric Applications
4. Advantage and Challenges of Reversible Thermochromic Materials
4.1. Advancements in Material Design
4.2. Integration into IoT and Energy Applications
4.3. Cost-Effectiveness and Versatility of Reversible Thermochromic Materials
5. Future Directions and Recommendation
- Diverse application
- b.
- Micro and nanofabrication techniques
- c.
- Environmental sustainability
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- ReferencesTalveTalvenmaa, P. Introduction to chromic materials. In Intelligent Textiles and Clothing; Woodhead Publishing Series in Textiles: Sawston, UK, 2006; pp. 193–205. [Google Scholar] [CrossRef]
- Miodownik, M. The Time for Thermochromics. In Materials Today; Elsevier Ltd.: Amsterdam, The Netherlands, 2008; Volume 11, p. 6. [Google Scholar]
- Mehta, S.; Kushwaha, A.; Kisannagar, R.R.; Gupta, D. Fabrication of a Reversible Thermochromism Based Temperature Sensor Using an Organic-Inorganic Composite System. RSC Adv. 2020, 10, 21270–21276. [Google Scholar] [CrossRef] [PubMed]
- Van Der Werff, L.; Kyratzis, I.L.; Robinson, A.; Cranston, R.; Peeters, G.; O’Shea, M.; Nichols, L. Thermochromic Composite Fibres Containing Liquid Crystals Formed via Melt Extrusion. J. Mater. Sci. 2013, 48, 5005–5011. [Google Scholar] [CrossRef]
- De Bastiani, M.; Saidaminov, M.I.; Dursun, I.; Sinatra, L.; Peng, W.; Buttner, U.; Mohammed, O.F.; Bakr, O.M. Thermochromic Perovskite Inks for Reversible Smart Window Applications. Chem. Mater. 2017, 29, 3367–3370. [Google Scholar] [CrossRef]
- Guan, Y.; Zhang, L.; Wang, D.; West, J.L.; Fu, S. Preparation of Thermochromic Liquid Crystal Microcapsules for Intelligent Functional Fiber. Mater. Des. 2018, 147, 28–34. [Google Scholar] [CrossRef]
- Lu, Y.; Xiao, X.; Cao, Z.; Zhan, Y.; Cheng, H.; Xu, G. Transparent Optically Vanadium Dioxide Thermochromic Smart Film Fabricated via Electrospinning Technique. Appl. Surf. Sci. 2017, 425, 233–240. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Yu, Q.; Cao, G.; Yang, R.; Ke, J.; Di, X.; Liu, F.; Zhang, W.; Wang, C. Composite Phase Change Materials with Good Reversible Thermochromic Ability in Delignified Wood Substrate for Thermal Energy Storage. Appl. Energy 2018, 212, 455–464. [Google Scholar] [CrossRef]
- Huo, J.; Hu, Z.; He, G.; Hong, X.; Yang, Z.; Luo, S.; Ye, X.; Li, Y.; Zhang, Y.; Zhang, M.; et al. High Temperature Thermochromic Polydiacetylenes: Design and Colorimetric Properties. Appl. Surf. Sci. 2017, 423, 951–956. [Google Scholar] [CrossRef]
- Kim, H.; Chang, J.Y. Reversible Thermochromic Polymer Film Embedded with Fluorescent Organogel Nanofibers. Langmuir 2014, 30, 13673–13679. [Google Scholar] [CrossRef] [PubMed]
- Pisello, A.L. High-Albedo Roof Coatings for Reducing Building Cooling Needs. In Eco-Efficient Materials for Mitigating Building Cooling Needs: Design, Properties and Applications; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; pp. 243–268. ISBN 9781782424017. [Google Scholar]
- Zhu, C.F.; Wu, A.B. Studies on the Synthesis and Thermochromic Properties of Crystal Violet Lactone and Its Reversible Thermochromic Complexes. Thermochim. Acta 2005, 425, 7–12. [Google Scholar] [CrossRef]
- Granqvist, C.G.; Green, S.; Niklasson, G.A.; Mlyuka, N.R.; von Kræmer, S.; Georén, P. Advances in Chromogenic Materials and Devices. Thin Solid Films 2010, 518, 3046–3053. [Google Scholar] [CrossRef]
- Li, B.; Fan, H.T.; Zang, S.Q.; Li, H.Y.; Wang, L.Y. Metal-Containing Crystalline Luminescent Thermochromic Materials. Coord. Chem. Rev. 2018, 377, 307–329. [Google Scholar] [CrossRef]
- Liu, Y.; Gall, K.; Dunn, M.L.; McCluskey, P. Thermomechanics of Shape Memory Polymer Nanocomposites. Mech. Mater. 2004, 36, 929–940. [Google Scholar] [CrossRef]
- Fabiani, C.; Castaldo, V.L.; Pisello, A.L. Thermochromic Materials for Indoor Thermal Comfort Improvement: Finite Difference Modeling and Validation in a Real Case-Study Building. Appl. Energy 2020, 262, 114147. [Google Scholar] [CrossRef]
- Khalid, M.W.; Whitehouse, C.; Ahmed, R.; Hassan, M.U.; Butt, H. Remote Thermal Sensing by Integration of Corner-Cube Optics and Thermochromic Materials. Adv. Opt. Mater. 2019, 7, 1801013. [Google Scholar] [CrossRef]
- Padilla, J.; Toledo, C.; López-Vicente, R.; Montoya, R.; Navarro, J.-R.; Abad, J.; Urbina, A. Passive Heating and Cooling of Photovoltaic Greenhouses Including Thermochromic Materials. Energies 2021, 14, 438. [Google Scholar] [CrossRef]
- Ren, C.; Liu, F.; Umair, M.M.; Jin, X.; Zhang, S.; Tang, B. Excellent Temperature-Control Based on Reversible Thermochromic Materials for Light-Driven Phase Change Materials System. Molecules 2019, 24, 1623. [Google Scholar] [CrossRef] [PubMed]
- Aijaz, A.; Ji, Y.X.; Montero, J.; Niklasson, G.A.; Granqvist, C.G.; Kubart, T. Low-Temperature Synthesis of Thermochromic Vanadium Dioxide Thin Films by Reactive High Power Impulse Magnetron Sputtering. Sol. Energy Mater. Sol. Cells 2016, 149, 137–144. [Google Scholar] [CrossRef]
- Cao, X.; Jin, P.; Luo, H. VO2-Based Thermochromic Materials and Applications. In Nanotechnology in Eco-Efficient Construction; Fernando, P.-T., Diamanti, M.V., Nazari, A., Granqvist, C.G., Pruna, A., Amirkhanian, S., Eds.; Elsevier: Amsterdam, The Netherland, 2019; pp. 503–524. [Google Scholar]
- Fu, X.; Hosta-Rigau, L.; Chandrawati, R.; Cui, J. Multi-Stimuli-Responsive Polymer Particles, Films, and Hydrogels for Drug Delivery. Chem 2018, 4, 2084–2107. [Google Scholar] [CrossRef]
- Lin, Y.G.; Winter, H.H. High-Temperature Recrystallization and Rheology of a Thermotropic Liquid Crystalline Polymer. Macromolecules 1991, 24, 2877–2882. [Google Scholar] [CrossRef]
- Granqvist, C.G.; Niklasson, G.A. Thermochromic Oxide-Based Thin Films and Nanoparticle Composites for Energy-Efficient Glazings. Buildings 2017, 7, 3. [Google Scholar] [CrossRef]
- Chen, H.J.; Huang, L.H. An Investigation of the Design Potential of Thermochromic Home Textiles Used with Electric Heating Techniques. Math. Probl. Eng. 2015, 2015, 151573. [Google Scholar] [CrossRef]
- Li, Y.; Ji, S.; Gao, Y.; Luo, H.; Kanehira, M. Core-Shell VO2 @TiO2 Nanorods That Combine Thermochromic and Photocatalytic Properties for Application as Energy-Saving Smart Coatings. Sci. Rep. 2013, 3, 1370. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, E.C.; Vilà, D.M. Thermochromic Materials as Passive Roof Technology: Their Impact on Building Energy Performance. Energies 2022, 15, 2161. [Google Scholar] [CrossRef]
- Aburas, M.; Ebendorff-Heidepriem, H.; Lei, L.; Li, M.; Zhao, J.; Williamson, T.; Wu, Y.; Soebarto, V. Smart Windows—Transmittance Tuned Thermochromic Coatings for Dynamic Control of Building Performance. Energy Build. 2021, 235, 110717. [Google Scholar] [CrossRef]
- Sizirici, B.; Fseha, Y.; Cho, C.; Yildiz, I.; Byon, Y. A Review of Carbon Footprint Reduction in Construction Industry, from Design to Operation. Materials 2021, 14, 6094. [Google Scholar] [CrossRef] [PubMed]
- Novais, R.M.; Buruberri, L.H.; Ascensão, G.; Seabra, M.P.; Labrincha, J.A. Porous Biomass Fly Ash-Based Geopolymers with Tailored Thermal Conductivity. J. Clean. Prod. 2016, 119, 99–107. [Google Scholar] [CrossRef]
- Hannan, M.A.; Begum, R.A.; Abdolrasol, M.G.; Hossain Lipu, M.S.; Mohamed, A.; Rashid, M.M. Review of Baseline Studies on Energy Policies and Indicators in Malaysia for Future Sustainable Energy Development. Renew. Sustain. Energy Rev. 2018, 94, 551–564. [Google Scholar] [CrossRef]
- Al-Majidi, M.H.; Lampropoulos, A.; Cundy, A.; Meikle, S. Development of Geopolymer Mortar under Ambient Temperature for in Situ Applications. Constr. Build. Mater. 2016, 120, 198–211. [Google Scholar] [CrossRef]
- Li, Y.; Li, N.; Ge, J.; Xue, Y.; Niu, W.; Chen, M.; Du, Y.; Ma, P.X.; Lei, B. Biodegradable Thermal Imaging-Tracked Ultralong Nanowire-Reinforced Conductive Nanocomposites Elastomers with Intrinsical Efficient Antibacterial and Anticancer Activity for Enhanced Biomedical Application Potential. Biomaterials 2019, 201, 68–76. [Google Scholar] [CrossRef]
- Bao, S.; Fei, B.; Li, J.; Yao, X.; Lu, X.; Xin, J.H. Reversible Thermochromic Switching of Fluorescent Poly(Vinylidene Fluoride) Composite Containing Bis(Benzoxazolyl)Stilbene Dye. Dyes Pigments 2013, 99, 99–104. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, S.; Li, X.; Wang, S. In Situ Optical and Structural Properties of the Thermochromic Material Nd2MoO6. J. Alloys Compd. 2023, 960, 170746. [Google Scholar] [CrossRef]
- Mapazi, O.; Matabola, P.K.; Moutloali, R.M.; Ngila, C.J. A Urea-Modified Polydiacetylene-Based High Temperature Reversible Thermochromic Sensor: Characterisation and Evaluation of Properties as a Function of Temperature. Sens. Actuators B Chem. 2017, 252, 671–679. [Google Scholar] [CrossRef]
- Tözüm, M.S.; Aksoy, S.A.; Alkan, C. Microencapsulation of Three-Component Thermochromic System for Reversible Color Change and Thermal Energy Storage. Fibers Polym. 2018, 19, 660–669. [Google Scholar] [CrossRef]
- Kim, I.J.; Manivannan, R.; Son, Y.-A. Thermally Reversible Fluorans: Synthesis, Thermochromic Properties and Real Time Application. J. Nanosci. Nanotechnol. 2017, 18, 3299–3305. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.; Pramanik, S.K.; Das, A.; Baek, W.; Heo, J.M.; Ro, H.J.; Jun, S.; Park, B.J.; Kim, J.M. Photoinduced Reversible Bending and Guest Molecule Release of Azobenzene-Containing Polydiacetylene Nanotubes. Sci. Rep. 2019, 9, 15982. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.J.; Song, J.; Kantha, C.; Khazi, M.I.; Kundapur, U.; Heo, J.M.; Kim, J.M. Reversibly Thermochromic Cyclic Dipeptide Nanotubes. Langmuir 2018, 34, 8365–8373. [Google Scholar] [CrossRef]
- Mergu, N.; Kim, H.; Heo, G.; Son, Y.A. Development of Naphthalimide-Functionalized Thermochromic Conjugated Polydiacetylenes and Their Reversible Green-to-Red Chromatic Transition in the Solid State. Dyes Pigments 2019, 164, 355–362. [Google Scholar] [CrossRef]
- Chang, Y.H.; Huang, P.H.; Wu, B.Y.; Chang, S.W. A Study on the Color Change Benefits of Sustainable Green Building Materials. Constr. Build. Mater. 2015, 83, 1–6. [Google Scholar] [CrossRef]
- Aburas, M.; Soebarto, V.; Williamson, T.; Liang, R.; Ebendorff-Heidepriem, H.; Wu, Y. Thermochromic Smart Window Technologies for Building Application: A Review. Appl. Energy 2019, 255, 113522. [Google Scholar] [CrossRef]
- Granqvist, C.G. Recent Progress in Thermochromics and Electrochromics: A Brief Survey. Thin Solid Films 2016, 614, 90–96. [Google Scholar] [CrossRef]
- Tällberg, R.; Jelle, B.P.; Loonen, R.; Gao, T.; Hamdy, M. Comparison of the Energy Saving Potential of Adaptive and Controllable Smart Windows: A State-of-the-Art Review and Simulation Studies of Thermochromic, Photochromic and Electrochromic Technologies. Sol. Energy Mater. Sol. Cells 2019, 200, 109828. [Google Scholar] [CrossRef]
- Abdellaoui, H.; Raji, M.; Chakchak, H.; Bouhfid, R. Thermochromic composite materials: Synthesis, properties and applications. In Polymer Nanocomposite-Based Smart Materials; Woodhead Publishing: Sawston, UK, 2020; pp. 61–78. [Google Scholar] [CrossRef]
- Lin, Y.C.; Erhart, P.; Karlsson, M. Vibrationally Induced Color Shift Tuning of Photoluminescence in Ce3+-Doped Garnet Phosphors. J. Mater. Chem. C 2019, 7, 12926–12934. [Google Scholar] [CrossRef]
- Chou, H.H.; Nguyen, A.; Chortos, A.; To, J.W.F.; Lu, C.; Mei, J.; Kurosawa, T.; Bae, W.G.; Tok, J.B.H.; Bao, Z. A Chameleon-Inspired Stretchable Electronic Skin with Interactive Colour Changing Controlled by Tactile Sensing. Nat. Commun. 2015, 6, 8011. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Liu, Y.; Li, Z.; Wang, W. Thermochromic Microcapsules with Highly Transparent Shells Obtained through In-Situ Polymerization of Urea Formaldehyde around Thermochromic Cores for Smart Wood Coatings. Sci. Rep. 2018, 8, 4015. [Google Scholar] [CrossRef]
- Zhao, W.; Yan, X. Preparation of Thermochromic Microcapsules of Bisphenol A and Crystal Violet Lactone and Their Effect on Coating Properties. Polymers 2022, 14, 1393. [Google Scholar] [CrossRef]
- MacLaren, D.C.; White, M.A. Design Rules for Reversible Thermochromic Mixtures. J. Mater. Sci. 2005, 40, 669–676. [Google Scholar] [CrossRef]
- Wang, M.; Liu, G.; Gao, H.; Su, C.; Gao, J. Preparation and Performance of Reversible Thermochromic Phase Change Microcapsules Based on Negative Photochromic Spiropyran. Colloids Surf. A Physicochem. Eng. Asp. 2023, 659, 130808. [Google Scholar] [CrossRef]
- Wei, N.; Hao, X.; Sun, C.; Lan, J.; Yang, S. Reversible thermochromism materials micro-encapsulation and application in offset printing ink. In Proceedings of the 17th IAPRI World Conference on Packaging 2010, Tianjin, China, 12–15 October 2010; pp. 168–171. [Google Scholar]
- Karlessi, T.; Santamouris, M. Improving the Performance of Thermochromic Coatings with the Use of UV and Optical Filters Tested under Accelerated Aging Conditions. Int. J. Low-Carbon Technol. 2015, 10, 45–61. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Z.; Xiang, H.; Zhai, G.; Zhu, M. Fabrication of Visual Textile Temperature Indicators Based on Reversible Thermochromic Fibers. Dyes Pigments 2019, 162, 705–711. [Google Scholar] [CrossRef]
- Zhu, Q.; Chua, M.H.; Ong, P.J.; Cheng Lee, J.J.; Le Osmund Chin, K.; Wang, S.; Kai, D.; Ji, R.; Kong, J.; Dong, Z.; et al. Recent Advances in Nanotechnology-Based Functional Coatings for the Built Environment. Mater. Today Adv. 2022, 15, 100270. [Google Scholar] [CrossRef]
- Cannavale, A.; Ayr, U.; Fiorito, F.; Martellotta, F. Smart Electrochromic Windows to Enhance Building Energy Efficiency and Visual Comfort. Energies 2020, 13, 1449. [Google Scholar] [CrossRef]
- Wu, B.; Shi, L.; Zhang, Q.; Wang, W.J. Microencapsulation of 1-Hexadecanol as a Phase Change Material with Reversible Thermochromic Properties. RSC Adv. 2017, 7, 42129–42137. [Google Scholar] [CrossRef]
- Jamnicki Hanzer, S.; Kulčar, R.; Vukoje, M.; Marošević Dolovski, A. Assessment of Thermochromic Packaging Prints’ Resistance to UV Radiation and Various Chemical Agents. Polymers 2023, 15, 1208. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Vázquez-López, A.; Sánchez del Río Saeza, J.; Wang, D.Y. Recent Advances on Early-Stage Fire-Warning Systems: Mechanism, Performance, and Perspective; Springer: Singapore, 2022; Volume 14, ISBN 4082002200. [Google Scholar]
- Rashidzadeh, Z.; Heidari Matin, N. A Comparative Study on Smart Windows Focusing on Climate-Based Energy Performance and Users’ Comfort Attributes. Sustainability 2023, 15, 2294. [Google Scholar] [CrossRef]
- Patel, S.; Ershad, F.; Zhao, M.; Isseroff, R.R.; Duan, B.; Zhou, Y.; Wang, Y.; Yu, C. Wearable Electronics for Skin Wound Monitoring and Healing. Soft Sci. 2022, 2, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Schenning, A.P.H.J.; Kragt, A.J.J.; Zhou, G.; De Haan, L.T. Reversible Thermochromic Photonic Coatings with a Protective Topcoat. ACS Appl. Mater. Interfaces 2021, 13, 3153–3160. [Google Scholar] [CrossRef]
- Shang, S.; Zhu, P.; Wang, H.; Li, Y.; Yang, S. Thermally Responsive Photonic Fibers Consisting of Chained Nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 50844–50851. [Google Scholar] [CrossRef]
- Kragt, A.J.J.; Zuurbier, N.C.M.; Broer, D.J.; Schenning, A.P.H.J. Temperature-Responsive, Multicolor-Changing Photonic Polymers. ACS Appl. Mater. Interfaces 2019, 11, 28172–28179. [Google Scholar] [CrossRef]
- Jaik, T.G.; Ciubini, B.; Frascella, F.; Jonas, U. Thermal Response and Thermochromism of Methyl Red-Based Copolymer Systems-Coupled Responsiveness in Critical Solution Behaviour and Optical Absorption Properties. Polym. Chem. 2022, 13, 1186–1214. [Google Scholar] [CrossRef]
- Panák, O.; Držková, M.; Kaplanová, M.; Novak, U.; Klanjšek Gunde, M. The Relation between Colour and Structural Changes in Thermochromic Systems Comprising Crystal Violet Lactone, Bisphenol A, and Tetradecanol. Dyes Pigments 2017, 136, 382–389. [Google Scholar] [CrossRef]
- Sun, M.E.; Li, Y.; Dong, X.Y.; Zang, S.Q. Thermoinduced Structural-Transformation and Thermochromic Luminescence in Organic Manganese Chloride Crystals. Chem. Sci. 2019, 10, 3836–3839. [Google Scholar] [CrossRef] [PubMed]
- Ali Sikandar, M.; Ullah, S.; Umar, D.; Bashir, M.T.; Ali, L.; Waseem, M.; Qazi, A. Comparative Performance Evaluation of Smart Reversible Thermochromic Pigment-Based Cement and Polymeric Mortars. J. Build. Eng. 2022, 58, 105072. [Google Scholar] [CrossRef]
- Zhang, Y.; Bromberg, L.; Lin, Z.; Brown, P.; Van Voorhis, T.; Hatton, T.A. Polydiacetylene Functionalized with Charged Termini for Device-Free Colorimetric Detection of Malathion. J. Colloid Interface Sci. 2018, 528, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yang, T.; Mu, X.; Mai, Z.; Li, H.; Wang, Y.; Zhou, G. Smart Supramolecular Self-Assembled Nanosystem: Stimulus-Responsive Hydrogen-Bonded Liquid Crystals. Nanomaterials 2021, 11, 448. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Song, Y.; Xie, R.; Li, J.; Zhang, X.; Xie, H.; Zou, H. TiO2/PVA Based Composites: Visible Light Activated Rapid Dual-Mode Optical Response. Chem. Eng. J. 2023, 475, 146306. [Google Scholar] [CrossRef]
- Favaro, G.; Masetti, F.; Mazzucato, U.; Ottavi, G.; Allegrini, P.; Malatesta, V. Photochromism, Thermochromism and Solvatochromism of Some Spiro[Indolinoxazine]-Photomerocyanine Systems: Effects of Structure and Solvent. J. Chem. Soc. Faraday Trans. 1994, 90, 333–338. [Google Scholar] [CrossRef]
- He, Y.; Li, W.; Han, N.; Wang, J.; Zhang, X. Facile Flexible Reversible Thermochromic Membranes Based on Micro/Nanoencapsulated Phase Change Materials for Wearable Temperature Sensor. Appl. Energy 2019, 247, 615–629. [Google Scholar] [CrossRef]
- Jakovljević, M.S.; Lozo, B.; Gunde, M.K. Identifying a Unique Communication Mechanism of Thermochromic Liquid Crystal Printing Ink. Crystals 2021, 11, 876. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, X.; Fang, C.; Chen, J.; Wang, Z. Discoloration Mechanism, Structures and Recent Applications of Thermochromic Materials via Different Methods: A Review. J. Mater. Sci. Technol. 2018, 34, 2225–2234. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, J.; Ye, C.; Pei, Y.; Ling, S. Thermochromic Silks for Temperature Management and Dynamic Textile Displays. Nano-Micro Lett. 2021, 13, 72. [Google Scholar] [CrossRef]
- Yi, S.; Sun, S.; Deng, Y.; Feng, S. Preparation of Composite Thermochromic and Phase-Change Materials by the Sol–Gel Method and Its Application in Textiles. J. Text. Inst. 2015, 106, 1071–1077. [Google Scholar] [CrossRef]
- Geng, X.; Li, W.; Wang, Y.; Lu, J.; Wang, J.; Wang, N.; Li, J.; Zhang, X. Reversible Thermochromic Microencapsulated Phase Change Materials for Thermal Energy Storage Application in Thermal Protective Clothing. Appl. Energy 2018, 217, 281–294. [Google Scholar] [CrossRef]
- Zhang, W.; Ji, X.; Peng, B.J.; Che, S.; Ge, F.; Liu, W.; Al-Hashimi, M.; Wang, C.; Fang, L. High-Performance Thermoresponsive Dual-Output Dye System for Smart Textile Application. Adv. Funct. Mater. 2020, 30, 1906463. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Joshi, M.; Butola, B.S. Photochromic and Thermochromic Colorants in Textile Applications. J. Eng. Fiber. Fabr. 2014, 9, 107–123. [Google Scholar] [CrossRef]
- Yan, X.; Chang, Y.; Qian, X. Effect of Concentration of Thermochromic Ink on Performance of Waterborne Finish Films for the Surface of Cunninghamia Lanceolata. Polymers 2020, 12, 552. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhang, J.; Hua, H.; Wu, Z.; Wang, L.; Li, Y. Energy-Saving Thermochromic Smart Shield Based on Double Network Hydrogel with Intelligent Light Management and Robust Mechanical Property. Compos. Commun. 2023, 42, 101684. [Google Scholar] [CrossRef]
- Yan, X.; Wang, L.; Qian, X. Effect of Coating Process on Performance of Reversible Thermochromic Waterborne Coatings for Chinese Fir. Coatings 2020, 10, 223. [Google Scholar] [CrossRef]
- López-Bueno, C.; Bittermann, M.R.; Dacuña-Mariño, B.; Llamas-Saiz, A.L.; Del Carmen Giménez-López, M.; Woutersen, S.; Rivadulla, F. Low Temperature Glass/Crystal Transition in Ionic Liquids Determined by H-Bond: Vs. Coulombic Strength. Phys. Chem. Chem. Phys. 2020, 22, 20524–20530. [Google Scholar] [CrossRef]
- Kamalisarvestani, M.; Saidur, R.; Mekhilef, S.; Javadi, F.S. Performance, Materials and Coating Technologies of Thermochromic Thin Films on Smart Windows. Renew. Sustain. Energy Rev. 2013, 26, 353–364. [Google Scholar] [CrossRef]
- Cao, X.; Jin, P. Solar Modulation Utilizing VO2-Based Thermochromic Coatings for Energy-Saving Applications. In Emerging Solar Energy Materials; IntechOpen: London, UK, 2018; pp. 3–24. [Google Scholar]
- Jaw, H.R.C.; Mooney, M.M.; Novinson, T.; Kaska, W.C.; Zink, J.I. Optical Properties of the Thermochromic Compounds Disilver Tetraiodomercurate(2-) and Dicopper Tetraiodomercurate(2-). Inorg. Chem. 1987, 26, 1387–1391. [Google Scholar] [CrossRef]
- Panas, A.J.; Szczepaniak, R.; Stryczniewicz, W.; Omen, Ł. Thermophysical Properties of Temperature-Sensitive Paint. Materials 2021, 14, 2035. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Bae, J.; Lee, J.; Ahn, J.; Hwang, W.; Ko, J.; Kim, I. Porous Nanofiber Membrane: Rational Platform for Highly Sensitive Thermochromic Sensor. Adv. Funct. Mater. 2022, 32, 2270136. [Google Scholar] [CrossRef]
- Hoang, L.H.; Van Hai, P.; Hai, N.H.; Van Vinh, P.; Chen, X.-B.; Yang, I.-S. The Microwave-Assisted Synthesis and Characterization of Zn1−xCoxO Nanopowders. Mater. Lett. 2010, 64, 962–965. [Google Scholar] [CrossRef]
- Wu, Y.; Dai, Y.; Huang, L.; Pei, X.; Chen, W. Diffuse Phase Transition of Sol-Gel Deposited BaFexTi2-XO5 Thin Films. J. Alloys Compd. 2017, 727, 370–374. [Google Scholar] [CrossRef]
- Heiras, J.; Pichardo, E.; Mahmood, A.; López, T.; Pérez-Salas, R.; Siqueiros, J.M.; Castellanos, M. Thermochromism in (Ba,Sr)-Mn Oxides. J. Phys. Chem. Solids 2002, 63, 591–595. [Google Scholar] [CrossRef]
- Sadoh, A.; Hossain, S.; Ravindra, N.M. Thermochromic Polymeric Films for Applications in Active Intelligent Packaging—An Overview. Micromachines 2021, 12, 1193. [Google Scholar] [CrossRef]
- Li, W.; Zhu, C.; Wang, W.; Wu, J. Reversible Thermochromism Materials. Gongneng Cailiao/J. Funct. Mater. 1997, 28, 337–341. [Google Scholar]
- Milani, J.L.S.; Casagrande, O.L. Chromium Complexes Supported by Phenyl Ether-Pyrazolyl [N,O] Ligands as Catalysts for the Oligo- and Polymerization of Ethylene. Appl. Organomet. Chem. 2020, 34, e5984. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Yang, M.; Zhang, Y.; Xiang, K.; Tang, R. Review of Time Temperature Indicators as Quality Monitors in Food Packaging. Packag. Technol. Sci. 2015, 28, 839–867. [Google Scholar] [CrossRef]
- Mills, S.C.; Starr, N.E.; Bohannon, N.J.; Andrew, J.S. Chelating Agent Functionalized Substrates for the Formation of Thick Films via Electrophoretic Deposition. Front. Chem. 2021, 9, 703528. [Google Scholar] [CrossRef]
- Beale, A.M.; Sankar, G. Following the Structural Changes in Iron Phosphate Catalysts by in Situ Combined XRD/QuEXAFS Technique. J. Mater. Chem. 2002, 12, 3064–3072. [Google Scholar] [CrossRef]
- Karki, I.B.; Nakarmi, J.J.; Chatterjee, S. Synthesis of Zincoxide Nanorods and Its Application to Humidity Sensor. J. Inst. Sci. Technol. 2015, 20, 36–39. [Google Scholar] [CrossRef]
- Oh, S.W.; Baek, J.M.; Kim, S.H.; Yoon, T.H. Optical and Electrical Switching of Cholesteric Liquid Crystals Containing Azo Dye. RSC Adv. 2017, 7, 19497–19501. [Google Scholar] [CrossRef]
- Lee, E.S.; Pang, X.; Hoffmann, S.; Goudey, H.; Thanachareonkit, A. An Empirical Study of a Full-Scale Polymer Thermochromic Window and Its Implications on Material Science Development Objectives. Sol. Energy Mater. Sol. Cells 2013, 116, 14–26. [Google Scholar] [CrossRef]
- Abdellaoui, I.; Merad, G.; Maaza, M.; Abdelkader, H.S. Electronic and Optical Properties of Mg-, F-Doped and Mg-,F-Codoped M1-VO2 via Hybrid Density Functional Calculations. J. Alloys Compd. 2016, 658, 569–575. [Google Scholar] [CrossRef]
- Cutright, C.; Finkelstein, R.; Orlowski, E.; McIntosh, E.; Brotherton, Z.; Fabiani, T.; Khan, S.; Genzer, J.; Menegatti, S. Nonwoven Fiber Mats with Thermo-Responsive Permeability to Inorganic and Organic Electrolytes. J. Memb. Sci. 2020, 616, 118439. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, B.; Li, G.; Huang, H. Thermal and Electrical Performances of PV/T System Based on Reversible Thermochromic Coating. Appl. Therm. Eng. 2023, 234, 121358. [Google Scholar] [CrossRef]
- Vaghasiya, J.V.; Mayorga-Martinez, C.C.; Pumera, M. Wearable Sensors for Telehealth Based on Emerging Materials and Nanoarchitectonics. npj Flex. Electron. 2023, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Hakami, A.; Srinivasan, S.S.; Biswas, P.K.; Krishnegowda, A.; Wallen, S.L.; Stefanakos, E.K. Review on Thermochromic Materials: Development, Characterization, and Applications. J. Coat. Technol. Res. 2022, 19, 377–402. [Google Scholar] [CrossRef]
- Dantas de Oliveira, A.; Augusto Gonçalves Beatrice, C. Polymer Nanocomposites with Different Types of Nanofiller. Nanocomposites-Recent Evol. 2018, 18, 103–104. [Google Scholar] [CrossRef]
- Sima, W.; Li, Z.; Sun, P.; Yang, M.; Yang, Y.; Yuan, T. Thermochromic Insulation Materials for Thermal Sensing and Overheat Prewarning. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 1727–1734. [Google Scholar] [CrossRef]
- Nag, J.; Haglund, R.F. Synthesis of Vanadium Dioxide Thin Films and Nanoparticles. J. Phys. Condens. Matter 2008, 20, 264016. [Google Scholar] [CrossRef]
- Mai, L.Q.; Hu, B.; Hu, T.; Chen, W.; Gu, E.D. Electrical Property of Mo-Doped VO2 Nanowire Array Film by Melting-Quenching Sol-Gel Method. J. Phys. Chem. B 2006, 110, 19083–19086. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Chen, C.; Lv, C.; Chen, S. Tungsten-Doped Vanadium Dioxide Thin Films on Borosilicate Glass for Smart Window Application. J. Alloys Compd. 2013, 564, 158–161. [Google Scholar] [CrossRef]
- Kiri, P.; Warwick, M.E.A.; Ridley, I.; Binions, R. Fluorine Doped Vanadium Dioxide Thin Films for Smart Windows. Thin Solid Films 2011, 520, 1363–1366. [Google Scholar] [CrossRef]
- Wan, J.; Ren, Q.; Wu, N.; Gao, Y. Density Functional Theory Study of M-Doped (M = B, C, N, Mg, Al) VO2 Nanoparticles for Thermochromic Energy-Saving Foils. J. Alloys Compd. 2016, 662, 621–627. [Google Scholar] [CrossRef]
- Yuan, N.; Li, J.; Lin, C. Valence Reduction Process from Sol-Gel V2O5 to VO2 Thin Films. Appl. Surf. Sci. 2002, 191, 176–180. [Google Scholar]
- Zhao, X.; Yao, W.; Sun, J.; Yu, J.; Ma, J.; Liu, T.; Lu, Y.; Hu, R.; Jiang, X. Thermochromic Composite Film of VO2 Nanoparticles and [(C2H5)2NH2]2NiBr4@SiO2 Nanospheres for Smart Window Applications. Chem. Eng. J. 2023, 460, 141715. [Google Scholar] [CrossRef]
- Tözüm, M.S.; Alay Aksoy, S.; Alkan, C. Manufacturing Surface Active Shell and Bisphenol A Free Thermochromic Acrylic Microcapsules for Textile Applications. Int. J. Energy Res. 2021, 45, 7018–7037. [Google Scholar] [CrossRef]
- Roy, S.; Singha, N.R. Polymeric Nanocomposite Membranes for next Generation Pervaporation Process: Strategies, Challenges and Future Prospects. Membranes 2017, 7, 53. [Google Scholar] [CrossRef]
- Zhang, W.; Ji, X.; Al-Hashimi, M.; Wang, C.; Fang, L. Feasible Fabrication and Textile Application of Polymer Composites Featuring Dual Optical Thermoresponses. Chem. Eng. J. 2021, 419, 129553. [Google Scholar] [CrossRef]
- MacLaren, D.C.; White, M.A. Dye-Developer Interactions in the Crystal Violet Lactone-Lauryl Gallate Binary System: Implications for Thermochromism. J. Mater. Chem. 2003, 13, 1695–1700. [Google Scholar] [CrossRef]
- MacLaren, D.C.; White, M.A. Competition between Dye-Developer and Solvent-Developer Interactions in a Reversible Thermochromic System. J. Mater. Chem. 2003, 13, 1701–1704. [Google Scholar] [CrossRef]
- Ali, Z.; Gao, Y.; Tang, B.; Wu, X.; Wang, Y.; Li, M.; Hou, X.; Li, L.; Jiang, N.; Yu, J. Preparation, Properties and Mechanisms of Carbon Fiber/Polymer Composites for Thermal Management Applications. Polymers 2021, 13, 169. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, K.; Yamaguchi, T.; Sato, K. Thermochromic Properties of Mixture Systems of Octadecylphosphonic Acid and Fluoran Dye. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 1994, 33, 5925–5928. [Google Scholar] [CrossRef]
- Naito, K. Rewritable Color Recording Media Consisting of Leuco Dye and Biphenyl Developer with a Long Alkyl Chain. J. Mater. Chem. 1998, 8, 1379–1384. [Google Scholar] [CrossRef]
- Ramdasi, D.; Mudhalwadkar, R. Detection of Nitrobenzene Using a Coated Quartz Crystal Microbalance with a Parametric Modeling Approach. Pertanika J. Sci. Technol. 2019, 27, 2049–2064. [Google Scholar]
- Miller, M.J.; Wang, J. Influence of Na Diffusion on Thermochromism of Vanadium Oxide Films and Suppression through Mixed-Alkali Effect. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2015, 200, 50–58. [Google Scholar] [CrossRef]
- Yang, T.; Yuan, D.; Liu, W.; Zhang, Z.; Wang, K.; You, Y.; Ye, H.; de Haan, L.T.; Zhang, Z.; Zhou, G. Thermochromic Cholesteric Liquid Crystal Microcapsules with Cellulose Nanocrystals and a Melamine Resin Hybrid Shell. ACS Appl. Mater. Interfaces 2022, 14, 4588–4597. [Google Scholar] [CrossRef]
- Zhao, X.P.; Mofid, S.A.; Gao, T.; Tan, G.; Jelle, B.P.; Yin, X.B.; Yang, R.G. Durability-Enhanced Vanadium Dioxide Thermochromic Film for Smart Windows. Mater. Today Phys. 2020, 13, 100205. [Google Scholar] [CrossRef]
- Hoogenboom, R. Temperature-Responsive Polymers: Properties, Synthesis, and Applications, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; ISBN 9780081024164. [Google Scholar]
- Zhang, R.; Li, R.; Xu, P.; Zhong, W.; Zhang, Y.; Luo, Z.; Xiang, B. Thermochromic Smart Window Utilizing Passive Radiative Cooling for Self-Adaptive Thermoregulation. Chem. Eng. J. 2023, 471, 144527. [Google Scholar] [CrossRef]
- Okino, K.; Sakamaki, D.; Seki, S. Dicyanomethyl Radical-Based Near-Infrared Thermochromic Dyes with High Transparency in the Visible Region. ACS Mater. Lett. 2019, 1, 25–29. [Google Scholar] [CrossRef]
- Zou, X.; Ji, H.; Zhao, Y.; Lu, M.; Tao, J.; Tang, P.; Liu, B.; Yu, X.; Mao, Y. Research Progress of Photo-/Electro-Driven Thermochromic Smart Windows. Nanomaterials 2021, 11, 3335. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ji, H.; Lu, M.; Tao, J.; Ou, Y.; Wang, Y.; Chen, Y.; Huang, Y.; Wang, J.; Mao, Y. Thermochromic Smart Windows Assisted by Photothermal Nanomaterials. Nanomaterials 2022, 12, 3865. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhou, Y.; Jiang, T.; Yang, R.; Tan, G.; Long, Y. Thermochromic Smart Windows with Highly Regulated Radiative Cooling and Solar Transmission. Nano Energy 2021, 89, 106440. [Google Scholar] [CrossRef]
- Xiang, Z.; Wu, Z.; Shi, Y.; Li, C.; Chen, X.; Gou, J.; Wang, J.; Zhuang, Y.; Dong, X.; Zheng, X.; et al. Optimized Thermochromic Properties for Smart Window Application of VO2 Films by Wet-Etching Process. Opt. Mater. 2022, 128, 112359. [Google Scholar] [CrossRef]
- Wu, J.; Mu, C.; Yang, J. Reversible Visible/near-Infrared Light Responsive Thin Films Based on Indium Tin Oxide Nanocrystals and Polymer. Sci. Rep. 2020, 10, 12808. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Tao, H.; Chen, G.; Pan, R.; Wan, M.; Xiong, D.; Zhao, X. Porous W-Doped VO2 Films with Simultaneously Enhanced Visible Transparency and Thermochromic Properties. J. Sol-Gel Sci. Technol. 2016, 77, 85–93. [Google Scholar] [CrossRef]
- Do, T.N.; Burke, P.J.; Nguyen, H.N.; Overland, I.; Suryadi, B.; Swandaru, A.; Yurnaidi, Z. Vietnam’s Solar and Wind Power Success: Policy Implications for the Other ASEAN Countries. Energy Sustain. Dev. 2021, 65, 1–11. [Google Scholar] [CrossRef]
- Sanjabi, S.; Keyvan Rad, J.; Salehi-Mobarakeh, H.; Mahdavian, A.R. Preparation of Switchable Thermo- and Photo-Responsive Polyacrylic Nanocapsules Containing Leuco-Dye and Spiropyran: Multi-Level Data Encryption and Temperature Indicator. J. Ind. Eng. Chem. 2023, 119, 647–659. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Yang, K.; Chen, D.; Li, S.; Li, Z. Reversible Thermochromic Microencapsulated Phase Change Materials for Enhancing Functionality of Silicone Rubber Materials. Mater. Chem. Phys. 2022, 290, 126564. [Google Scholar] [CrossRef]
- Forbes, E.G.A.; Olave, R.J.; Johnston, C.R.; Browne, J.D.; Relf, J. Biomass and Bio-Energy Utilisation in a Farm-Based Combined Heat and Power Facility. Biomass Bioenergy 2016, 89, 172–183. [Google Scholar] [CrossRef]
- He, Y.; Liu, S.; Tso, C.Y. A Novel Solar-Based Human-Centered Framework to Evaluate Comfort-Energy Performance of Thermochromic Smart Windows with Advanced Optical Regulation. Energy Build. 2023, 278, 112638. [Google Scholar] [CrossRef]
- Pascasio, J.D.A.; Esparcia, E.A.; Castro, M.T.; Ocon, J.D. Comparative Assessment of Solar Photovoltaic-Wind Hybrid Energy Systems: A Case for Philippine off-Grid Islands. Renew. Energy 2021, 179, 1589–1607. [Google Scholar] [CrossRef]
- Benavente-Peces, C. On the Energy Efficiency in the next Generation of Smart Buildings—Supporting Technologies and Techniques. Energies 2019, 12, 14399. [Google Scholar] [CrossRef]
- Yan, X.; Wang, L.; Qian, X. Influence of Thermochromic Pigment Powder on Properties of Waterborne Primer Film for Chinese Fir. Coatings 2019, 9, 742. [Google Scholar] [CrossRef]
- Kumar, J.; Akhila, K.; Kumar, P.; Deshmukh, R.K.; Gaikwad, K.K. Novel temperature-sensitive label based on thermochromic ink for hot food packaging and serving applications. J. Therm. Anal. Calorim. 2023, 148, 6061–6069. [Google Scholar] [CrossRef]
- Christie, R.M. Chromic Materials for Technical Textile Applications; Woodhead Publishing Limited: Sawston, UK, 2013; ISBN 9780857094339. [Google Scholar]
- Wu, Z.; Zhai, X.; Rui, Z.; Xu, X.; Wang, C.; Peng, H. Thermochromic Microencapsulated Phase Change Materials for Cold Energy Storage Application in Vaccine Refrigerator. J. Energy Storage 2023, 73, 109027. [Google Scholar] [CrossRef]
- Araújo, G.R.; Teixeira, H.; Gomes, M.G.; Rodrigues, A.M. Multi-Objective Optimization of Thermochromic Glazing Properties to Enhance Building Energy Performance. Sol. Energy 2023, 249, 446–456. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, L.; Long, J.; Zhang, R.; Zhong, Z.; Yang, L.; Liu, L.; Huang, Y. Reversible Thermochromic POSS-Metal Films for Early Warning. Compos. Sci. Technol. 2022, 217, 109083. [Google Scholar] [CrossRef]
- Du, Y.; Liu, S.; Zhou, Z.; Lee, H.H.; Ho, T.C.; Feng, S.P.; Tso, C.Y. Study on the Halide Effect of MA4PbX6·2H2O Hybrid Perovskites—From Thermochromic Properties to Practical Deployment for Smart Windows. Mater. Today Phys. 2022, 23, 100624. [Google Scholar] [CrossRef]
- Thummavichai, K.; Xia, Y.; Zhu, Y. Recent Progress in Chromogenic Research of Tungsten Oxides towards Energy-Related Applications. Prog. Mater. Sci. 2017, 88, 281–324. [Google Scholar] [CrossRef]
- Mustafa, M.N.; Mohd Abdah, M.A.A.; Numan, A.; Moreno-Rangel, A.; Radwan, A.; Khalid, M. Smart Window Technology and Its Potential for Net-Zero Buildings: A Review. Renew. Sustain. Energy Rev. 2023, 181, 113355. [Google Scholar] [CrossRef]
- Versino, F.; Ortega, F.; Monroy, Y.; Rivero, S.; López, O.V.; García, M.A. Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. Foods 2023, 12, 1057. [Google Scholar] [CrossRef] [PubMed]
- Spirache, M.A.; Marrec, P.; Dias Parola, A.J.; Tonicha Laia, C.A. Reversible Thermochromic Systems Based on a New Library of Flavylium Spirolactone Leuco Dyes. Dye. Pigment. 2023, 214, 111208. [Google Scholar] [CrossRef]
- Cheng, Z.; Chen, Z.; Zhao, B.; Liao, H.; Yu, T.; Li, Y. High-Performance Degradable Films of Poly(Lactic Acid)/Thermochromic Microcapsule Composites with Thermochromic and Energy Storage Functions via Blown Film Process. Int. J. Biol. Macromol. 2022, 220, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Qi, S.; Shuaib, S.S.A.; Züttel, A.; Yuan, W. Flexible Core-Sheath Thermochromic Phase Change Fibers for Temperature Management and Electrical/Solar Energy Harvesting. Compos. Sci. Technol. 2022, 226, 109538. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, J.; Zhang, H.; Kuang, H.; Zhao, M.; Zhang, S. Comparative Investigation of Mechanical and Cooling Performance between Thermochromic Road Materials Prepared by Wet/Dry Process: For Low-Carbon Production and Sustainable Service. J. Clean. Prod. 2022, 360, 132158. [Google Scholar] [CrossRef]
- Cheng, Z.; Lei, L.L.; Zhao, B.; Zhu, Y.; Yu, T.; Yang, W.; Li, Y. High Performance Reversible Thermochromic Composite Films with Wide Thermochromic Range and Multiple Colors Based on Micro/Nanoencapsulated Phase Change Materials for Temperature Indicators. Compos. Sci. Technol. 2023, 240, 110091. [Google Scholar] [CrossRef]
- Ke, Y.; Zhang, Q.; Wang, T.; Wang, S.; Li, N.; Lin, G.; Liu, X.; Dai, Z.; Yan, J.; Yin, J.; et al. Cephalopod-Inspired Versatile Design Based on Plasmonic VO2 Nanoparticle for Energy-Efficient Mechano-Thermochromic Windows. Nano Energy 2020, 73, 104785. [Google Scholar] [CrossRef]
- Alam, F.; Elsherif, M.; Salih, A.E.; Butt, H. 3D Printed Polymer Composite Optical Fiber for Sensing Applications. Addit. Manuf. 2022, 58, 102996. [Google Scholar] [CrossRef]
- Shen, X.; Li, H.; Zhao, Z.; Li, X.; Liu, K.; Gao, X. Imaging of Liquid Temperature Distribution during Microwave Heating via Thermochromic Metal Organic Frameworks. Int. J. Heat Mass Transf. 2022, 189, 122667. [Google Scholar] [CrossRef]
- Kulčar, R.; Maretić, D.; Vukoje, M.; Malenica, I. Dynamics of Thermochromic Color Change of Pressure Sensitive Labels Facestock Made from Environmentally Friendly Materials. Int. Symp. Graph. Eng. Des. 2022, 761–768. [Google Scholar] [CrossRef]
- Calovi, M.; Russo, F.; Rossi, S. Esthetic Performance of Thermochromic Pigments in Cataphoretic and Sprayed Coatings for Outdoor Applications. J. Appl. Polym. Sci. 2021, 138, 50622. [Google Scholar] [CrossRef]
- Sahebkar, K.; Indrakar, S.; Srinivasan, S.; Thomas, S.; Stefanakos, E. Electrospun Microfibers with Embedded Leuco Dye-Based Thermochromic Material for Textile Applications. J. Ind. Text. 2022, 51, 3188S–3200S. [Google Scholar] [CrossRef]
- Khattab, T.A. From Chromic Switchable Hydrazones to Smart Materials. Mater. Chem. Phys. 2020, 254, 123456. [Google Scholar] [CrossRef]
- Dong, C.; Liu, Y.; Long, Z.; Pang, Z.; Luo, Y.; Li, X. Effect of Papermaking Conditions on the Retention of Reversible Thermochromic Microcapsule in Paper. BioResources 2012, 7, 66–77. [Google Scholar] [CrossRef]
- Of, E.; Conditions, P.; The, O.N.; Reversible, O.F.; Microcapsule, T.; Paper, I.N. Effect of Papermaking Conditions on the Retention. BioResources 2011, 7, 66–77. [Google Scholar]
- Koçak, G.; Tuncer, C.; Bütün, V. Stimuli-Responsive Polymers Providing New Opportunities for Various Applications. Hacettepe J. Biol. Chem. 2020. [Google Scholar] [CrossRef]
- Seeboth, A.; Lötzsch, D.; Ruhmann, R.; Muehling, O. Thermochromic Polymers—Function by Design. Chem. Rev. 2014, 114, 3037–3068. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, Y.; Zhou, L.; Huang, J.; Fang, H.; Ma, H.; Zhang, Y.; Yang, J.; Song, P.; Zhang, C.; et al. A Study on the Electro-Optical Properties of Thiol-Ene Polymer Dispersed Cholesteric Liquid Crystal (PDChLC) Films. Molecules 2017, 22, 317. [Google Scholar] [CrossRef] [PubMed]
- Agra-Kooijman, D.M.; Mostafa, M.; Krifa, M.; Ohrn-McDaniel, L.; West, J.L.; Jákli, A. Liquid Crystal Coated Yarns for Thermo-Responsive Textile Structures. Fibers 2023, 11, 3. [Google Scholar] [CrossRef]
- Kalinke, I.; Kulozik, U. Irreversible Thermochromic Ink in the Identification of Over- and under-Processed Product Segments in Microwave-Assisted Freeze Drying. J. Food Eng. 2023, 349, 111470. [Google Scholar] [CrossRef]
- Li, C.Y.; Wang, X.; Liang, X.; Sun, J.; Li, C.X.; Zhang, S.F.; Zhang, L.Y.; Zhang, H.Q.; Yang, H. Electro-Optical Properties of a Polymer Dispersed and Stabilized Cholesteric Liquid Crystals System Constructed by a Stepwise UV-Initiated Radical/Cationic Polymerization. Crystals 2019, 9, 282. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, J.; Ma, H.; Chen, L.; Li, R.; Jin, P. VO2/Nickel-Bromine-Ionic Liquid Composite Film for Thermochromic Application. Sol. Energy Mater. Sol. Cells 2019, 196, 124–130. [Google Scholar] [CrossRef]
- Louloudakis, D.; Vernardou, D.; Spanakis, E.; Katsarakis, N.; Koudoumas, E. Thermochromic Vanadium Oxide Coatings Grown by APCVD at Low Temperatures. Phys. Procedia 2013, 46, 137–141. [Google Scholar] [CrossRef]
- Seeboth, A.; Kriwanek, J.; Vetter, R. Novel Chromogenic Polymer Gel Networks for Hybrid Transparency and Color Control with Temperature. Adv. Mater. 2000, 12, 1424–1426. [Google Scholar] [CrossRef]
- Rachford, A.A.; Castellano, F.N. Thermochromic Absorption and Photoluminescence in [Pt(Ppy)(μ-Ph 2pz)]2. Inorg. Chem. 2009, 48, 10865–10867. [Google Scholar] [CrossRef] [PubMed]
- Baron, M.G.; Elie, M. Temperature Sensing Using Reversible Thermochromic Polymeric Films. Sens. Actuators B Chem. 2003, 90, 271–275. [Google Scholar] [CrossRef]
- Ye, H.; Long, L.; Zhang, H.; Xu, B.; Gao, Y.; Kang, L.; Chen, Z. The Demonstration and Simulation of the Application Performance of the Vanadium Dioxide Single Glazing. Sol. Energy Mater. Sol. Cells 2013, 117, 168–173. [Google Scholar] [CrossRef]
- Xi, Y.; Xu, S.; Zhang, J. Reversible Thermochromic Composites for Intelligent Adjustment of Solar Reflectance. Mater. Chem. Phys. 2022, 276, 125372. [Google Scholar] [CrossRef]
- Dey, A.; Hasan, M.A.; Mukhopadhyay, A.K. Future Direction of Smart Thermochromic Vanadium Oxide-Based Films for Spacecraft Thermal Control Application. Phys. News 2020, 50, 25–30. [Google Scholar]
- Tian, J.; Xu, J.; Peng, H.; Du, X.; Wang, H.; Du, Z.; Cheng, X. Sunlight-Induced Photo-Thermochromic Smart Window Based Spiropyran-Functionalized Copolymer for UV Shielding and Sunlight Management. Prog. Org. Coat. 2021, 160, 106531. [Google Scholar] [CrossRef]
- Geng, X.; Li, W.; Yin, Q.; Wang, Y.; Han, N.; Wang, N.; Bian, J.; Wang, J.; Zhang, X. Design and Fabrication of Reversible Thermochromic Microencapsulated Phase Change Materials for Thermal Energy Storage and Its Antibacterial Activity. Energy 2018, 159, 857–869. [Google Scholar] [CrossRef]
- Khairy, K.T.; Song, Y.; Yoon, J.H.; Montero, J.; Österlund, L.; Kim, S.; Song, P. Thermochromic Properties of Vanadium Oxide Thin Films Prepared by Reactive Magnetron Sputtering at Different Oxygen Concentrations. Vacuum 2023, 210, 111887. [Google Scholar] [CrossRef]
- Zhang, W.; Wen, J.Y.; Ma, M.G.; Li, M.F.; Peng, F.; Bian, J. Anti-Freezing, Water-Retaining, Conductive, and Strain-Sensitive Hemicellulose/Polypyrrole Composite Hydrogels for Flexible Sensors. J. Mater. Res. Technol. 2021, 14, 555–566. [Google Scholar] [CrossRef]
- Sadeghi, K.; Yoon, J.Y.; Seo, J. Chromogenic Polymers and Their Packaging Applications: A Review. Polym. Rev. 2020, 60, 442–492. [Google Scholar] [CrossRef]
- Wu, Z.; Su, Q.; Yang, J.; Wei, Z.; Zhang, G. Promotion of Thermochromic Luminous Polysulfone Membrane towards Smart High-Temperature PM 2.5 Filtration and Fire Alarming. Sep. Purif. Technol. 2024, 328, 125047. [Google Scholar] [CrossRef]
- He, X.; Feng, Y.; Xu, F.; Chen, F.F.; Yu, Y. Smart Fire Alarm Systems for Rapid Early Fire Warning: Advances and Challenges. Chem. Eng. J. 2022, 450, 137927. [Google Scholar] [CrossRef]
- Lv, L.Y.; Cao, C.F.; Qu, Y.X.; Zhang, G.D.; Zhao, L.; Cao, K.; Song, P.; Tang, L.C. Smart Fire-Warning Materials and Sensors: Design Principle, Performances, and Applications. Mater. Sci. Eng. R Rep. 2022, 150, 100690. [Google Scholar] [CrossRef]
- Rahaman Khan, M.R.; Kang, S.W. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane. Sensors 2016, 16, 1064. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Yi, Y.; Song, J.; Chen, X.; Li, J.; Li, J. Tunable Graphene/Nitrocellulose Temperature Alarm Sensors. ACS Appl. Mater. Interfaces 2022, 14, 13790–13800. [Google Scholar] [CrossRef] [PubMed]
- Kabir, S.; Yang, D.; Ahmad Kayani, A.B.; Zhang, H.; Nirantar, S.; Sriram, S.; Walia, S.; Bhaskaran, M. Solution-Processed VO2 Nanoparticle/Polymer Composite Films for Thermochromic Applications. ACS Appl. Nano Mater. 2022, 5, 10280–10291. [Google Scholar] [CrossRef]
- Louloudakis, D.; Vernardou, D.; Spanakis, E.; Dokianakis, S.; Panagopoulou, M.; Raptis, G.; Aperathitis, E.; Kiriakidis, G.; Katsarakis, N.; Koudoumas, E. Effect of O2 flow rate on the thermochromic performance of VO2 coatings grown by atmospheric pressure CVD. Phys. Status Solidi Curr. Top. Solid State Phys. 2015, 12, 856–860. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, S.; Chen, Z.; Zhu, C. Performance of Thermochromic Asphalt; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; ISBN 9780128207918. [Google Scholar]
- Arnaoutakis, G.E.; Katsaprakakis, D.A. Energy Performance of Buildings with Thermochromic Windows in Mediterranean Climates. Energies 2021, 14, 6977. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, Y.; Wang, X.; Zhang, D.; Zhang, F.; Huang, Y.; Yu, Y.; Yu, W.; Zhu, R. Reversible thermochromic transparent bamboo for dynamically adaptive smart windows. Ind. Crops Prod. 2023, 197, 116593. [Google Scholar] [CrossRef]
- Pi, J.; Li, C.B.; Sun, R.Y.; Li, L.Y.; Wang, F.; Song, F.; Wu, J.M.; Wang, X.L.; Wang, Y.Z. Superhydrophobic and Thermochromic VO2-Based Composite Coatings for Energy-Saving Smart Windows. Compos. Commun. 2022, 32, 101167. [Google Scholar] [CrossRef]
- Mitmit, C.; Mocan, M.; Camic, B.T.; Cingil, H.E.; Tan, E.M.M. Broadband Light and Heat Management with a Self-Regulating and User-Controlled Thermochromic Smart Window. Cell Rep. Phys. Sci. 2023, 4, 101218. [Google Scholar] [CrossRef]
- Lin, K.; Chao, L.; Lee, H.H.; Xin, R.; Liu, S.; Ho, T.C.; Huang, B.; Yu, K.M.; Tso, C.Y. Potential Building Energy Savings by Passive Strategies Combining Daytime Radiative Coolers and Thermochromic Smart Windows. Case Stud. Therm. Eng. 2021, 28, 101517. [Google Scholar] [CrossRef]
- Dussault, J.M.; Gosselin, L.; Galstian, T. Integration of Smart Windows into Building Design for Reduction of Yearly Overall Energy Consumption and Peak Loads. Sol. Energy 2012, 86, 3405–3416. [Google Scholar] [CrossRef]
- Gueven, O. An Overview of Current Developments in Applied Radiation Chemistry of Polymers. Adv. Radiat. Chem. Polym. IAEA-TECDOC-1420 2004, 33–39. [Google Scholar]
- Asdrubali, F.; Baldinelli, G. Theoretical Modelling and Experimental Evaluation of the Optical Properties of Glazing Systems with Selective Films. Build. Simul. 2009, 2, 75–84. [Google Scholar] [CrossRef]
- Coating, P.W. Investigation of the Properties of Color-Changing Powder Water-Based Coating. Coatings 2020, 10, 815. [Google Scholar] [CrossRef]
- Shen, S.; Feng, L.; Qi, S.; Cao, J.; Ge, Y.; Wu, L.; Wang, S. Reversible Thermochromic Nanoparticles Composed of a Eutectic Mixture for Temperature-Controlled Photothermal Therapy. Nano Lett. 2020, 20, 2137–2143. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Rasines Mazo, A.; Gurr, P.A.; Qiao, G.G. Reversible Nontoxic Thermochromic Microcapsules. ACS Appl. Mater. Interfaces 2020, 12, 9782–9789. [Google Scholar] [CrossRef] [PubMed]
- Thamrin, E.S.; Warsiki, E.; Bindar, Y.; Kartika, I.A. Thermochromic Ink as a Smart Indicator on Cold Product Packaging—Review. IOP Conf. Ser. Earth Environ. Sci. 2022, 1063, 012021. [Google Scholar] [CrossRef]
- Neebe, M.; Rhinow, D.; Schromczyk, N.; Hampp, N.A. Thermochromism of Bacteriorhodopsin and Its PH Dependence. J. Phys. Chem. B 2008, 112, 6946–6951. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.X.; Wei, N.; Sun, C.; Yang, S.H. Research and Application of Retention Agent in Reversible Thermochromism Materials Papermaking. Appl. Mech. Mater. 2015, 731, 452–456. [Google Scholar] [CrossRef]
- Takeuchi, M.; Imai, H.; Oaki, Y. Real-Time Imaging of 2D and 3D Temperature Distribution: Coating of Metal-Ion-Intercalated Organic Layered Composites with Tunable Stimuli-Responsive Properties. ACS Appl. Mater. Interfaces 2017, 9, 16546–16552. [Google Scholar] [CrossRef] [PubMed]
- Sima, W.; Liang, C.; Sun, P.; Yang, M.; Zhu, C.; Yuan, T.; Liu, F.; Zhao, M.; Shao, Q.; Yin, Z.; et al. Novel Smart Insulating Materials Achieving Targeting Self-Healing of Electrical Trees: High Performance, Low Cost, and Eco-Friendliness. ACS Appl. Mater. Interfaces 2021, 13, 33485–33495. [Google Scholar] [CrossRef]
- Shahbazi, M.; Jäger, H.; Ettelaie, R.; Mohammadi, A.; Asghartabar Kashi, P. Multimaterial 3D Printing of Self-Assembling Smart Thermo-Responsive Polymers into 4D Printed Objects: A Review. Addit. Manuf. 2023, 71, 103598. [Google Scholar] [CrossRef]
- Park, B.; Kim, J.U.; Kim, J.; Tahk, D.; Jeong, C.; Ok, J.; Shin, J.H.; Kang, D.; Kim, T. il Strain-Visualization with Ultrasensitive Nanoscale Crack-Based Sensor Assembled with Hierarchical Thermochromic Membrane. Adv. Funct. Mater. 2019, 29, 1903360. [Google Scholar] [CrossRef]
- Koschan, A.; Govindasamy, P.; Sukumar, S.; Page, D.; Abidi, M.; Gorsich, D. Thermal Modeling and Imaging of As-Built Vehicle Components. SAE Tech. Pap. 2006. [Google Scholar] [CrossRef]
- Martynenko, A.; Shotton, K.; Astatkie, T.; Petrash, G.; Fowler, C.; Neily, W.; Critchley, A.T. Thermal Imaging of Soybean Response to Drought Stress: The Effect of Ascophyllum Nodosum Seaweed Extract. Springerplus 2016, 5, 1393. [Google Scholar] [CrossRef]
- Ullah, I.; Khan, R.U.; Yang, F.; Wuttisittikulkij, L. Deep Learning Image-Based Defect Detection in High Voltage Electrical Equipment. Energies 2020, 13, 392. [Google Scholar] [CrossRef]
- Zhang, W.; Fei, L.; Zhang, J.; Chen, K.; Yin, Y.; Wang, C. Durable and Tunable Temperature Responsive Silk Fabricated with Reactive Thermochromic Pigments. Prog. Org. Coat. 2020, 147, 105697. [Google Scholar] [CrossRef]
- Liu, H.; Yu, L.; Zhao, B.; Ni, Y.; Gu, P.; Qiu, H.; Zhang, W.; Chen, K. Bio-Inspired Color-Changing and Self-Healing Hybrid Hydrogels for Wearable Sensors and Adaptive Camouflage. J. Mater. Chem. C 2022, 11, 285–298. [Google Scholar] [CrossRef]
- Eranki, A.; Mikhail, A.S.; Negussie, A.H.; Katti, P.S.; Wood, B.J.; Partanen, A. Tissue-Mimicking Thermochromic Phantom for Characterization of HIFU Devices and Applications. Int. J. Hyperth. 2019, 36, 518–529. [Google Scholar] [CrossRef]
- Zhang, W.; Trivedi, H.; Adams, M.; Losey, A.D.; Diederich, C.J.; Ozhinsky, E.; Rieke, V.; Bucknor, M.D. Anatomic Thermochromic Tissue-Mimicking Phantom of the Lumbar Spine for Pre-Clinical Evaluation of MR-Guided Focused Ultrasound (MRgFUS) Ablation of the Facet Joint. Int. J. Hyperth. 2021, 38, 130–135. [Google Scholar] [CrossRef]
- Mikhail, A.S.; Negussie, A.H.; Graham, C.; Mathew, M.; Wood, B.J.; Partanen, A. Evaluation of a Tissue-Mimicking Thermochromic Phantom for Radiofrequency Ablation. Med. Phys. 2016, 43, 4304–4311. [Google Scholar] [CrossRef]
- Li, M.; Magdassi, S.; Gao, Y.; Long, Y. Hydrothermal Synthesis of VO2 Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows. Small 2017, 13, 1701147. [Google Scholar] [CrossRef] [PubMed]
- Seeboth, A.; Ruhmann, R.; Mühling, O. Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control. Materials 2010, 3, 5143–5168. [Google Scholar] [CrossRef] [PubMed]
- Perez, G.; Allegro, V.R.; Corroto, M.; Pons, A.; Guerrero, A. Smart Reversible Thermochromic Mortar for Improvement of Energy Efficiency in Buildings. Constr. Build. Mater. 2018, 186, 884–891. [Google Scholar] [CrossRef]
- Negussie, A.H.; Partanen, A.; Mikhail, A.S.; Xu, S.; Abi-Jaoudeh, N.; Maruvada, S.; Wood, B.J. Thermochromic Tissue-Mimicking Phantom for Optimisation of Thermal Tumour Ablation. Int. J. Hyperth. 2016, 32, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Zhou, P.; Zhao, Y.; Liu, W.; Zhang, X. A Novel Tissue-Mimicking Phantom for US/CT/MR-Guided Tumor Puncture and Thermal Ablation. Int. J. Hyperth. 2022, 39, 557–563. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, L.; Zhong, X.; Ding, J.; Zhou, H.; Wang, F.; Jing, X. A Thermochromic Tissue-Mimicking Phantom Model for Verification of Ablation Plans in Thermal Ablation. Ann. Transl. Med. 2021, 9, 354. [Google Scholar] [CrossRef] [PubMed]
- Seo, E.; Choi, J.; Lee, B.; Son, Y.A.; Lee, K.J. Dye Clicked Thermoplastic Polyurethane as a Generic Platform toward Chromic-Polymer Applications. Sci. Rep. 2019, 9, 18648. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, C.; Meunier, L.; Kell, F.M.; Koncar, V. Flexible Displays for Smart Clothing: Part I-Overview. Indian J. Fibre Text. Res. 2011, 36, 422–428. [Google Scholar]
- Heyse, P.; Buyle, G.; Beccarelli, P. MULTITEXCO—High Performance Smart Multifunctional Technical Textiles for Tensile Structures. Procedia Eng. 2016, 155, 8–17. [Google Scholar] [CrossRef]
- He, C.; Korposh, S.; Correia, R.; Liu, L.; Hayes-Gill, B.R.; Morgan, S.P. Optical Fibre Sensor for Simultaneous Temperature and Relative Humidity Measurement: Towards Absolute Humidity Evaluation. Sens. Actuators B Chem. 2021, 344, 130154. [Google Scholar] [CrossRef]
- Chavan, S.P.; Salokhe, S.A.; Nadagauda, P.A.; Patil, S.T.; Mane, K.M. An Investigational Study on Properties of Concrete Produced with Industrial Waste Red Mud. Mater. Today Proc. 2021, 42, 733–738. [Google Scholar] [CrossRef]
- Muthamma, K.; Sunil, D.; Shetty, P.; Kulkarni, S.D.; Anand, P.J.; Kekuda, D. Eco-Friendly Flexographic Ink from Fluorene-Based Schiff Base Pigment for Anti-Counterfeiting and Printed Electronics Applications. Prog. Org. Coat. 2021, 161, 106463. [Google Scholar] [CrossRef]
- Bielas, R.; Bochińska, A.; Józefczak, A. The Influence of Initial Temperature on Ultrasonic Hyperthermia Measurements. Appl. Acoust. 2020, 164, 107259. [Google Scholar] [CrossRef]
- Sharma, M.; Whaley, M.; Chamberlain, J.; Oswald, T.; Schroden, R.; Graham, A.; Barger, M.; Richey, B. Evaluation of Thermochromic Elastomeric Roof Coatings for Low-Slope Roofs. Energy Build. 2017, 155, 459–466. [Google Scholar] [CrossRef]
- Yang, J.; Ju, S. Washable and Stretchable Fiber with Heat and Ultraviolet Color Conversion. RSC Adv. 2022, 12, 22351–22359. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Yu, L.; Wang, D.; Jin, X.; Chen, G.Z. Thermo-Solvatochromism of Chloro-Nickel Complexes in 1-Hydroxyalkyl-3-Methyl-Imidazolium Cation Based Ionic Liquids. Green Chem. 2008, 10, 296–305. [Google Scholar] [CrossRef]
- Guk, K.; Han, G.; Lim, J.; Jeong, K.; Kang, T.; Lim, E.K.; Jung, J. Evolution of Wearable Devices with Real-Time Disease Monitoring for Personalized Healthcare. Nanomaterials 2019, 9, 813. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Ma, C.; Chen, J.; Wu, H.; Luo, W.; Peng, Y.; Luo, Z.; Li, L.; Tan, Y.; Omisore, O.M.; et al. Printable, Highly Sensitive Flexible Temperature Sensors for Human Body Temperature Monitoring: A Review. Nanoscale Res. Lett. 2020, 15, 200. [Google Scholar] [CrossRef]
- Lin, J.; Fu, R.; Zhong, X.; Yu, P.; Tan, G.; Li, W.; Zhang, H.; Li, Y.; Zhou, L.; Ning, C. Wearable Sensors and Devices for Real-Time Cardiovascular Disease Monitoring. Cell Rep. Phys. Sci. 2021, 2, 100541. [Google Scholar] [CrossRef]
- Froyen, A.A.F.; Schenning, A.P.H.J. A Multifunctional Structural Coloured Electronic Skin Monitoring Body Motion and Temperature. Soft Matter 2022, 19, 361–365. [Google Scholar] [CrossRef]
- Aklujkar, P.S.; Kandasubramanian, B. A Review of Microencapsulated Thermochromic Coatings for Sustainable Building Applications. J. Coat. Technol. Res. 2021, 18, 19–37. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, X. A Review of Mechanochromic Polymers and Composites: From Material Design Strategy to Advanced Electronics Application. Compos. Part B Eng. 2021, 227, 109434. [Google Scholar] [CrossRef]
- Trovato, V.; Sfameni, S.; Rando, G.; Rosace, G.; Libertino, S.; Ferri, A.; Plutino, M.R. A Review of Stimuli-Responsive Smart Materials for Wearable Technology in Healthcare: Retrospective, Perspective, and Prospective. Molecules 2022, 27, 5709. [Google Scholar] [CrossRef]
- Zhumekenov, A.A.; Saidaminov, M.I.; Mohammed, O.F.; Bakr, O.M. Stimuli-Responsive Switchable Halide Perovskites: Taking Advantage of Instability. Joule 2021, 5, 2027–2046. [Google Scholar] [CrossRef]
- Shi, J.; Liu, S.; Zhang, L.; Yang, B.; Shu, L.; Yang, Y.; Ren, M.; Wang, Y.; Chen, J.; Chen, W.; et al. Smart Textile-Integrated Microelectronic Systems for Wearable Applications. Adv. Mater. 2020, 32, 1901958. [Google Scholar] [CrossRef]
- Tan, J.; Liu, J.; Sun, J.; Yin, Y.; Wang, C. Biomimetic Thermally Responsive Photonic Crystals Film with Highly Robust by Introducing Thermochromic Dyes. Prog. Org. Coat. 2023, 183, 107681. [Google Scholar] [CrossRef]
- Zheng, S.; Xu, Y.; Shen, Q.; Yang, H. Preparation of Thermochromic Coatings and Their Energy Saving Analysis. Sol. Energy 2015, 112, 263–271. [Google Scholar] [CrossRef]
- Ding, Y.; Zhong, C.; Yang, F.; Kang, Z.; Li, B.; Duan, Y.; Zhao, Z.; Song, X.; Xiong, Y.; Guo, S. Low Energy Consumption Thermochromic Smart Windows with Flexibly Regulated Photothermal Gain and Radiation Cooling. Appl. Energy 2023, 348, 121598. [Google Scholar] [CrossRef]
- Koudoumas, E.; Le, K.T.; Vernardou, D. Recent Advances of Chemical Vapor Deposited Thermochromic Vanadium Dioxide Materials. Energy Nexus 2023, 11, 100237. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, H.; Yan, Y.; Tu, J.; Shi, L. CFD Analysis of Environmental Impacts on a Thermochromic Smart Window. Energy Build. 2022, 263, 112027. [Google Scholar] [CrossRef]
- Nelson, G. Microencapsulated Colourants for Technical Textile Application; Woodhead Publishing Limited: Sawston, UK, 2013. [Google Scholar]
- White, M.A.; LeBlanc, M. Thermochromism in Commercial Products. J. Chem. Educ. 1999, 76, 1201–1205. [Google Scholar] [CrossRef]
Chromic Phenomena/Stimulus | ||||
---|---|---|---|---|
Stimulated Colour Change | Absorption of Light and Energy Transfer | Absorption of Energy and Emission of Colour | Absorption/Reflection | Manipulation of Light |
|
|
|
|
|
Technologies Based on Chromic Phenomena | ||||
|
|
|
|
|
Classification | Property | Trigger Mechanism | Application/Technology | References |
---|---|---|---|---|
Irreversible | Chemical change |
| Development of irreversible thermochromic dyes for temperature-sensitive labels | [54,62,71] |
Utilization of irreversible thermochromic materials in food safety indicators | [71,72,74] | |||
Phase transition |
| Study on irreversible phase transition thermochromic material in polymer composites | [19,52,67] | |
Utilization of phase transition thermochromic material in clothing industry | [77,78,79,80,81] | |||
Reversible | Molecular movement |
| Development of smart windows using revisable thermochromic coating | [26,58,77] |
Research on revisable thermochromic ink for temperature-sensitive labels | [79,80,81,82] | |||
Particle dispersion |
| Investigation of revisable thermochromic polymer nanocomposites for energy-efficient buildings | [38,78,83] | |
Utilization of reversible nanoparticle-based thermochromic material in energy-saving glass | [37,38,77] |
Mechanism | Description | Parameters | Function | Future Research Development | References |
---|---|---|---|---|---|
Crystal Transition | It involves lattice displacement in metal ion compounds due to temperature changes, altering crystal structure and, consequently, material colour. |
|
| Investigate advanced crystal transition processes for improved colour adaptation in extreme temperature ranges. | [84,85,86,87,88,89,90] |
Ligand Geometry | Alterations in molecular structure and geometry, particularly in materials containing Cr3+ ions, lead to colour changes with temperature fluctuations. |
|
| Explore the design of more sensitive and responsive materials for precise temperature indications in diverse environmental conditions. | [91,92,93] |
Coordination Number | Influences colour changes in inorganic salts due to the presence or loss of crystal water molecules with temperature variations. |
|
| Research on materials that can adapt to specific environmental factors, offering wider applications in diverse industries. | [46,76,94] |
Liquid Crystal | It involves changes in the wavelength of reflected light due to temperature-induced variations in the pitch of spiral configurations. |
|
| Develop materials with tailored responses to temperature variations for advanced applications in wearables and industrial sensors. | [95] |
Method | Key Features | Advantages | Limitations | References |
---|---|---|---|---|
In situ polymerization |
|
|
| [103,105,106,107,108,109,110,111] |
Solution mixing |
|
|
| [112,113,114] |
Melt blending |
|
|
| [115,116,117,118] |
Nanoparticle encapsulation |
|
|
| [119,120,121] |
Coating and impregnation |
|
|
| [122,123,124,125] |
Characterisation | Description | References |
---|---|---|
Solar Energy Regulation |
| [126,127,128] |
Temperature responsiveness |
| [129] |
Visible–Near Infrared Regulation |
| [130,131,132,133,134,135,136,137] |
Energy Savings |
| [130,131,132,133,138] |
Colour-Changing Properties |
| [40,43,54,139] |
Quick Response |
| [41,74,80,119,140] |
Durability |
| [135,136,137] |
Integration |
| [141,142,143,144,145] |
Potential for Energy Storage |
| [77,141,146,147,148] |
Application in Sustainable Architecture |
| [42,130,149,150] |
Characterization Technique | Purpose/Information | Notable Findings and Applications | References |
---|---|---|---|
Spectroscopic Techniques (UV–Vis and FTIR spectroscopy) |
|
| [70,151,152] |
Microscopic Techniques (SEM and TEM) |
|
| [47,50] |
Thermal Analysis Techniques (DSC and TGA) |
|
| [103] |
Dynamic Mechanical Analysis (DMA) |
|
| [153,154,155] |
Mechanical Testing Methods (Tensile Testing) |
|
| [156,157,158,159,160,161] |
Surface Analysis Techniques (AFM and XPS) |
|
| [54,162,163,164,165] |
Technique | Purpose/Role | Parameter/Value | References |
---|---|---|---|
Zeta Potential Analysis | Understanding particle interactions, emulsions, and suspensions are important for comprehending behaviour. | Zeta potential value (−20 mV), indicating particle stability or interaction strength. | [109,167,168] |
Polarised Optical Microscopy | Visual assessment is critical for unravelling optical intricacies, especially anisotropic behaviour. | Observing birefringence patterns indicating anisotropic behaviour. | [41,151,169,170] |
Chemical Analysis | FT-IR and X-ray diffraction techniques aid in unravelling chemical properties and interactions. | Identification of specific functional groups (e.g., -OH or -COOH) in FT-IR spectra. | [160,161] |
Topographical Analysis | SEM and TEM evaluations offer insights into morphology and surface characteristics. | Measurement of nanoparticle size (e.g., 50 nm) or surface roughness observed in SEM or TEM images. | [146,162,163,164] |
Application | Thermochromic Development | Performance Function | Previous and Current Research | References |
---|---|---|---|---|
Smart window |
|
|
| [40,172,184,185] |
Temperature sensors |
|
|
| [174,186] |
Medical application |
|
|
| [105,178] |
Thermal insulation |
|
|
| [26,38,155] |
Food quality and safety |
|
|
| [72,142,187] |
Fire safety |
|
|
| [150,188,189,190] |
Thermochromic Material | Application | Advantages | Limitations | References |
---|---|---|---|---|
Thermochromic Ink |
|
|
| [62,71,72,79] |
Photochromic and thermochromic colourants |
|
|
| [40,62,156] |
Microcapsules |
|
| - | [47,48,50,63] |
Industrial Area | Key Use Thermochromic Materials | Benefits and Significance | References |
---|---|---|---|
Chemical Engineering |
|
| [149,208] |
Paper Manufacturing |
|
| [158,159,209] |
Wood Coating Industry |
|
| [81,210] |
Electrical Equipment |
|
| [105,211] |
Chemical Composition | Role in Biocompatibility and Material Functionality | Element | References |
---|---|---|---|
Polymer structure | Influences material properties |
| [62,67,103,222] |
Nanoparticle size | Affects material characteristics |
| [105,115,223] |
Encapsulation methods | Determines material reliability |
| [67,105] |
Surface modifications | Influences material interaction |
| [49] |
Material fabrication | Determines production feasibility |
| [205] |
Environmental impact | Understanding material performance |
| [151,223,224] |
Medical Application Area | Advantage of Thermochromic Materials | Function | References |
---|---|---|---|
Medical Imaging |
|
| [115,225,226,227] |
Thermal Ablation Techniques |
|
| [115,228] |
Remote Health Monitoring |
|
| [75,229,230] |
Optical Fibre Sensors |
|
| [231,232] |
3D-Printed Polymer Fibres |
|
| [161,233,234] |
Application | Advantage of Thermochromic Materials | Function | (°C) | (°C) | Sensitive to Temperature Changes | References |
---|---|---|---|---|---|---|
Smart apparel |
|
| °C | °C | High | [52,207,237] |
Adaptive textiles |
|
| °C | °C | Moderate | [75,134,156] |
Thermal protective garments |
|
| °C | °C | Moderate | [105,155] |
Dynamic textile displays |
|
| °C | °C | High | [52,61,75,115] |
Wearable devices |
|
| °C | °C | High | [59,75,163,238] |
Health monitoring |
|
| °C | °C | High | [239,240,241] |
Industrial uses |
|
| °C | °C | Low | [105,149,164] |
Environmental sensors |
|
| °C | °C | Low | [49,72,147] |
Aspect | Advantage | Challenge | References |
---|---|---|---|
Cost |
|
| [62,112,122] |
Versatility |
|
| [84,162,205] |
Ease of use |
|
| [72,149,242] |
Customizability |
|
| [60,155] |
Applications |
|
| [162,205,222] |
Factors | Reversible Thermochromic Materials | Traditional Systems (Electronic) | References |
---|---|---|---|
Initial setup costs | Lower | Higher | [164,232,241] |
Maintenance expenses | Lower | Higher | [27,184,247,248] |
Long-term reliability | Generally good | Subject to wear and tear | [184,242,247] |
Energy consumption | Lower | Higher | [83,132,249] |
Integration flexibility | High | limited | [140,184,247,250] |
Customization possibilities | Flexible | Rigid | [140,184,247,250] |
Scalability | Varies | Complex | [132,140,184,247] |
Environmental impact | Eco-friendly | Electronic waste concern | [163,184,251] |
Response time | Varies | Fast | [50,164] |
Sensing range | Adaptable | Fixed | [184,191,247,250] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Supian, A.B.M.; Asyraf, M.R.M.; Syamsir, A.; Najeeb, M.I.; Alhayek, A.; Al-Dala’ien, R.N.; Manar, G.; Atiqah, A. Thermochromic Polymer Nanocomposites for the Heat Detection System: Recent Progress on Properties, Applications, and Challenges. Polymers 2024, 16, 1545. https://doi.org/10.3390/polym16111545
Supian ABM, Asyraf MRM, Syamsir A, Najeeb MI, Alhayek A, Al-Dala’ien RN, Manar G, Atiqah A. Thermochromic Polymer Nanocomposites for the Heat Detection System: Recent Progress on Properties, Applications, and Challenges. Polymers. 2024; 16(11):1545. https://doi.org/10.3390/polym16111545
Chicago/Turabian StyleSupian, A. B. M., M. R. M. Asyraf, Agusril Syamsir, M. I. Najeeb, Abdulrahman Alhayek, Rayeh Nasr Al-Dala’ien, Gunasilan Manar, and A. Atiqah. 2024. "Thermochromic Polymer Nanocomposites for the Heat Detection System: Recent Progress on Properties, Applications, and Challenges" Polymers 16, no. 11: 1545. https://doi.org/10.3390/polym16111545
APA StyleSupian, A. B. M., Asyraf, M. R. M., Syamsir, A., Najeeb, M. I., Alhayek, A., Al-Dala’ien, R. N., Manar, G., & Atiqah, A. (2024). Thermochromic Polymer Nanocomposites for the Heat Detection System: Recent Progress on Properties, Applications, and Challenges. Polymers, 16(11), 1545. https://doi.org/10.3390/polym16111545