Recent Advances in Conductive Polymers-Based Electrochemical Sensors for Biomedical and Environmental Applications
Abstract
:1. Introduction
1.1. Electrochemical Sensor
1.2. Conductive Polymers
1.2.1. Polypyrrole(PPy)
1.2.2. Polyaniline(PANI)
1.2.3. Polythiophene(PTh)
1.2.4. Poly (3, 4-acetylene dioxthiophene) (PEDOT)
1.2.5. Polyacetylene (PA)
1.2.6. Poly(p-phenylene vinylene) (PPV)
2. Biomedical Applications
2.1. Biomolecular Detection
2.1.1. pH
2.1.2. Glucose
2.1.3. Cholesterol
2.1.4. DNA and RNA
2.1.5. Other Substances
2.2. Cancer Markers
2.3. Drug Screening and Delivery
3. Environmental Applications
3.1. Nitrate Nitrogen
3.2. Heavy Metal Ions
3.3. Antibiotics
3.4. Pesticide
3.5. Toxic Gases
4. Summary and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Lei, M.; Liu, S.-X.; Zhao, Q. Smart hydrogel-based optical fiber SPR sensor for pH measurements. Sens. Actuators B Chem. 2018, 261, 226–232. [Google Scholar] [CrossRef]
- Wencel, D.; Kaworek, A.; Abel, T.; Efremov, V.; Bradford, A.; Carthy, D.; Coady, G.; McMorrow, R.C.N.; McDonagh, C. Optical Sensor for Real-Time pH Monitoring in Human Tissue. Small 2018, 14, 1803627. [Google Scholar] [CrossRef] [PubMed]
- Safavi, A.; Bagheri, M. Novel optical pH sensor for high and low pH values. Sens. Actuators B Chem. 2003, 90, 143–150. [Google Scholar] [CrossRef]
- Wang, J.; Xue, N.; Pan, W.; Tu, R.; Li, S.; Zhang, Y.; Mao, Y.; Liu, Y.; Cheng, H.; Guo, Y.; et al. Repurposing conformational changes in ANL superfamily enzymes to rapidly generate biosensors for organic and amino acids. Nat. Commun. 2023, 14, 6680. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.G.; Ye, D.-Y.; Jung, G.Y. Biosensor-guided discovery and engineering of metabolic enzymes. Biotechnol. Adv. 2023, 69, 108251. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Li, L.; Pan, L.; Yan, K.; Shi, Y.; Jiang, L.; Zhu, J.-J. Long-term cell culture and electrically in situ monitoring of living cells based on a polyaniline hydrogel sensor. J. Mater. Chem. B 2021, 9, 9514–9523. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Park, D.; Park, Y.; Kim, D.-H.; Kim, J. Electric-Field-Mediated In-Sensor Alignment of Antibody’s Orientation to Enhance the Antibody-Antigen Binding for Ultrahigh Sensitivity Sensors. Nano Lett. 2022, 22, 6537–6544. [Google Scholar] [CrossRef]
- Stanford, M.G.; Yang, K.; Chyan, Y.; Kittrell, C.; Tour, J.M. Laser-Induced Graphene for Flexible and Embeddable Gas Sensors. ACS Nano 2019, 13, 3474–3482. [Google Scholar] [CrossRef]
- Tang, W.; Chen, Z.; Song, Z.; Wang, C.; Wan, Z.; Chan, C.L.J.; Chen, Z.; Ye, W.; Fan, Z. Microheater Integrated Nanotube Array Gas Sensor for Parts-Per-Trillion Level Gas Detection and Single Sensor-Based Gas Discrimination. ACS Nano 2022, 16, 10968–10978. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Zhang, Y.; Wu, J.; Hu, J.; Li, S.; Li, L. Simultaneous detection of lead and cadmium based on N-doped MoS2/MWCNTs nanocomposites. J. Mater. Sci. 2023, 58, 6643–6655. [Google Scholar] [CrossRef]
- Yang, T.; Yu, R.; Yan, Y.; Zeng, H.; Luo, S.; Liu, N.; Morrin, A.; Luo, X.; Li, W. A review of ratiometric electrochemical sensors: From design schemes to future prospects. Sens. Actuators B Chem. 2018, 274, 501–516. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, F. Electrochemical sensor for dimetridazole based on novel gold nanoparticles@molecularly imprinted polymer. Sens. Actuators B Chem. 2015, 220, 1017–1022. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Ramaraj, R. A facile electrochemical sensor designed from gold nanoparticles embedded in three-dimensional sol-gel network for concurrent detection of toxic chemicals. Electrochem. Commun. 2007, 9, 2051–2055. [Google Scholar] [CrossRef]
- Pan, L.; Yu, G.; Zhai, D.; Lee, H.R.; Zhao, W.; Liu, N.; Wang, H.; Tee, B.C.K.; Shi, Y.; Cui, Y.; et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. USA 2012, 109, 9287–9292. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Timchalk, C.; Lin, Y. Carbon nanotube-based electrochemical sensor for assay of salivary cholinesterase enzyme activity: An exposure biomarker of organophosphate pesticides and nerve agents. Environ. Sci. Technol. 2008, 42, 2688–2693. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Li, B.; Li, F.; Dubovyk, V.; Chang, Y.; Li, D.; Ding, K.; Ran, Q.; Wang, G.; Zhao, H. A novel electrochemical sensor based on β-cyclodextrin functionalized carbon nanosheets@carbon nanotubes for sensitive detection of bactericide carbendazim in apple juice. Food Chem. 2022, 384, 132573. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Duan, M.; Wu, W.; Shao, S.; Qin, Y.; Zhang, M. Enzymatic construction Au NPs-rGO based MIP electrochemical sensor for adulteration detection of bovine-derived allergen in camel milk. Food Chem. 2024, 436, 137638. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhao, F. Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes@molecularly imprinted polymer. Biosens. Bioelectron. 2015, 64, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.K.; Fincher, C.R.; Park, Y.W.; Heeger, A.J.; Shirakawa, H.; Louis, E.J.; Gau, S.C.; MacDiarmid, A.G. Electrical Conductivity in Doped Polyacetylene. Phys. Rev. Lett. 1977, 39, 1098–1101. [Google Scholar] [CrossRef]
- Le, T.-H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9, 150. [Google Scholar] [CrossRef]
- Tsukamoto, J.; Takahashi, A.; Kawasaki, K. Structure and Electrical Properties of Polyacetylene Yielding a Conductivity of 105 S/cm. Jpn. J. Appl. Phys. 1990, 29, 125. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, C.; Li, F.; Jin, H.; Li, B.; Ding, F.; Yang, Y.; Yang, Z.; Yuan, F. Highly Conductive Ultrafine N-Doped Silicon Powders Prepared by High-Frequency Thermal Plasma and Their Application as Anodes for Lithium-Ion Batteries. ACS Appl. Electron. Mater. 2023, 6, 816–827. [Google Scholar] [CrossRef]
- Boosagulla, D.; Mandati, S.; Allikayala, R.; Sarada, B.V. Growth mechanism of pulse electrodeposited cadmium sulfide and zinc sulfide thin films with tartaric acid and glycerol as additives. Thin Solid Films 2022, 741, 139011. [Google Scholar] [CrossRef]
- Aguilar-Bolados, H.; Vargas-Astudillo, D.; Yazdani-Pedram, M.; Acosta-Villavicencio, G.; Fuentealba, P.; Contreras-Cid, A.; Verdejo, R.; Lopez-Manchado, M.A. Facile and Scalable One-Step Method for Amination of Graphene Using Leuckart Reaction. Chem. Mater. 2017, 29, 6698–6705. [Google Scholar] [CrossRef]
- Bi, S.; Hou, L.; Lu, Y. Multifunctional sodium alginate fabric based on reduced graphene oxide and polypyrrole for wearable closed-loop point-of-care application. Chem. Eng. J. 2021, 406, 126778. [Google Scholar] [CrossRef]
- Xia, J.; Chen, L.; Yanagida, S. Application of polypyrrole as a counter electrode for a dye-sensitized solar cell. J. Mater. Chem. 2011, 21, 4644–4649. [Google Scholar] [CrossRef]
- Thadathil, A.; Pradeep, H.; Joshy, D.; Ismail, Y.A.; Periyat, P. Polyindole and polypyrrole as a sustainable platform for environmental remediation and sensor applications. Mater. Adv. 2022, 3, 2990–3022. [Google Scholar] [CrossRef]
- Yang, P.; Mai, W. Flexible solid-state electrochemical supercapacitors. Nano Energy 2014, 8, 274–290. [Google Scholar] [CrossRef]
- Chen, J.; Feng, J.; Yan, W. Influence of metal oxides on the adsorption characteristics of PPy/metal oxides for Methylene Blue. J. Colloid Interface Sci. 2016, 475, 26–35. [Google Scholar] [CrossRef]
- Zare, E.N.; Makvandi, P.; Ashtari, B.; Rossi, F.; Motahari, A.; Perale, G. Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. J. Med. Chem. 2020, 63, 1–22. [Google Scholar] [CrossRef]
- Li, L.; Shi, Y.; Pan, L.; Shi, Y.; Yu, G. Additional Article Notification: Rational design and applications of conducting polymer hydrogels as electrochemical biosensors. J. Mater. Chem. B 2015, 3, 5111–5121. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, J.; Zhang, H.; Hu, J.; Li, S.; Li, L. An all-solid-state ion-selective sensor based on polyaniline for nitrate-nitrogen detection. J. Mater. Sci. 2023, 58, 17292–17302. [Google Scholar] [CrossRef]
- Chaudhary, A.; Pathak, D.K.; Tanwar, M.; Yogi, P.; Sagdeo, P.R.; Kumar, R. Polythiophene-PCBM-Based All-Organic Electrochromic Device: Fast and Flexible. ACS Appl. Electron. Mater. 2019, 1, 58–63. [Google Scholar] [CrossRef]
- Kaloni, T.P.; Giesbrecht, P.K.; Schreckenbach, G.; Freund, M.S. Polythiophene: From Fundamental Perspectives to Applications. Chem. Mater. 2017, 29, 10248–10283. [Google Scholar] [CrossRef]
- Thanasamy, D.; Jesuraj, D.; Kannan, S.K.K.; Avadhanam, V. A novel route to synthesis polythiophene with great yield and high electrical conductivity without post doping process. Polymer 2019, 175, 32–40. [Google Scholar] [CrossRef]
- Chen, R.; Chen, S.; Zhou, Y.; Wei, Z.; Wang, H.; Zheng, Y.; Li, M.; Sun, K.; Li, Y. Unsubstituted Polythiophene Film Deposited via In-Situ Sequential Solution Polymerization for Chemo-/Electrochromism. Macromolecules 2020, 53, 4247–4254. [Google Scholar] [CrossRef]
- Serrano-Garcia, W.; Bonadies, I.; Thomas, S.; Guarino, V. P3HT loaded piezoelectric electrospun fibers for tunable molecular adsorption. Mater. Lett. 2020, 266, 127458. [Google Scholar] [CrossRef]
- Agbolaghi, S.; Zenoozi, S. A comprehensive review on poly(3-alkylthiophene)-based crystalline structures, protocols and electronic applications. Org. Electron. 2017, 51, 362–403. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Sun, D.; Jiang, N.; Niu, K.; Giuntoli, A.; Xia, W. Understanding the thermomechanical behavior of graphene-reinforced conjugated polymer nanocomposites via coarse-grained modeling. Nanoscale 2023, 15, 17124–17137. [Google Scholar] [CrossRef]
- Gadisa, A.; Oosterbaan, W.D.; Vandewal, K.; Bolsee, J.-C.; Bertho, S.; D’Haen, J.; Lutsen, L.; Vanderzande, D.; Manca, J.V. Effect of Alkyl Side-Chain Length on Photovoltaic Properties of Poly(3-alkylthiophene)/PCBM Bulk Heterojunctions. Adv. Funct. Mater. 2009, 19, 3300–3306. [Google Scholar] [CrossRef]
- Wang, H.-J.; Tzeng, J.-Y.; Chou, C.-W.; Huang, C.-Y.; Lee, R.-H.; Jeng, R.-J. Novel polythiophene derivatives functionalized with conjugated side-chain pendants comprising triphenylamine/carbazole moieties for photovoltaic cell applications. Polym. Chem. 2013, 4, 506–519. [Google Scholar] [CrossRef]
- Razzell-Hollis, J.; Fleischli, F.; Jahnke, A.A.; Stingelin, N.; Seferos, D.S.; Kim, J.-S. Effects of Side-Chain Length and Shape on Polytellurophene Molecular Order and Blend Morphology. J. Phys. Chem. C 2017, 121, 2088–2098. [Google Scholar] [CrossRef]
- Nejati, S.; Minford, T.E.; Smolin, Y.Y.; Lau, K.K.S. Enhanced Charge Storage of Ultrathin Polythiophene Films within Porous Nanostructures. ACS Nano 2014, 8, 5413–5422. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Deng, H.; Fu, Q. Recent progress on PEDOT:PSS based polymer blends and composites for flexible electronics and thermoelectric devices. Mater. Chem. Front. 2020, 4, 3130–3152. [Google Scholar] [CrossRef]
- Fan, X.; Nie, W.; Tsai, H.; Wang, N.; Huang, H.; Cheng, Y.; Wen, R.; Ma, L.; Yan, F.; Xia, Y. PEDOT:PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications. Adv. Sci. 2019, 6, 1900813. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Sachse, C.; Machala, M.L.; May, C.; Mueller-Meskamp, L.; Leo, K. Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. Adv. Funct. Mater. 2011, 21, 1076–1081. [Google Scholar] [CrossRef]
- Wu, F.; Li, P.; Sun, K.; Zhou, Y.; Chen, W.; Fu, J.; Li, M.; Lu, S.; Wei, D.; Tang, X.; et al. Conductivity Enhancement of PEDOT:PSS via Addition of Chloroplatinic Acid and Its Mechanism. Adv. Electron. Mater. 2017, 3, 1700047. [Google Scholar] [CrossRef]
- Wang, C.; Sun, K.; Fu, J.; Chen, R.; Li, M.; Zang, Z.; Liu, X.; Li, B.; Gong, H.; Ouyang, I. Enhancement of Conductivity and Thermoelectric Property of PEDOT:PSS via Acid Doping and Single Post-Treatment for Flexible Power Generator. Adv. Sustain. Syst. 2018, 2, 1800085. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, K.; Chen, R.; Zhou, Y.; Chen, S.; Zheng, Y.; Li, M.; Xu, C.; Tang, X.; Zang, Z.; et al. The Role of Mineral Acid Doping of PEDOT:PSS and Its Application in Organic Photovoltaics. Adv. Electron. Mater. 2020, 6, 1900648. [Google Scholar] [CrossRef]
- Bessaire, B.; Mathieu, M.; Salles, V.; Yeghoyan, T.; Celle, C.; Simonato, J.-P.; Brioude, A. Synthesis of Continuous Conductive PEDOT:PSS Nanofibers by Electrospinning: A Conformal Coating for Optoelectronics. ACS Appl. Mater. Interfaces 2017, 9, 950–957. [Google Scholar] [CrossRef]
- Lim, H.C.; Jang, S.-J.; Cho, Y.; Cho, H.; Prasad, G.V.; Venkatachalam, V.; Shin, I.-S.; Kim, T.H. Graphene Quantum Dot-Doped PEDOT for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. ChemElectroChem 2022, 9, e202200557. [Google Scholar] [CrossRef]
- Miao, Z.; Gonsales, S.A.; Ehm, C.; Mentink-Vigier, F.; Bowers, C.R.; Sumerlin, B.S.; Veige, A.S. Cyclic polyacetylene. Nat. Chem. 2021, 13, 792–799. [Google Scholar] [CrossRef] [PubMed]
- Szuwarzynski, M.; Wolski, K.; Zapotoczny, S. Enhanced stability of conductive polyacetylene in ladder-like surface-grafted brushes. Polym. Chem. 2016, 7, 5664–5670. [Google Scholar] [CrossRef]
- Shi, Y.; Peng, L.; Ding, Y.; Zhao, Y.; Yu, G. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 2015, 44, 6684–6696. [Google Scholar] [CrossRef] [PubMed]
- Bhadra, S.; Khastgir, D.; Singha, N.K.; Lee, J.H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 2009, 34, 783–810. [Google Scholar] [CrossRef]
- Bujak, P.; Kulszewicz-Bajer, I.; Zagorska, M.; Maurel, V.; Wielgus, I.; Pron, A. Polymers for electronics and spintronics. Chem. Soc. Rev. 2013, 42, 8895–8999. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Zhang, J.; Xie, M.; Li, X.; Wang, L.; Liu, Y.; Niu, K.; Wang, J.; Song, L.; Cheng, T.; et al. From n-alkane to polyacetylene on Cu (110): Linkage modulation in chain growth. Sci. China Chem. 2022, 65, 733–739. [Google Scholar] [CrossRef]
- Wang, S.; Hu, D.; Guan, X.; Cai, S.; Shi, G.; Shuai, Z.; Zhang, J.; Peng, Q.; Wan, X. Brightening up Circularly Polarized Luminescence of Monosubstituted Polyacetylene by Conformation Control: Mechanism, Switching, and Sensing. Angew. Chem. Int. Ed. 2021, 60, 21918–21926. [Google Scholar] [CrossRef] [PubMed]
- Namsheer, K.; Rout, C.S. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar] [CrossRef]
- Hu, X.; Wang, P.; Yang, J.; Zhang, B.; Li, J.; Luo, J.; Wu, K. Enhanced electrochemical detection of erythromycin based on acetylene black nanoparticles. Colloids Surf. B Biointerfaces 2010, 81, 27–31. [Google Scholar] [CrossRef]
- Li, M.; Qi, Y.; Ding, Y.; Zhao, Q.; Fei, J.; Zhou, J. Electrochemical sensing platform based on the quaternized cellulose nanoparticles/acetylene black/enzymes composite film. Sens. Actuators B Chem. 2012, 168, 329–335. [Google Scholar] [CrossRef]
- Tsou, T.-Y.; Lee, C.-Y.; Chiu, H.-T. K and Au Bicatalyst Assisted Growth of Carbon Nanocoils from Acetylene: Effect of Deposition Parameters on Field Emission Properties. ACS Appl. Mater. Interfaces 2012, 4, 6505–6511. [Google Scholar] [CrossRef] [PubMed]
- Sobczak, Q.; Kunche, A.; Magis, D.; Carrizo, D.S.; Miqueu, K.; Sotiropoulos, J.-M.; Cloutet, E.; Brochon, C.; Landais, Y.; Taton, D.; et al. Direct and selective access to amino-poly(phenylene vinylenes)s with switchable properties by dimerizing polymerization of aminoaryl carbenes. Nat. Commun. 2021, 12, 4093. [Google Scholar] [CrossRef] [PubMed]
- Van der Zee, B.; Li, Y.; Wetzelaer, G.-J.A.H.; Blom, P.W.M. Efficiency of Polymer Light-Emitting Diodes: A Perspective. Adv. Mater. 2022, 34, 2108887. [Google Scholar] [CrossRef]
- Malte, H.; Wang, T. Climate change: The rise in atmospheric CO2 poses no risk for acid-base balance in humans. Acta Physiol. 2024, 240, e14066. [Google Scholar] [CrossRef] [PubMed]
- Aoi, W.; Marunaka, Y. Importance of pH Homeostasis in Metabolic Health and Diseases: Crucial Role of Membrane Proton Transport. Biomed Res. Int. 2014, 2014, 598986. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K. The Future Is Wireless: Advances in Wireless Diagnostic and Therapeutic Technologies in Gastroenterology. Gastroenterology 2009, 137, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Abuhelwa, A.Y.; Foster, D.J.R.; Upton, R.N. A Quantitative Review and Meta-Models of the Variability and Factors Affecting Oral Drug Absorption-Part I: Gastrointestinal pH. Aaps J. 2016, 18, 1309–1321. [Google Scholar] [CrossRef] [PubMed]
- Hajjar, S.; Zhou, X. pH sensing at the intersection of tissue homeostasis and inflammation. Trends Immunol. 2023, 44, 807–825. [Google Scholar] [CrossRef]
- Parrilla, M.; Vanhooydonck, A.; Johns, M.; Watts, R.; De Wael, K. 3D-printed microneedle-based potentiometric sensor for pH monitoring in skin interstitial fluid. Sens. Actuators B Chem. 2023, 378, 133159. [Google Scholar] [CrossRef]
- Power, G.; Moore, Z.; O’Connor, T. Measurement of pH, exudate composition and temperature in wound healing: A systematic review. J. Wound Care 2017, 26, 381–397. [Google Scholar] [CrossRef] [PubMed]
- Abu Zahed, M.; Barman, S.C.; Das, P.S.; Sharifuzzaman, M.; Yoon, H.S.; Yoon, S.H.; Park, J.Y. Highly flexible and conductive poly (3, 4-ethylene dioxythiophene)-poly (styrene sulfonate) anchored 3-dimensional porous graphene network-based electrochemical biosensor for glucose and pH detection in human perspiration. Biosens. Bioelectron. 2020, 160, 112220. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Xue, H.; Zhao, H.; Fei, T.; Liu, S.; Chen, Q.; Gao, B.; Zhang, T. A dual-functional polyaniline film-based flexible electrochemical sensor for the detection of pH and lactate in sweat of the human body. Talanta 2022, 242, 123289. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Qiao, X.; Tao, R.; Li, Y.; Zhao, S.; Cai, Y.; Luo, X. A wearable sensor based on multifunctional conductive hydrogel for simultaneous accurate pH and tyrosine monitoring in sweat. Biosens. Bioelectron. 2023, 234, 115360. [Google Scholar] [CrossRef] [PubMed]
- Simmer, P.; Li, S.K.; Kasting, G.; Heikenfeld, J. Prolonged and localized sweat stimulation by iontophoretic delivery of the slowly-metabolized cholinergic agent carbachol. J. Dermatol. Sci. 2018, 89, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jeerapan, I.; Imani, S.; Cho, T.N.; Bandodkar, A.; Cinti, S.; Mercier, P.P.; Wang, J. Noninvasive Alcohol Monitoring Using a Wearable Tattoo-Based Iontophoretic-Biosensing System. ACS Sens. 2016, 1, 1011–1019. [Google Scholar] [CrossRef]
- Schmidt, A.M. Recent Highlights of ATVB Diabetes Mellitus. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Yeung, R.O.; Hannah-Shmouni, F.; Niederhoffer, K.; Walker, M.A. Not quite type 1 or type 2, what now? Review of monogenic, mitochondrial, and syndromic diabetes. Rev. Endocr. Metab. Disord. 2018, 19, 35–52. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Liu, J.; Zhang, C.; Liu, G.; Leng, J.; Wang, L.; Li, W.; Yu, Z.; Hu, G.; Chan, J.C.N.; et al. Effects of lifestyle intervention during pregnancy on postpartum diabetes among Chinese women with gestational diabetes. Diabetologia 2021, 64, 255–258. [Google Scholar] [CrossRef]
- Powers, M.A.; Marrero, D.G. Diabetes Self-management Education and Support in Type 2 Diabetes: A Joint Position Statement of the American Diabetes Association, the American Association of Diabetes Educators, and the Academy of Nutrition and Dietetics. Diabetes Care 2015;38:1372-1382. Diabetes Care 2016, 39, E17. [Google Scholar] [CrossRef]
- Yeon, S.Y.; Seo, M.; Kim, Y.; Hong, H.; Chung, T.D. Paper-based electrochromic glucose sensor with polyaniline on indium tin oxide nanoparticle layer as the optical readout. Biosens. Bioelectron. 2022, 203, 114002. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-L.; Lo, Y.-L.; Liao, C.-C.; Quoc-Hung, P. Noninvasive measurement of glucose concentration on human fingertip by optical coherence tomography. J. Biomed. Opt. 2018, 23, 047001. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.-D.; Han, T.-S.; Ge, Q.; Chen, W.-L.; Liu, R.; Li, C.-X.; Xu, K.-X. Verification of Signal Extraction Capability of Near-Infrared Non-Invasive Blood Glucose Detection System. Spectrosc. Spectr. Anal. 2020, 40, 3438–3442. [Google Scholar] [CrossRef]
- Karpova, E.V.; Karyakin, A.A. Noninvasive monitoring of diabetes and hypoxia by wearable flow-through biosensors. Curr. Opin. Electrochem. 2020, 23, 16–20. [Google Scholar] [CrossRef]
- Khan, A.; Khan, A.A.P.; Marwani, H.M.; Alotaibi, M.M.; Asiri, A.M.; Manikandan, A.; Siengchin, S.; Rangappa, S.M. Sensitive Non-Enzymatic Glucose Electrochemical Sensor Based on Electrochemically Synthesized PANI/Bimetallic Oxide Composite. Polymers 2022, 14, 3047. [Google Scholar] [CrossRef] [PubMed]
- Zhai, D.; Liu, B.; Shi, Y.; Pan, L.; Wang, Y.; Li, W.; Zhang, R.; Yu, G. Highly Sensitive Glucose Sensor Based on Pt Nanoparticle/Polyaniline Hydrogel Heterostructures. ACS Nano 2013, 7, 3540–3546. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Pan, L.; Ma, Z.; Yan, K.; Cheng, W.; Shi, Y.; Yu, G. All Inkjet-Printed Amperometric Multiplexed Biosensors Based on Nanostructured Conductive Hydrogel Electrodes. Nano Lett. 2018, 18, 3322–3327. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; He, M.; Wu, J.; Qi, H.; Cheng, Y. One-step synthesis of MXene-functionalized PEDOT:PSS conductive polymer hydrogels for wearable and noninvasive monitoring of sweat glucose. Sens. Actuators B Chem. 2024, 401, 135055. [Google Scholar] [CrossRef]
- GhavamiNejad, P.; GhavamiNejad, A.; Zheng, H.; Dhingra, K.; Samarikhalaj, M.; Poudineh, M. A Conductive Hydrogel Microneedle-Based Assay Integrating PEDOT:PSS and Ag-Pt Nanoparticles for Real-Time, Enzyme-Less, and Electrochemical Sensing of Glucose. Adv. Healthc. Mater. 2023, 12, 2202362. [Google Scholar] [CrossRef]
- Vitali, C.; Remaley, A.T.; Cuchel, M. Is Low-Density Lipoprotein Cholesterol the Key to Interpret the Role of Lecithin:Cholesterol Acyltransferase in Atherosclerosis? Circulation 2018, 138, 1008–1011. [Google Scholar] [CrossRef]
- Garland, M.R.; Hallahan, B.; McNamara, M.; Carney, P.A.; Grimes, H.; Hibbeln, J.R.; Harkin, A.; Conroy, R.M. Lipids and essential fatty acids in patients presenting with self-harm. Br. J. Psychiatry 2007, 190, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Bibbins-Domingo, K.; Grossman, D.C.; Curry, S.J.; Davidson, K.W.; Epling, J.W., Jr.; Garcia, F.A.R.; Gillman, M.W.; Kemper, A.R.; Krist, A.H.; Kurth, A.E.; et al. Screening for Lipid Disorders in Children and Adolescents US Preventive Services Task Force Recommendation Statement. JAMA J. Am. Med. Assoc. 2016, 316, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Tuteja, S.; Rader, D.J. DYSLIPIDAEMIA Cardiovascular prevention-end of the road for niacin? Nat. Rev. Endocrinol. 2014, 10, 646–647. [Google Scholar] [CrossRef] [PubMed]
- Gudzune, K.A.; Monroe, A.K.; Sharma, R.; Ranasinghe, P.D.; Chelladurai, Y.; Robinson, K.A. Effectiveness of Combination Therapy With Statin and Another Lipid-Modifying Agent Compared With Intensified Statin Monotherapy A Systematic Review. Ann. Intern. Med. 2014, 160, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Alagappan, M.; Immanuel, S.; Sivasubramanian, R.; Kandaswamy, A. Development of cholesterol biosensor using Au nanoparticles decorated f-MWCNT covered with polypyrrole network. Arab. J. Chem. 2020, 13, 2001–2010. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Pan, L.; Shi, Y.; Cheng, W.; Shi, Y.; Yu, G. A Nanostructured Conductive Hydrogels-Based Biosensor Platform for Human Metabolite Detection. Nano Lett. 2015, 15, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Thivya, P.; Ramya, R.; Wilson, J. Poly(3,4-ethylenedioxythiophene)/taurine biocomposite on screen printed electrode: Non-enzymatic cholesterol biosensor. Microchem. J. 2020, 157, 105037. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, P.; Su, Y.; Wang, L.; Pan, D.; Aldalbahi, A.; Yang, S.; Zuo, X. Nanoprobe-Initiated Enzymatic Polymerization for Highly Sensitive Electrochemical DNA Detection. ACS Appl. Mater. Interfaces 2015, 7, 25618–25623. [Google Scholar] [CrossRef]
- Yang, W.; Gerasimov, J.Y.; Lai, R.Y. Folding-based electrochemical DNA sensor fabricated on a gold-plated screen-printed carbon electrode. Chem. Commun. 2009, 20, 2902–2904. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, X.; Liu, X.; Gao, Q.; Qi, H.; Zhang, C. Signal-on impedimetric electrochemical DNA sensor using dithiothreitol modified gold nanoparticle tag for highly sensitive DNA detection. Anal. Chim. Acta 2013, 799, 36–43. [Google Scholar] [CrossRef]
- Lubin, A.A.; Lai, R.Y.; Baker, B.R.; Heeger, A.J.; Plaxco, K.W. Sequence-specific, electronic detection of oligonucleotides in blood, soil, and foodstuffs with the reagentless, reusable E-DNA sensor. Anal. Chem. 2006, 78, 5671–5677. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Jin, T.; Dai, Y.; Liu, C.C. Surpassing the detection limit and accuracy of the electrochemical DNA sensor through the application of CRISPR Cas systems. Biosens. Bioelectron. 2020, 155, 112100. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Song, L.; Gao, Q.; Qi, H.; Zhang, C. Highly sensitive detection of DNA using an electrochemical DNA sensor with thionine-capped DNA/gold nanoparticle conjugates as signal tags. Electrochem. Commun. 2013, 34, 18–21. [Google Scholar] [CrossRef]
- Kiransan, K.D.; Topcu, E. Conducting Polymer-Reduced Graphene Oxide Sponge Electrode for Electrochemical Detection Based on DNA Hybridization. ACS Appl. Nano Mater. 2020, 3, 5449–5462. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H.; Lue, H.; Hui, N. Phytic acid functionalized antifouling conducting polymer hydrogel for electrochemical detection of microRNA. Anal. Chim. Acta 2020, 1124, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, Y.; Xu, K.; Zhong, Y.; He, C.; Jiang, L.; Sun, J.; Rao, Z.; Zhu, J.; Huang, J.; et al. Natural oxidase-mimicking copper-organic frameworks for targeted identification of ascorbate in sensitive sweat sensing. Nat. Commun. 2023, 14, 69. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Han, M.-J.; Zhou, L.; Huang, A.; Yang, Z.; Wang, T.; Li, F.; Yu, L.; Tian, C.; Zang, Z.; et al. S-Click Reaction for Isotropic Orientation of Oxidases on Electrodes to Promote Electron Transfer at Low Potentials. Angew. Chem. Int. Ed. 2019, 58, 16480–16484. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Butler, D.; Lucking, M.C.; Zhang, F.; Xia, T.; Fujisawa, K.; Granzier-Nakajima, T.; Cruz-Silva, R.; Endo, M.; Terrones, H.; et al. Single-atom doping of MoS2 with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach. Sci. Adv. 2020, 6, eabc4250. [Google Scholar] [CrossRef] [PubMed]
- Mugo, S.M.; Robertson, S.V.; Lu, W. A molecularly imprinted electrochemical microneedle sensor for multiplexed metabolites detection in human sweat. Talanta 2023, 259, 124531. [Google Scholar] [CrossRef]
- Zhang, Q.; Xie, X.; Peng, J.; Chen, F.; Ma, J.; Li, C.; Liu, H.; Wang, D.; Wang, J. Direct C4-Acetoxylation of Tryptophan and Tryptophan-Containing Peptides via Palladium(II)-Catalyzed C-H Activation. Org. Lett. 2021, 23, 4699–4704. [Google Scholar] [CrossRef]
- Koper, J.E.B.; Troise, A.D.; Loonen, L.M.P.; Vitaglione, P.; Capuano, E.; Fogliano, V.; Wells, J.M. Tryptophan Supplementation Increases the Production of Microbial-Derived AhR Agonists in anIn VitroSimulator of Intestinal MicrobialEcosystem. J. Agric. Food Chem. 2022, 70, 3958–3968. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Liu, Y.; Lv, M.; Qiao, X.; Fan, G.-C.; Luo, X. An anti-fouling wearable molecular imprinting sensor based on semi-interpenetrating network hydrogel for the detection of tryptophan in sweat. Anal. Chim. Acta 2023, 1283, 341948. [Google Scholar] [CrossRef] [PubMed]
- Bansal, R.; Hald, N.; Garcia-Segura, S. Towards the design of mechanical flexible electrodes for sensing: Self-standing polypyrrole-copper nanocomposites. Talanta 2024, 266, 125037. [Google Scholar] [CrossRef] [PubMed]
- Ostergaard, S.D.; Dinesen, P.T.; Foldager, L. Quantifying the value of markers in screening programmes. Eur. J. Epidemiol. 2010, 25, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, D.M.; Ehm, M.G.; Weir, B.S. Detecting marker-disease association by testing for Hardy-Weinberg disequilibrium at a marker locus. Am. J. Hum. Genet. 1998, 63, 1531–1540. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T. A blood tumor marker combination assay produces high sensitivity and specificity for cancer according to the natural history. Cancer Med. 2018, 7, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Kokorina, A.A.; Ponomaryova, T.S.; Goryacheva, I.Y. Photoluminescence-based immunochemical methods for determination of C-reactive protein and procalcitonin. Talanta 2021, 224, 121837. [Google Scholar] [CrossRef] [PubMed]
- Naik, A.; Yeong, J.; Decock, J. Editorial: Cancer testis antigens in cancer: Recent developments as cancer biomarkers and therapeutic targets. Front. Oncol. 2022, 12, 1075329. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Campos, P.; Segovia-de los Santos, P.; Ibanez-Echevarria, E.; de Rojas, D.H.-F.; Casino, P.; Lassabe, G.; Gonzalez-Sapienza, G.; Maquieira, A.; Morais, S. An ultra-sensitive homologous chemiluminescence immunoassay to tackle penicillin allergy. Anal. Chim. Acta 2022, 1214, 339940. [Google Scholar] [CrossRef]
- Haji-Hashemi, H.; Norouzi, P.; Safarnejad, M.R.; Ganjali, M.R. Label-free electrochemical immunosensor for direct detection of Citrus Tristeza virus using modified gold electrode. Sens. Actuators B Chem. 2017, 244, 211–216. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, G.; Sun, S.; Shen, Y.; Zhang, C.; Xiao, A. Direct immobilization of antibodies on dialdehyde cellulose film for convenient construction of an electrochemical immunosensor. Sens. Actuators B Chem. 2014, 200, 304–309. [Google Scholar] [CrossRef]
- Aydin, E.B.; Aydin, M.; Sezginturk, M.K. A label-free electrochemical biosensor for highly sensitive detection of GM2A based on gold nanoparticles/conducting amino-functionalized thiophene polymer layer. Sens. Actuators B Chem. 2023, 392, 134025. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, A.; Tang, X.; Qin, J. Electrochemical sensitive detection of amyloid-β oligomer harnessing cellular prion protein on AuNPs embedded poly (pyrrole-3-carboxylic acid) matrix. Mater. Today Adv. 2022, 14, 100250. [Google Scholar] [CrossRef]
- Taheri, N.; Khoshsafar, H.; Ghanei, M.; Ghazvini, A.; Bagheri, H. Dual-template rectangular nanotube molecularly imprinted polypyrrole for label-free impedimetric sensing of AFP and CEA as lung cancer biomarkers. Talanta 2022, 239, 123146. [Google Scholar] [CrossRef] [PubMed]
- Kilic, T.; Gessner, I.; Cho, Y.K.; Jeong, N.; Quintana, J.; Weissleder, R.; Lee, H. Zwitterionic Polymer Electroplating Facilitates the Preparation of Electrode Surfaces for Biosensing. Adv. Mater. 2022, 34, 2107892. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, R.S.; Berk, M.; Brietzke, E.; Goldstein, B.I.; Lopez-Jaramillo, C.; Kessing, L.V.; Malhi, G.S.; Nierenberg, A.A.; Rosenblat, J.D.; Majeed, A.; et al. Bipolar disorders. Lancet 2020, 396, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.K.N.; Tong, C.H.Y.; Wong, C.S.M.; Chen, E.Y.H.; Chang, W.C. Life expectancy and years of potential life lost in bipolar disorder: Systematic review and meta-analysis (Feb, pg 1, 2022). Br. J. Psychiatry 2022, 221, 647–648. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Doobay, M. Valproic acid-induced obsessive-compulsive disorder in a patient with bipolar disorder. Bipolar Disord. 2020, 22, 538–540. [Google Scholar] [CrossRef]
- Felizardo, M.; Freitas, C. Valproic acid-induced hyperammonemic encephalopathy: A clinical case. Eur. Psychiatry 2022, 65, S728–S729. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, T.; Ye, Z.; Feng, Y.; Chen, Z.; Wang, Y.; Sun, Y.; Wu, H.; Yang, Z.; Wang, Y.; et al. A One-Step Electropolymerized Biomimetic Polypyrrole Membrane-Based Electrochemical Sensor for Selective Detection of Valproate. Front. Bioeng. Biotechnol. 2022, 10, 851692. [Google Scholar] [CrossRef]
- Khairy, M.; Banks, C.E. A screen-printed electrochemical sensing platform surface modified with nanostructured ytterbium oxide nanoplates facilitating the electroanalytical sensing of the analgesic drugs acetaminophen and tramadol. Microchim. Acta 2020, 187, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lagard, C.; Vodovar, D.; Chevillard, L.; Callebert, J.; Caille, F.; Pottier, G.; Liang, H.; Risede, P.; Tournier, N.; Megarbane, B. Investigation of the Mechanisms of Tramadol-Induced Seizures in Overdose in the Rat. Pharmaceuticals 2022, 15, 1254. [Google Scholar] [CrossRef] [PubMed]
- Diouf, A.; Aghoutane, Y.; Burhan, H.; Sen, F.; Bouchikhi, B.; El Bari, N. Tramadol sensing in non-invasive biological fluids using a voltammetric electronic tongue and an electrochemical sensor based on biomimetic recognition. Int. J. Pharm. 2021, 593, 120114. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Nie, W.; Qiao, L.; Huang, D.D.; Zhu, S.; Lou, S.; Wang, H.; Wang, Q.; Tao, S.; Sun, P.; et al. Elevated Formation of Particulate Nitrate From N2O5 Hydrolysis in the Yangtze River Delta Region From 2011 to 2019. Geophys. Res. Lett. 2022, 49, e2021GL097393. [Google Scholar] [CrossRef]
- Nestler, A.; Berglund, M.; Accoe, F.; Duta, S.; Xue, D.; Boeckx, P.; Taylor, P. Isotopes for improved management of nitrate pollution in aqueous resources: Review of surface water field studies. Environ. Sci. Pollut. Res. 2011, 18, 519–533. [Google Scholar] [CrossRef] [PubMed]
- Morou-Bermudez, E.; Torres-Colon, J.E.; Bermudez, N.S.; Patel, R.P.; Joshipura, K.J. Pathways Linking Oral Bacteria, Nitric Oxide Metabolism, and Health. J. Dent. Res. 2022, 101, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Monser, L.; Sadok, S.; Greenway, G.M.; Shah, I.; Uglow, R.F. A simple simultaneous flow injection method based on phosphomolybdenum chemistry for nitrate and nitrite determinations in water and fish samples. Talanta 2002, 57, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Q. Selective determination of nitrite/nitrate based on photo-induced redox activity of titanium dioxide. J. Sep. Sci. 2018, 41, 4075–4082. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wei, Z.; Liu, P. An all-solid-state NO3-ion-selective electrode with gold nanoparticles solid contact layer and molecularly imprinted polymer membrane. PLoS ONE 2020, 15, e0240173. [Google Scholar] [CrossRef]
- Pietrzak, K.; Wardak, C.; Malinowski, S. Application of polyaniline nanofibers for the construction of nitrate all-solid-state ion-selective electrodes. Appl. Nanosci. 2021, 11, 2823–2835. [Google Scholar] [CrossRef]
- Motaghedifard, M.H.; Pourmortazavi, S.M.; Alibolandi, M.; Mirsadeghi, S. Au-modified organic/inorganic MWCNT/Cu/PANI hybrid nanocomposite electrode for electrochemical determination of nitrate ions. Microchim. Acta 2021, 188, 1–12. [Google Scholar] [CrossRef]
- Ali, M.A.; Wang, X.; Chen, Y.; Jiao, Y.; Mahal, N.K.; Moru, S.; Castellano, M.J.; Schnable, J.C.; Schnable, P.S.; Dong, L. Continuous Monitoring of Soil Nitrate Using a Miniature Sensor with Poly(3-octyl-thiophene) and Molybdenum Disulfide Nanocomposite. ACS Appl. Mater. Interfaces 2019, 11, 29195–29206. [Google Scholar] [CrossRef]
- Koshiba, Y.; Hirai, M.; Horike, S.; Fukushima, T.; Ishida, K. Preparation of poly(3,4-ethylenedioxythiophene) by vapor-phase polymerization at the interface between 3,4-ethylenedioxythiophene vapor and oxidant melt. Mol. Cryst. Liq. Cryst. 2019, 688, 53–59. [Google Scholar] [CrossRef]
- Kohler, M.C.; Li, F.; Dong, Z.; Amineh, R.K. Real-Time Nitrate Ion Monitoring with Poly(3,4-ethylenedioxythiophene) (PEDOT) Materials. Sensors 2023, 23, 7627. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Y.; Zhang, Y.; Wu, J.; Li, S.; Li, L. A Disposable Electrochemical Sensor for Lead Ion Detection Based on In Situ Polymerization of Conductive Polypyrrole Coating. J. Electron. Mater. 2023, 52, 1819–1828. [Google Scholar] [CrossRef]
- Xu, M.; Wang, X.; Liu, X. Detection of Heavy Metal Ions by Ratiometric Photoelectric Sensor. J. Agric. Food Chem. 2022, 70, 11468–11480. [Google Scholar] [CrossRef]
- Xiao, L.; Zhao, Y.; Chang, G.; Yan, H.; Zou, R.; Zhang, X.; Wang, S.; He, H. A 3D phytic acid cross-linked high-porous conductive hydrogel integrating g-C3N4 for electrochemical multiplex sensing of heavy metal ions. Anal. Chim. Acta 2023, 1269, 341341. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Liu, Y.; Li, S.; Fang, Z.; He, B.; Zhang, Y.; Li, Y.; He, P. A rubber-like, underwater superoleophobic hydrogel for efficient oil/water separation. Chem. Eng. J. 2019, 361, 364–372. [Google Scholar] [CrossRef]
- Kulkarni, B.B.; Suvina, V.; Balakrishna, R.G.; Nagaraju, D.H.; Jagadish, K. 1D GNR-PPy Composite for Remarkably Sensitive Detection of Heavy Metal Ions in Environmental Water**. ChemElectroChem 2022, 9, e202101269. [Google Scholar] [CrossRef]
- Alruwais, R.S.; Adeosun, W.A.; Marwani, H.M.; Jawaid, M.; Asiri, A.M.; Khan, A. Novel Aminosilane (APTES)-Grafted Polyaniline@Graphene Oxide (PANI-GO) Nanocomposite for Electrochemical Sensor. Polymers 2021, 13, 2562. [Google Scholar] [CrossRef]
- Maheshwaran, M.; Sivaraman, G.; Kumar, K.K.S. An electrochemical voltammetric response of Hg2+ and Pb2+ ions using polyaniline-benzothiazole composite modified GCE electrode: Synthesis, characterization and quantum chemical calculation. Microchem. J. 2024, 197, 109865. [Google Scholar] [CrossRef]
- Milikić, J.; Savić, M.; Janošević Ležaić, A.; Šljukić, B.; Ćirić-Marjanović, G. Electrochemical Sensing of Cadmium and Lead Ions in Water by MOF-5/PANI Composites. Polymers 2024, 16, 683. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, M.; Ali, A.; Jamal, R.; Bakri, T.; Wu, W.; Abdiryim, T. Electrochemical Sensor of Double-Thiol Linked PProDOT@Si Composite for Simultaneous Detection of Cd(II), Pb(II), and Hg(II). Polymers 2019, 11, 815. [Google Scholar] [CrossRef] [PubMed]
- Curran, J.; Lo, J.; Leung, V.; Brown, K.; Schwartz, K.L.; Daneman, N.; Garber, G.; Wu, J.H.C.; Langford, B.J. Estimating daily antibiotic harms: An umbrella review with individual study meta-analysis. Clin. Microbiol. Infect. 2022, 28, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Xu, X.; Ma, Y.; Miao, J.; Bian, X. Rapid and Sensitive Detection of Sulfamethizole Using a Reusable Molecularly Imprinted Electrochemical Sensor. Foods 2023, 12, 1693. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, M.R.; Salehi, L.; Jafari, S.; Nasirizadeh, N.; Ghasemi, J. Voltammetric sensing of oxacillin by using a screen-printed electrode modified with molecularly imprinted polyaniline, gold nanourchins and graphene oxide. Microchim. Acta 2019, 186, 1–7. [Google Scholar] [CrossRef]
- Wu, D.H. Efficacy and tolerability of cefixime in otitis media. A multicentre study in over 25,000 children. Drugs 1991, 42 (Suppl. S4), 30–32. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.; Nasirizadeh, N.; Yazdanshenas, M.E. Determination of cefixime using a novel electrochemical sensor produced with gold nanowires/graphene oxide/electropolymerized molecular imprinted polymer. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 96, 654–660. [Google Scholar] [CrossRef]
- Zhou, T.; Yu, Z.; Zhang, L.; Gong, C.; Yan, C. Removal of sulfonamides from water by wetland plants: Performance, microbial response and mechanism. Sci. Total Environ. 2024, 916, 170181. [Google Scholar] [CrossRef]
- Ribeiro, J.; Vieira, F.D.; King, T.; D’Arezzo, J.B.; Boyce, J.M. Misclassification of susceptible strains of Staphylococcus aureus as methicillin-resistant S. aureus By a rapid automated susceptibility testing system. J. Clin. Microbiol. 1999, 37, 1619–1620. [Google Scholar] [CrossRef]
- Behera, K.; Mutharani, B.; Chang, Y.-H.; Kumari, M.; Chiu, F.-C. Protein-Aided Synthesis of Copper-Integrated Polyaniline Nanocomposite Encapsulated with Reduced Graphene Oxide for Highly Sensitive Electrochemical Detection of Dimetridazole in Real Samples. Polymers 2024, 16, 162. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Gai, L.; Harkes, P.; Tan, G.; Ritsema, C.J.; Alcon, F.; Contreras, J.; Abrantes, N.; Campos, I.; Baldi, I.; et al. Pesticide residues with hazard classifications relevant to non-target species including humans are omnipresent in the environment and farmer residences. Environ. Int. 2023, 181, 108280. [Google Scholar] [CrossRef] [PubMed]
- Anirudhan, T.S.; Athira, V.S.; Nair, S.S. Detection of chlorpyrifos based on molecular imprinting with a conducting polythiophene copolymer loaded on multi-walled carbon nanotubes. Food Chem. 2022, 381, 132010. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Lyu, Z.; Li, S.; Ruan, X.; Fei, M.; Zhou, Y.; Niu, X.; Zhu, W.; Du, D.; Lin, Y. Molecularly imprinted polypyrrole nanotubes based electrochemical sensor for glyphosate detection. Biosens. Bioelectron. 2021, 191, 113434. [Google Scholar] [CrossRef] [PubMed]
- Deller, A.E.; Hryniewicz, B.M.; Pesqueira, C.; Horta, R.P.; da Silva, B.J.G.; Weheabby, S.; Al-Hamry, A.; Kanoun, O.; Vidotti, M. PEDOT: PSS/AuNPs-Based Composite as Voltammetric Sensor for the Detection of Pirimicarb. Polymers 2023, 15, 739. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Mukherjee, M.; Wu, X. Toxic Gas Boundary Area Detection in Large-Scale Petrochemical Plants with Industrial Wireless Sensor Networks. IEEE Commun. Mag. 2016, 54, 22–28. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, L.; Lin, X.; Dai, J.; Liu, S.; Fei, T.; Zhang, T. Proton-Conductive Gas Sensor: A New Way to Realize Highly Selective Ammonia Detection for Analysis of Exhaled Human Breath. ACS Sens. 2020, 5, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Nabeel, A.N.; Bhagwat, S.; Kumar, R.; Sharma, S.; Kozak, D.; Hunjet, A.; Kumar, A.; Singh, R. Fabrication of polypyrrole gas sensor for detection of NH3 using an oxidizing agent and pyrrole combinations: Studies and characterizations. Heliyon 2023, 9, e17611. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Kim, H.; Song, J.; Oh, H.; Song, H.; Jang, J. Synthesis of silver nanoparticles decorated polypyrrole nanotubes for antimicrobial application. Macromol. Res. 2012, 20, 1096–1101. [Google Scholar] [CrossRef]
- Bhardwaj, S.K.; Mohanta, G.C.; Sharma, A.L.; Kim, K.-H.; Deep, A. A three-phase copper MOF-graphene-polyaniline composite for effective sensing of ammonia. Anal. Chim. Acta 2018, 1043, 89–97. [Google Scholar] [CrossRef]
- Jiang, J.; Pi, Q.; Zhou, J.; Du, Y.; Li, Y. A simple preparation of ultrathin AuNWs-PEDOT:PSS bilayer Janus film for high performance chemiresistive ammonia gas sensor. Sens. Actuators B Chem. 2023, 394, 134370. [Google Scholar] [CrossRef]
- Huang, Q.; Li, W.; Wu, T.; Ma, X.; Jiang, K.; Jin, X. Monoethanolamine-enabled electrochemical detection of H2S in a hydroxyl-functionalized ionic liquid. Electrochem. Commun. 2018, 88, 93–96. [Google Scholar] [CrossRef]
- Bibi, A.; Santiago, K.S.S.; Yeh, J.-M.; Chen, H.-H. Valorization of Agricultural Waste as a Chemiresistor H2S-Gas Sensor: A Composite of Biodegradable-Electroactive Polyurethane-Urea and Activated-Carbon Composite Derived from Coconut-Shell Waste. Polymers 2023, 15, 685. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.-H.; Yan, M.; Hung, Y.-H.; Kuang, J.-Y.; Chang, H.-C.; Lai, Y.-J.; Yeh, J.-M. Polyaniline Composites Containing Eco-Friendly Biomass Carbon from Agricultural-Waste Coconut Husk for Enhancing Gas Sensor Performance in Hydrogen Sulfide Detection. Polymers 2023, 15, 4554. [Google Scholar] [CrossRef]
- Ghosh, D.; Giri, S.; Mandal, A.; Das, C.K. H+, Fe3+ codoped polyaniline/MWCNTs nanocomposite: Superior electrode material for supercapacitor application. Appl. Surf. Sci. 2013, 276, 120–128. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, D.; Zong, X.; Dong, G.; Zhang, Y. High-performance QCM humidity sensor based on graphene oxide/tin oxide/polyaniline ternary nanocomposite prepared by in-situ oxidative polymerization method. Sens. Actuators B Chem. 2018, 262, 531–541. [Google Scholar] [CrossRef]
- Ansari, M.O.; Ansari, S.P.; Yadav, S.K.; Anwer, T.; Cho, M.H.; Mohammad, F. Ammonia vapor sensing and electrical properties of fibrous multi-walled carbon nanotube/polyaniline nanocomposites prepared in presence of cetyl-trimethylammonium bromide. J. Ind. Eng. Chem. 2014, 20, 2010–2017. [Google Scholar] [CrossRef]
- Zhao, Z.; Ma, C.; Xu, L.; Yu, Z.; Wang, D.; Jiang, L.; Jiang, X.; Gao, G. Conductive Polyaniline-Based Microwire Arrays for SO2 Gas Detection. ACS Appl. Mater. Interfaces 2023, 15, 38938–38945. [Google Scholar] [CrossRef]
- Jang, D.; Jin, H.; Kim, M.; Park, Y.D. Polymeric interfacial engineering approach to perovskite-functionalized organic transistor-type gas sensors. Chem. Eng. J. 2023, 473, 145482. [Google Scholar] [CrossRef]
CPs | Analyte | LOD (mM) | Linear Range(mM) | Application | Ref. |
---|---|---|---|---|---|
PANI | PH | 0.0014 | 10−5–0.1 | Biomolecular detection | [70] |
PANI | pH | 0.0016 | 8 × 10−6–0.1 | Biomolecular detection | [74] |
PANI | Glucose | 0.0007 | 0.01–8 | Biomolecular detection | [86] |
PANI | Glucose | 0.2 | 1–25 | Biomolecular detection | [87] |
PEDOT/PSS | Glucose | 0.0019 | 10−3–0.094 | Biomolecular detection | [88] |
PEDOT/PSS | Glucose | 0.0009 | 0.094–1.294 | Biomolecular detection | [89] |
PPy | Cholesterol | 0.1 | 0.0002–0.5 | Biomolecular detection | [95] |
PANI | Cholesterol | 0.00095 | 2–8 | Biomolecular detection | [96] |
PEDOT/PSS | DNA | 1.7 × 10−11 | 0.003–1 | Biomolecular detection | [104] |
PANI | microRNA | 3.4 × 10−13 | 5 × 10−11–2 × 10−3 | Biomolecular detection | [105] |
PEDOT/PSS | tryptophan | 0.00067 | 1 × 10−12–1 × 10−9 | Biomolecular detection | [112] |
PPy | Dopamine | 0.00119 | 0.002–0.1 | Biomolecular detection | [113] |
PTH | GM2A | 2.13 × 10−11 | 2.5 × 10−3–2.5 × 10−1 | Cancer makers | [122] |
PPy | AβO | 10–15 | 6.79 × 10−11–4.07 × 10−7 | Cancer makers | [123] |
PPy | CEA, AFP | 5.87 × 10−12, 1.21 × 10−11 | 10−15–10−3 | Cancer makers | [124] |
PPy | SARS-CoV-2 | 1.84 × 10−4 | 1.83 × 10−11–3.67 × 10−8, 3.67 × 10−11–3.67 × 10−8 | Cancer makers | [125] |
PPy | Valprate | 0.01748 | 5.5 × 10−12–3.67 × 10−7 | Drug screening and delivery | [130] |
PANI | TRA | 0.0346 | 1.84 × 10−14–2.75 × 10−13 | Drug screening and delivery | [133] |
CPs | Analyte | LOD (mM) | Linear Range (mM) | Application | Ref. |
---|---|---|---|---|---|
PPy | nitrate | 0.0537 | 0.0525–100 | Nitrate nitrogen | [139] |
PANI | nitrate | 9 × 10−5 | 0.0008–0.03 | Nitrate nitrogen | [141] |
POT | nitrate | 2.1 × 10−5 | 1.61 × 10−5–24.19 | Nitrate nitrogen | [142] |
PEDOT | nitrate | 1.61 × 10−5 | 1.61 × 10−5–16.13 | Nitrate nitrogen | [144] |
PANI, PPy | Cd2+, Cu2+, Pb2+, Hg2 | 2.608 × 10−5, 5.323 × 10−5, 1.484 × 10−5, 0.835 × 10−5 | 0.0005–0.1, 0.001–0.1, 0.0001–0.1, 0.001–0.01 | Heavy metal ions | [147] |
PPy | Pb2+ | 3 × 10−8 | 10−7–10−3 | Heavy metal ions | [149] |
PANI | Pb2+, Hg2 | 4.6 × 10−9, 10−9 | 0.001–0.0248 | Heavy metal ions | [151] |
PANI | Cd2, Pb2+ | 6.85 × 10−4, 1.59 × 10−4 | 4.8 × 10−6–1.02 × 10−5, 1.11 × 10−3–1.93 × 10−3 | Heavy metal ions | [152] |
PEDOT | Cd2+, Cu2+, Pb2+ | 5.78 × 10−6, 2.7 × 10−6, 1.7 × 10−6 | 4 × 10−5–2.8 × 10−3, 2.4 × 10−5–2.8 × 10−3, 1.6 × 10−4–3.2 × 10−3 | Heavy metal ions | [153] |
PANI | CEF | 7.1 | 2 × 10−5–9.5 × 10−5 | Antibiotics | [158] |
PTh | SAs | 1.7 × 10−7 | 1 × 10−6–1 × 10−2 | Antibiotics | [155] |
PANI | OXC | 2 × 10−7 | 7 × 10−7–5.75 × 10−4 | Antibiotics | [156] |
PANI | DMZ | 1.78 × 10−6 | 7.9 × 10−4–2.057 | Antibiotics | [161] |
PTh | CPF | 0.04 nM | 2 × 10−8–10−3 | Pesticide | [163] |
PPy | GIy | 7.12 × 10−6 | 9.18 × 10−6–1.28 × 10−3 | Pesticide | [164] |
PEDOT/PSS | PMC | 0.02834 | 0.09381–0.75 | Pesticide | [165] |
PANI | NH3 | 3.52 × 10−5 | 5.87 × 10−5–5.87 × 10−3 | Toxic gas | [170] |
PEDOT/PSS | NH3 | 2.94 × 10−5 | 5.87 × 10−4–5.87 × 10−3 | Toxic gas | [171] |
PANI | H2S | 5.87 × 10−4 | 2.93 × 10−5–1.47 × 10−4 | Toxic gas | [173] |
PANI | SO2 | 1.56 × 10−5 | 1.56 × 10−5–7.8 × 10−4 | Toxic gas | [178] |
P3HT | NO2 | 6.91 × 10−12 | 2.17 × 10−4–2.17 × 10−2 | Toxic gas | [179] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Zhang, J.; Guo, X.; Li, Y.; Li, L.; Pan, L. Recent Advances in Conductive Polymers-Based Electrochemical Sensors for Biomedical and Environmental Applications. Polymers 2024, 16, 1597. https://doi.org/10.3390/polym16111597
Pan Y, Zhang J, Guo X, Li Y, Li L, Pan L. Recent Advances in Conductive Polymers-Based Electrochemical Sensors for Biomedical and Environmental Applications. Polymers. 2024; 16(11):1597. https://doi.org/10.3390/polym16111597
Chicago/Turabian StylePan, Youheng, Jing Zhang, Xin Guo, Yarou Li, Lanlan Li, and Lijia Pan. 2024. "Recent Advances in Conductive Polymers-Based Electrochemical Sensors for Biomedical and Environmental Applications" Polymers 16, no. 11: 1597. https://doi.org/10.3390/polym16111597
APA StylePan, Y., Zhang, J., Guo, X., Li, Y., Li, L., & Pan, L. (2024). Recent Advances in Conductive Polymers-Based Electrochemical Sensors for Biomedical and Environmental Applications. Polymers, 16(11), 1597. https://doi.org/10.3390/polym16111597