Garlic Cellulosic Powders with Immobilized AgO and CuO Nanoparticles: Preparation, Characterization of the Nanocomposites, and Application to the Catalytic Degradation of Azo Dyes
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Reagents
2.2. Preparation of Chondrilla juncea Aqueous Extract
2.3. Synthesis of Garlic-CuO and Garlic-AgO Nanocomposites
2.4. Characterization Techniques
2.5. Catalytic Degradation Experiments
3. Discussion of Results
3.1. FT-IR Exploration
3.2. Morphological Investigation
3.3. XRD Data
3.4. TEM Images
3.5. Thermal Examination
3.6. Degradation of Dye Solutions
3.6.1. Effect of Experimental Conditions
3.6.2. Kinetic and Thermodynamic Investigations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, R.; Wagh, P.; Wadhwani, S.; Gaidhani, S.; Kumbhar, A.; Bellare, J.; Chopade, B.A. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int. J. Nanomed. 2013, 8, 4277–4290. [Google Scholar]
- Shende, S.; Ingle, A.P.; Gade, A.; Rai, M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol. 2015, 31, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Chen, X.; Wu, F.; Ji, Y. High adsorption capability and selectivity of ZnO nanoparticles for dye removal. Colloids and Surfaces A Physicochem. Eng. Asp. 2017, 509, 474–483. [Google Scholar] [CrossRef]
- Lee, Y.; Choi, J.R.; Lee, K.J.; Stott, N.E.; Kim, D. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology 2018, 19, 415604–415611. [Google Scholar] [CrossRef] [PubMed]
- Govindasamy, R.; Muthu, T.; Govindarasu, M.; Thandapani, G.; Chung, I.-M. Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioproc. Biosys. Eng. 2018, 14, 1–30. [Google Scholar]
- Saranyaadevi, K.; Subha, V.; Ravindran, R.S.E.; Renganathan, S. Synthesis and characterization of copper nanoparticle using Capparis Zeylanica leaf extract. Int. J. Chem. Tech. Res. 2014, 6, 4533–4541. [Google Scholar]
- Patel, B.H.; Channiwala, M.Z.; Chaudhari, S.B.; Mandot, A.A. Biosynthesis of copper nanoparticles; its characterization and efficacy against human pathogenic bacterium. J. Environ. Chem. Eng. 2016, 4, 2163–2169. [Google Scholar] [CrossRef]
- Angrasan, J.K.V.M.; Subbaiya, R. Biosynthesis of copper nanoparticles by Vitis vinifera leaf aqueous extract and its antibacterial activity. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 768–774. [Google Scholar]
- Nagar, N.; Devra, V. Green synthesis and characterization of copper nanoparticles using Azadirachtaindica leaves. Mat. Chem. Phys. 2018, 213, 44–51. [Google Scholar] [CrossRef]
- Aiste, B.; Viktorija, J.; Sandra, S.; Urte, R.; Jonas, V.; Patrick, B.M.; Pranas, V. Antimicrobial Antioxidant Polymer Films with Green Silver Nanoparticles from Symphyti radix. Polymers 2024, 16, 317. [Google Scholar] [CrossRef] [PubMed]
- Ngoc-Thang, N.; Tien-Hieu, V.; Van-Huan, B. Antibacterial and Antifungal Fabrication of Natural Lining Leather Using Bio-Synthesized Silver Nanoparticles from Piper Betle L. Leaf Extract. Polymers 2023, 15, 2634. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, T.; Nondumiso, P.D.; Douglas, K.; Amanda-Lee, E.; Manicum, N.S.M.-F.; Jacqueline, V.T. Advances in Phytonanotechnology: A Plant-Mediated Green Synthesis of Metal Nanoparticles Using Phyllanthus Plant Extracts and Their Antimicrobial and Anticancer Applications. Nanomaterials 2023, 13, 2616. [Google Scholar] [CrossRef] [PubMed]
- Basheer, M.A.; Khaled, A.; Nermine, N.A..; Amal, A.I.M. Mycosynthesis of silver nanoparticles using marine fungi and their antimicrobial activity against pathogenic microorganisms. J. Genet. Eng. Biotech. 2023, 21, 127. [Google Scholar]
- Namita, A.S.; Jagriti, N.; Deepa, G.; Vidhi, J.; Devendra, P.; Shariq, S.; Ravi, K.S. Nanoparticles synthesis via microorganisms and their prospective applications in agriculture. Plant Nano Biol. 2023, 5, 100047. [Google Scholar]
- Wang, H.; Rao, H.; Luo, M.; Xue, X.; Xue, Z.; Lu, X. Noble metal nanoparticles growth-based colorimetric strategies: From monocolorimetric to multicolorimetric sensors. Coord. Chem. Rev. 2019, 398, 113003. [Google Scholar] [CrossRef]
- Amourizi, F.; Dashtian, K.; Ghaedi, M. Polyvinylalcohol-citrate-stabilized gold nanoparticles supported congo red indicator as an optical sensor for selective colorimetric determination of Cr(III) ion. Polyhedron 2020, 176, 11478. [Google Scholar] [CrossRef]
- Barrak, H.; Saied, T.; Chevallier, P.L.G.; M’nif, A.; Hamzaoui, A.H. Synthesis, characterization, and functionalization of ZnO nanoparticles by N-(trimethoxysilylpropyl) ethylenediamine triacetic acid (TMSEDTA): Investigation of the interactions between Phloroglucinol and ZnO@TMSEDTA. Arab. J. Chem. 2019, 12, 4340–4347. [Google Scholar] [CrossRef]
- Richard, S.; Boucher, M.; Lalatonne, Y.; Mériaux, S.; Motte, L. Iron oxide nanoparticle surface decorated with cRGD peptides for magnetic resonance imaging of brain tumors. Biochim. Biophys. Acta (BBA) Gen. Subj. 2017, 1861, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Safar, R.; Doumandji, Z.; Saidou, T.; Ferrari, L.; Nahle, S.; Rihn, B.H.; Joubert, O. Cytotoxicity and global transcriptional responses induced by zinc oxide nanoparticles NM 110 in PMA-differentiated THP-1 cells. Toxicol. Lett. 2019, 308, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Bibi, I.; Nazar, N.; Iqbal, M.; Kamal, S.; Nawaz, H.; Nouren, S.; Safa, Y.; Jilani, K.; Sultan, M.; Ata, S.; et al. Green and eco-friendly synthesis of cobalt-oxide nanoparticle: Characterization and photo-catalytic activity. Adv. Powder Technol. 2017, 28, 2035–2043. [Google Scholar] [CrossRef]
- Issaabadi, Z.; Nasrollahzadeh, M.; Sajadi, S.M. Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity. J. Clean. Prod. 2017, 142, 3584–3591. [Google Scholar] [CrossRef]
- Reddy, S.B.; Mandal, B.K. Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Adv. Powder Technol. 2017, 28, 785–797. [Google Scholar]
- Hassani, R.; Jabli, M.; Kacem, Y.; Marrot, J.; Prim, D.; Hassine, B.B. New Palladium-Oxazoline Complexes: Synthesis and Evaluation of the Optical Properties and the catalytic power during the oxidation of textile dyes. Beilst. J. Org. Chem. 2015, 11, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Hieu, N.C.; Lien, T.M.; Van, T.T.T.; Juan, R.-S. Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites. Separat. Purif. Technol. 2020, 232, 115962. [Google Scholar]
- Rosales, E.; Pazos, M.; Sanromán, M.A. Comparative efficiencies of the decolourisation of leather dyes by enzymatic and electrochemical treatments. Desalination 2011, 278, 312–317. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Song, S.; Zang, L.; Kang, X.; Wen, Y.; Liu, W.; Fu, L. Efficient removal of dyes in water using chitosan microsphere supported cobalt (II) tetrasulfophthalocyanine with H2O2. J. Hazard. Mater. 2010, 177, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Malakootian, M.; Khatami, M.; Ahmadian, M.; Asadzadeh, S.N. Biogenic silver nanoparticles/hydrogen peroxide/ozone: Efficient degradation of reactive blue 19. BioNanoScience 2020, 10, 34–41. [Google Scholar] [CrossRef]
- Qing, W.; Chen, K.; Wang, Y.; Liu, X.; Lu, M. Green synthesis of silver nanoparticles by waste tea extract and degradation of organic dye in the absence and presence of H2O2. Appl. Surf. Sci. 2017, 423, 1019–1024. [Google Scholar] [CrossRef]
- Syrine, L.; Mahjoub, J.; Saber, B.A. Immobilization of copper oxide nanoparticles onto chitosan biopolymer: Application to the oxidative degradation of Naphthol blue black. Carbohy. Polym. 2021, 261, 117908. [Google Scholar]
- Mahjoub, J.; Nouha, S.; Amor, B. Synthesis and Characterization of Pectin-Manganese Oxide and Pectin-Tin Oxide Nanocomposites: Application to the Degradation of Calmagite in Water. J. Polym. Environ. 2023, 31, 4326–4337. [Google Scholar]
- Dimple, P.; Vinay, S.B.; Jyothi, M.S.; Ganesan, S.; Mahaveer, K.; Gurumurthy, H. Garlic peel based mesoporous carbon nanospheres for an effective removal of malachite green dye from aqueous solutions: Detailed isotherms and kinetics. Spectrochimica Acta Part A Molecul. and Biomol. Spect. 2022, 276, 121197. [Google Scholar]
- Arslaner, A. The effects of adding garlic (Allium sativum L.) on the volatile composition and quality properties of yogurt. Food Sci. Technol. 2020, 40 (Suppl. S2), 582–591. [Google Scholar] [CrossRef]
- Liu, Q.; Fu, Q.; Du, J.; Liu, X. Experimental study on the role and mechanism of allicin in ventricular remodeling through PPARα and PPARγ signaling pathways. Food Sci. Technol. 2022, 42, 31121. [Google Scholar] [CrossRef]
- Kallel, F.; Bettaieb, F.; Khiari, R.; García, A.; Bras, J.; Chaabouni, S.E. Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind. Prod. 2016, 87, 287–296. [Google Scholar] [CrossRef]
- Jeevan, P.R.; Jong-Whan, R. Extraction and Characterization of Cellulose Microfibers from Agricultural Wastes of Onion and Garlic. J. Nat. Fib. 2018, 15, 465–473. [Google Scholar]
- Nasef, S.; ElNesr, E.; Hafez, F.; Badawy, N.; Slim, S. Gamma irradiation induced preparation of gum arabic/poly (vinyl alcohol) copolymer hydrogels for removal of heavy metal ions from wastewater. Arab. J. Nucl. Sci. Appl. 2019, 53, 208–221. [Google Scholar] [CrossRef]
- Valentim, R.M.B.; Andrade, S.M.C.; Santos, M.E.M.; Santos, A.C.; Pereira, V.S.; Santos, I.P.; Dias, C.G.B.T.; Reis, M.A.L. Composite based on biphasic calcium phosphate (HA/β-TCP) and nanocellulose from the açaí tegument. Materials 2018, 11, 2213. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, S.; Hosseinzadeh, H.; Pashaei, S. Fabrication of nanocellulose loaded poly(AA-co-HEMA) hydrogels for ceftriaxone controlled delivery and crystal violet adsorption. Polym. Compos. 2019, 40, 559–569. [Google Scholar] [CrossRef]
- Yan, L.; Wang, L.; Gao, S.; Liu, C.; Zhang, Z.; Ma, A.; Zheng, L. Celery cellulose hydrogel as carriers for controlled release of short-chain fatty acid by ultrasound. Food Chem. 2020, 309, 125717. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shu, F.; He, C.; Liu, S.; Leksawasdi, N.; Wang, Q.; Qi, W.; Alam, M.A.; Yuan, Z.; Gao, Y. Preparation and investigation of highly selective solid acid catalysts with sodium lignosulfonate for hydrolysis of hemicellulose in corncob. RSC Adv. 2018, 8, 10922–10929. [Google Scholar] [CrossRef] [PubMed]
- Nezamzadeh-Ejhieh, A.; Hushmandrad, S. Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst. Appl. Catal. A Gen. 2010, 388, 149–159. [Google Scholar] [CrossRef]
- Hua, Y.; Jing, R.Z.; Wentao, C.; Jin, Z.; Ji, H.W. Screw-Dislocation-Driven Hierarchical Superstructures of Ag-Ag2O-AgO Nanoparticles. Crystals 2020, 10, 1084. [Google Scholar] [CrossRef]
- Ramesh, G.K.; Subramanian, S.; Sathiyamurthy, S.; Prakash, M. Calotropis gigantea fiber-epoxy composites: Influence of fiber orientation on mechanical properties and thermal behavior. J. Nat. Fibers 2022, 19, 3668–3680. [Google Scholar] [CrossRef]
- Aloui, F.; Jabli, M.; Hassine, B.B. Synthesis and characterization of a new racemic helically chiral Ru (II) complex and its catalytic degradation of Eriochrome Blue Black B. Synth. Commun. 2012, 42, 3620–3631. [Google Scholar] [CrossRef]
- Aloui, F.; Jabli, M.; Hassine, B.B. New helically chiral metallated complexes: Characterization and catalytic activity. Synth. Commun. 2013, 43, 277–291. [Google Scholar] [CrossRef]
- Banat, S.; Al-Asheh, M.; Al-Rawashdeh, M.; Nusair, M. Photodegradation of methylene blue dye by the UV/H2O2 and UV/acetone oxidation processes. Desalination 2005, 181, 225–232. [Google Scholar] [CrossRef]
- Behnajady, M.A.; Modirshahla, N.; Ghanbary, F. A kinetic model for the decolorization of C.I. Acid Yellow 23 by Fenton process. J. Hazard. Mater. 2007, 148, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, R.K.; Devaki, S.J.; Rao, T.P. Robust fibrillar nanocatalysts based on silver nanoparticle-entrapped polymeric hydrogels. Appl. Catal. A Gen. 2014, 483, 31–40. [Google Scholar] [CrossRef]
- Sismanoglu, T.; Pura, S. Adsorption of aqueous nitrophenols on clinoptilolite. Colloid Surf. A Physicochem. Eng. Asp. 2001, 180, 1–6. [Google Scholar] [CrossRef]
- Jabli, M.; Touati, R.; Kacem, Y.; Hassine, B.B. New chitosan microspheres supported [bis(2-methylallyl)(1,5-cyclooctadienne)ruthenium (II)] as efficient catalysts for colour degradation in the presence of hydrogen peroxide. J. Text. Inst. 2012, 103, 434–450. [Google Scholar] [CrossRef]
- Guibal, E.; Vincent, T. Chitosan-supported palladium catalyst. IV. Influence of temperature on nitrophenol degradation and thermodynamic parameters. J. Environ. Manag. 2004, 71, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Lea, J.; Adesina, A.A. Oxidative degradation of 4-nitrophenol in UV-illuminated titania suspension. J. Chem. Technol. and Biotechnol. 2001, 76, 803–810. [Google Scholar] [CrossRef]
- Jabli, M.; Baccouch, W.; Hamdaoui, M.; Aloui, F. Preparation, characterization and evaluation of the catalytic power of an hybrid compound [H3PMo12O40-chitosan] for the azoic-colored solutions. J. Text. Inst. 2018, 109, 232–240. [Google Scholar] [CrossRef]
- Zhang, Q.; Chuang, K.T. Kinetics of wet oxidation of black liquor over a Pt–Pd–Ce/alumina catalyst. Appl. Catal. B Environ. 1998, 17, 321–332. [Google Scholar] [CrossRef]
- Gallezot, P.; Laurain, N.; Isnard, P. Catalytic wet-air oxidation of carboxylic acids on carbon-supported platinum catalysts. Appl. Catal. B Environ. 1996, 9, 11–17. [Google Scholar] [CrossRef]
Parameters | 0th-Order | 1st-Order | 2nd-Order | |||
---|---|---|---|---|---|---|
k0 | R2 | k1 | R2 | k2 | R2 | |
H2O2 amount (mL) | ||||||
2 | 0.11 | 0.75 | 0.27 | 0.87 | 0.69 | 0.97 |
5 | 0.099 | 0.52 | 0.33 | 0.50 | 0.86 | 0.95 |
8 | 0.10 | 0.52 | 0.36 | 0.53 | 1.17 | 0.96 |
10 | 0.101 | 0.50 | 0.47 | 0.52 | 3.20 | 0.96 |
Calmagite concentration (mg/L) | ||||||
10 | 0.104 | 0.50 | 0.58 | 0.74 | 9.20 | 0.96 |
30 | 0.101 | 0.50 | 0.47 | 0.52 | 3.20 | 0.96 |
50 | 0.09 | 0.53 | 0.25 | 0.35 | 0.37 | 0.90 |
Temperature (°C) | ||||||
20 | 0.101 | 0.50 | 0.47 | 0.52 | 3.20 | 0.96 |
40 | 0.102 | 0.51 | 0.52 | 0.56 | 4.58 | 0.98 |
50 | 0.103 | 0.47 | 0.56 | 0.55 | 6.70 | 0.96 |
Thermodynamic parameters | ||||||
Temperature (°C) | Ea (kJ/mol) | ΔS* (J/mol/K) | ΔH* (kJ/mol) | ΔG* (kJ/mol) | ||
20 | 18.44 | −0.18 | 15.89 | 68.96 | ||
40 | 72.85 | |||||
50 | 74.40 |
Parameters | 0th-Order | 1st-Order | 2nd-Order | |||
---|---|---|---|---|---|---|
k0 | R2 | k1 | R2 | k2 | R2 | |
H2O2 amount (mL) | ||||||
2 | 0.102 | 0.78 | 0.15 | 0.83 | 0.16 | 0.98 |
5 | 0.109 | 0.75 | 0.18 | 0.83 | 0.29 | 0.99 |
8 | 0.09 | 0.71 | 0.20 | 0.78 | 0.23 | 0.99 |
10 | 0.093 | 0.64 | 0.21 | 0.65 | 0.30 | 0.96 |
Naphthol concentration (mg/L) | ||||||
10 | 0.012 | 0.74 | 0.58 | 0.74 | 9.17 | 0.97 |
30 | 0.093 | 0.64 | 0.21 | 0.65 | 0.30 | 0.96 |
50 | 0.104 | 0.53 | 0.25 | 0.35 | 0.40 | 0.90 |
Temperature (°C) | ||||||
20 | 0.093 | 0.64 | 0.21 | 0.65 | 0.30 | 0.96 |
40 | 0.109 | 0.57 | 0.25 | 0.54 | 0.40 | 0.94 |
50 | 0.114 | 0.53 | 0.33 | 0.52 | 0.80 | 0.95 |
Thermodynamic parameters | ||||||
Temperature (°C) | Ea (kJ/mol) | ΔS* (J/mol/K) | ΔH* (kJ/mol) | ΔG* (kJ/mol) | ||
20 | 23.28 | −0.19 | 20.74 | 74.84 | ||
40 | 78.53 | |||||
50 | 80.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebeia, N.; Jabli, M.; Sonsudin, F. Garlic Cellulosic Powders with Immobilized AgO and CuO Nanoparticles: Preparation, Characterization of the Nanocomposites, and Application to the Catalytic Degradation of Azo Dyes. Polymers 2024, 16, 1661. https://doi.org/10.3390/polym16121661
Sebeia N, Jabli M, Sonsudin F. Garlic Cellulosic Powders with Immobilized AgO and CuO Nanoparticles: Preparation, Characterization of the Nanocomposites, and Application to the Catalytic Degradation of Azo Dyes. Polymers. 2024; 16(12):1661. https://doi.org/10.3390/polym16121661
Chicago/Turabian StyleSebeia, Nouha, Mahjoub Jabli, and Faridah Sonsudin. 2024. "Garlic Cellulosic Powders with Immobilized AgO and CuO Nanoparticles: Preparation, Characterization of the Nanocomposites, and Application to the Catalytic Degradation of Azo Dyes" Polymers 16, no. 12: 1661. https://doi.org/10.3390/polym16121661
APA StyleSebeia, N., Jabli, M., & Sonsudin, F. (2024). Garlic Cellulosic Powders with Immobilized AgO and CuO Nanoparticles: Preparation, Characterization of the Nanocomposites, and Application to the Catalytic Degradation of Azo Dyes. Polymers, 16(12), 1661. https://doi.org/10.3390/polym16121661