Mechanical, Dielectric and Flame-Retardant Properties of GF/PP Modified with Different Flame Retardants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of FR/PP
2.3. Preparation of FR/GF/PP Laminates
2.4. Characterization
2.4.1. Mechanical Properties
2.4.2. Dielectric Properties
2.4.3. Limiting Oxygen Index (LOI)
2.4.4. Vertical Burning Test
2.4.5. Scanning Electron Microscope (SEM)
3. Results and Discussion
3.1. Mechanical Properties of GF/PP Modified with Different Flame Retardants
3.1.1. Tensile Properties of PP Modified with Different Flame Retardants
3.1.2. Bending Properties of GF/PP Composites Modified with Different Flame Retardants
3.2. Flame-Retardant Properties of GF/PP Composites Modified with Different Flame Retardants
3.2.1. LOI of GF/PP Composites Modified with Different Flame Retardants
3.2.2. Flame Retardant Rating of GF/PP Composites Modified with Different Flame Retardants
3.3. Dielectric Properties of GF/PP Modified with Different Flame Retardants
3.4. Comprehensive Performance Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, X.; He, J.; Mu, J.; Qian, J.; Zhang, N.; Yang, C.; Hou, X.; Geng, W.; Wang, X.; Chou, X. Triboelectric-electromagnetic hybrid nanogenerator driven by wind for self-powered wireless transmission in Internet of Things and self-powered wind speed sensor. Nano Energy 2020, 68, 104319. [Google Scholar] [CrossRef]
- Khan, S.; Ali, H.; Khalily, M.; Shah, S.U.; Kazim, J.U.; Ali, H.; Tanougast, C. Miniaturization of Dielectric Resonator Antenna by using Artificial Magnetic Conductor surface. IEEE Access 2020, 8, 68548–68558. [Google Scholar] [CrossRef]
- Di Paola, C.; Zhao, K.; Zhang, S.; Pedersen, G.F. SIW Multibeam Antenna Array at 30 GHz for 5G Mobile Devices. IEEE Access 2019, 7, 73157–73164. [Google Scholar] [CrossRef]
- Qiao, Z.; Wang, Z.; Loh, T.H.; Gao, S.; Miao, J. A Compact Minimally Invasive Antenna for OTA Testing. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1381–1385. [Google Scholar] [CrossRef]
- Watanabe, A.O.; Tehrani, B.K.; Ogawa, T.; Raj, P.M.; Tentzeris, M.M.; Tummala, R.R. Ultralow-Loss Substrate-Integrated Waveguides in Glass-Based Substrates for Millimeter-Wave Applications. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 531–533. [Google Scholar] [CrossRef]
- Wang, C.H.; Rose, L.R.F. Wave reflection and transmission in beams containing delamination and inhomogeneity. J. Sound Vib. 2003, 264, 851–872. [Google Scholar] [CrossRef]
- Du, W.; Zhou, Y.; Yao, Z.; Huang, Y.; He, C.; Zhang, L.; He, Y.; Zhu, L.; Xu, X. Active broadband terahertz wave impedance matching based on optically doped graphene-silicon heterojunction. Nanotechnology 2019, 30, 195705. [Google Scholar] [CrossRef] [PubMed]
- Man, Z.; Li, P.; Zhou, D.; Wang, Y.; Liang, X.; Zang, R.; Li, P.; Zuo, Y.; Lam, Y.M.; Wang, G. Two Birds with One Stone: FeS2@C Yolk–Shell Composite for High-Performance Sodium-Ion Energy Storage and Electromagnetic Wave Absorption. Nano Lett. 2020, 20, 3769–3777. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Mias, C.; Farsad, N.; Wu, J.L. Molecular Versus Electromagnetic Wave Propagation Loss in Macro-Scale Environments. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2015, 1, 18–25. [Google Scholar] [CrossRef]
- Sun, B.H.; Wang, X.H.; Gao, Y. Study on the factors affecting the transmitting property of magnetic wave through glass/unsaturated polyester resin composites. Fiber Compos. 2002, 2, 13–16. [Google Scholar]
- Huang, C.; Li, J.; Xie, G.; Han, F.; Huang, D.; Zhang, F.; Zhang, B.; Zhang, G.; Sun, R.; Wong, C.P. Low-Dielectric Constant and Low-Temperature Curable Polyimide/POSS Nanocomposites. Macromol. Mater. Eng. 2019, 304, 1900505. [Google Scholar] [CrossRef]
- Vaidya, U.K.; Chawla, K.K. Processing of fibre reinforced thermoplastic composites. Int. Mater. Rev. 2008, 53, 185–218. [Google Scholar] [CrossRef]
- Minchenkov, K.; Vedernikov, A.; Safonov, A.; Akhatov, I. Thermoplastic Pultrusion: A Review. Polymers 2021, 13, 180. [Google Scholar] [CrossRef]
- Zhuo, P.; Li, S.; Ashcroft, I.A.; Jones, A.I. Material extrusion additive manufacturing of continuous fibre reinforced polymer matrix composites: A review and outlook. Compos. Part B Eng. 2021, 224, 109143. [Google Scholar] [CrossRef]
- Khouaja, A.; Koubaa, A.; Ben Daly, H. Dielectric properties and thermal stability of cellulose high-density polyethylene bio-based composites. Ind. Crops Prod. 2021, 171, 113928. [Google Scholar] [CrossRef]
- Sridhar, M.; Vasudeva Setty, R.N.; Johns, J. Electrical Properties of Bamboo Fiber Reinforced Polypropylene Composite: Effect of Coupling Agent. J. Nat. Fibers 2022, 19, 5076–5087. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, X.; Zhang, X.; Xie, Y.; Lu, J.; Zhang, Z. How the biaxially stretching mode influence dielectric and energy storage properties of polypropylene films. J. Appl. Polym. Sci. 2021, 138, 50029. [Google Scholar] [CrossRef]
- Du, B.X.; Xu, H.; Li, J.; Li, Z. Space charge behaviors of PP/POE/ZnO nanocomposites for HVDC cables. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3165–3174. [Google Scholar] [CrossRef]
- Gibson, A.G.; Torres, M.O.; Browne, T.N.; Feih, S.; Mouritz, A.P. High temperature and fire behaviour of continuous glass fibre/polypropylene laminates. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1219–1231. [Google Scholar] [CrossRef]
- Zhao, W.; Cheng, Y.; Li, Z.; Li, X.; Zhang, Z. Improvement in fire-retardant properties of polypropylene filled with intumescent flame retardants, using flower-like nickel cobaltate as synergist. J. Mater. Sci. 2021, 56, 2702–2716. [Google Scholar] [CrossRef]
- Chen, B.; Gao, W.; Shen, J.; Guo, S. The multilayered distribution of intumescent flame retardants and its influence on the fire and mechanical properties of polypropylene. Compos. Sci. Technol. 2014, 93, 54–60. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Ni, A.; Ding, A.; Sun, Z.; Han, X. Effect of novel intumescent flame retardant on mechanical and flame retardant properties of continuous glass fibre reinforced polypropylene composites. Compos. Struct. 2018, 203, 894–902. [Google Scholar] [CrossRef]
- Zhou, Y.; He, W.; Wu, Y.; Xu, D.; Chen, X.; He, M.; Guo, J. Influence of thermo-oxidative aging on flame retardancy, thermal stability, and mechanical properties of long glass fiber–reinforced polypropylene composites filled with organic montmorillonite and intumescent flame retardant. J. Fire Sci. 2019, 37, 176–189. [Google Scholar] [CrossRef]
- Xu, J.; Li, K.; Deng, H.; Lv, S.; Fang, P.; Liu, H.; Shao, Q.; Guo, Z. Preparation of MCA-SiO2 and Its Flame Retardant Effects on Glass Fiber Reinforced Polypropylene. Fibers Polym. 2019, 20, 120–128. [Google Scholar] [CrossRef]
- Zhou, D.; He, W.; Wang, N.; Chen, X.; Guo, J.; Ci, S. Effect of thermo-oxidative aging on the mechanical and flame retardant properties of long glass fiber-reinforced polypropylene composites filled with red phosphorus. Polym. Compos. 2018, 39, 2634–2642. [Google Scholar] [CrossRef]
- Li, J.; Sun, Y.; Zhang, B.; Qi, G. Mechanical, Flame-Retardant and Dielectric Properties of Intumescent Flame Retardant/Glass Fiber-Reinforced Polypropylene through a Novel Dispersed Distribution Mode. Polymers 2024, 16, 1341. [Google Scholar] [CrossRef]
- Lv, H.; Chen, X.; Wang, X.; Zeng, X.; Ma, Y. A novel study on a micromixer with Cantor fractal obstacle through grey relational analysis. Int. J. Heat Mass Transf. 2022, 183, 122159. [Google Scholar] [CrossRef]
- Hashemi, S.H.; Karimi, A.; Tavana, M. An integrated green supplier selection approach with analytic network process and improved Grey relational analysis. Int. J. Prod. Econ. 2015, 159, 178–191. [Google Scholar] [CrossRef]
- Yu, X.; Shi, G.; Yang, X.; Gao, W. Research on tribological performance of textured thrust bearing using gray relational degree and improved multi-objective water circulation algorithm. Surf. Topogr. Metrol. Prop. 2024, 12, 25003. [Google Scholar] [CrossRef]
- ASTM D638; Standard Test Method for Tensile Properties of Plastics. American Society for Testing and Materials: West Conshohocken, PA, USA, 2022.
- ASTM D7264; Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- ASTM D2863; Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-like Combustion of Plastics (Oxygen Index). American Society for Testing and Materials: West Conshohocken, PA, USA, 2019.
- Meireman, T.; Daelemans, L.; Rijckaert, S.; Rahier, H.; Van Paepegem, W.; De Clerck, K. Delamination resistant composites by interleaving bio-based long-chain polyamide nanofibers through optimal control of fiber diameter and fiber morphology. Compos. Sci. Technol. 2020, 193, 108126. [Google Scholar] [CrossRef]
- Huan, X.; Shi, K.; Yan, J.; Lin, S.; Li, Y.; Jia, X.; Yang, X. High performance epoxy composites prepared using recycled short carbon fiber with enhanced dispersibility and interfacial bonding through polydopamine surface-modification. Compos. Part B Eng. 2020, 193, 107987. [Google Scholar] [CrossRef]
- Samyn, P. Engineering the Cellulose Fiber Interface in a Polymer Composite by Mussel-Inspired Adhesive Nanoparticles with Intrinsic Stress-Sensitive Responsivity. ACS Appl. Mater. Interfaces 2020, 12, 28819–28830. [Google Scholar] [CrossRef]
- Chin, W.S.; Lee, D.G. Binary mixture rule for predicting the dielectric properties of unidirectional E-glass/epoxy composite. Compos. Struct. 2006, 74, 153–162. [Google Scholar] [CrossRef]
- Mansor, M.R.; Sapuan, S.M.; Zainudin, E.S.; Nuraini, A.A.; Hambali, A. Hybrid natural and glass fibers reinforced polymer composites material selection using Analytical Hierarchy Process for automotive brake lever design. Mater. Des. 2013, 51, 484–492. [Google Scholar] [CrossRef]
- Venkata Rao, R. Evaluation of metal stamping layouts using an analytic hierarchy process method. J. Mater. Process. Technol. 2004, 152, 71–76. [Google Scholar] [CrossRef]
- Lee, D.; Lee, D.; Lee, M.; Kim, M.; Kim, T. Analytic Hierarchy Process-Based Construction Material Selection for Performance Improvement of Building Construction: The Case of a Concrete System Form. Materials 2020, 13, 1738. [Google Scholar] [CrossRef]
Samples | PP (phr) | MAPP (phr) | HPP (phr) | FR (phr) | FR Content (wt%) |
---|---|---|---|---|---|
0 | 100 | 5 | 10 | 0 | 0 |
X-1 | 100 | 5 | 10 | 10 | 8.00 |
X-2 | 100 | 5 | 10 | 20 | 14.81 |
X-3 | 100 | 5 | 10 | 30 | 20.69 |
Samples | Bending Strength (MPa) | Bending Modulus (GPa) | LOI (%) | FRR | Dielectric Constant | Dielectric Loss Tangent |
---|---|---|---|---|---|---|
0 | 268.56 | 11.99 | 18.6 | 0 | 2.6258 | 0.0073 |
DBDPE-1 | 236.00 | 10.39 | 19.2 | 0 | 2.7980 | 0.0100 |
DBDPE-2 | 228.09 | 10.03 | 19.9 | 1 | 2.9262 | 0.0118 |
DBDPE-3 | 217.84 | 9.53 | 20.6 | 3 | 3.0609 | 0.0140 |
MONO-1 | 249.98 | 10.00 | 18.8 | 0 | 2.9475 | 0.0106 |
MONO-2 | 233.88 | 9.96 | 19 | 0 | 3.1938 | 0.0139 |
MONO-3 | 225.56 | 9.12 | 19.5 | 0 | 3.4670 | 0.0181 |
MULTI-1 | 214.79 | 8.63 | 21.2 | 0 | 2.7896 | 0.0100 |
MULTI-2 | 201.35 | 8.61 | 26.5 | 0 | 3.0401 | 0.0117 |
MULTI-3 | 194.19 | 7.50 | 29.2 | 0 | 3.3210 | 0.0150 |
IFR-1 | 269.40 | 11.62 | 20 | 0 | 2.7740 | 0.0097 |
IFR-2 | 259.37 | 11.13 | 25.7 | 0 | 2.9272 | 0.0113 |
IFR-3 | 233.14 | 9.54 | 29 | 3 | 3.0620 | 0.0136 |
Samples | Bending Strength | Bending Modulus | LOI | FRR | Dielectric Constant | Dielectric Loss Tangent |
---|---|---|---|---|---|---|
0 | 0.99 | 1 | 0 | 0 | 1 | 1 |
DBDPE-1 | 0.56 | 0.64 | 0.06 | 0 | 0.80 | 0.75 |
DBDPE-2 | 0.45 | 0.56 | 0.12 | 0.33 | 0.64 | 0.59 |
DBDPE-3 | 0.31 | 0.45 | 0.19 | 1 | 0.48 | 0.38 |
MONO-1 | 0.74 | 0.56 | 0.02 | 0 | 0.62 | 0.70 |
MONO-2 | 0.53 | 0.55 | 0.04 | 0 | 0.32 | 0.39 |
MONO-3 | 0.42 | 0.36 | 0.08 | 0 | 0 | 0 |
MULTI-1 | 0.27 | 0.25 | 0.25 | 0 | 0.81 | 0.75 |
MULTI-2 | 0.10 | 0.25 | 0.75 | 0 | 0.51 | 0.59 |
MULTI-3 | 0 | 0 | 1 | 0 | 0.17 | 0.29 |
IFR-1 | 1 | 0.92 | 0.13 | 0 | 0.82 | 0.78 |
IFR-2 | 0.87 | 0.81 | 0.67 | 0 | 0.64 | 0.63 |
IFR-3 | 0.52 | 0.45 | 0.98 | 1 | 0.48 | 0.42 |
Samples | Bending Strength | Bending Modulus | LOI | FRR | Dielectric Constant | Dielectric Loss Tangent |
---|---|---|---|---|---|---|
0 | 0.98 | 1.00 | 0.33 | 0.33 | 1.00 | 1.00 |
DBDPE-1 | 0.53 | 0.58 | 0.35 | 0.33 | 0.71 | 0.67 |
DBDPE-2 | 0.48 | 0.53 | 0.36 | 0.43 | 0.58 | 0.55 |
DBDPE-3 | 0.42 | 0.48 | 0.38 | 1.00 | 0.49 | 0.45 |
MONO-1 | 0.66 | 0.53 | 0.34 | 0.33 | 0.57 | 0.62 |
MONO-2 | 0.51 | 0.53 | 0.34 | 0.33 | 0.43 | 0.45 |
MONO-3 | 0.46 | 0.44 | 0.35 | 0.33 | 0.33 | 0.33 |
MULTI-1 | 0.41 | 0.40 | 0.40 | 0.33 | 0.72 | 0.67 |
MULTI-2 | 0.36 | 0.40 | 0.66 | 0.33 | 0.50 | 0.55 |
MULTI-3 | 0.33 | 0.33 | 1.00 | 0.33 | 0.38 | 0.41 |
IFR-1 | 1.00 | 0.86 | 0.37 | 0.33 | 0.74 | 0.69 |
IFR-2 | 0.79 | 0.72 | 0.60 | 0.33 | 0.58 | 0.58 |
IFR-3 | 0.51 | 0.48 | 0.96 | 1.00 | 0.49 | 0.46 |
A | B | C |
---|---|---|
Comprehensive performance (A1) | Flame-retardant properties (B1) | LOI (C1) |
FRR (C2) | ||
Dielectric properties (B2) | Dielectric constant (C3) | |
Dielectric loss tangent (C4) | ||
Mechanical properties (B3) | Bending strength (C5) | |
Bending modulus (C6) |
A1 | B1 | B2 | B3 |
---|---|---|---|
B1 | 1 | 3 | 5 |
B2 | 1/3 | 1 | 3 |
B3 | 1/5 | 1/3 | 1 |
B | B~A | C | C~B | C~A |
---|---|---|---|---|
Flame-retardant properties (B1) | 0.6370 | LOI (C1) | 0.5 | 0.3185 |
FRR (C2) | 0.5 | 0.3185 | ||
Dielectric properties (B2) | 0.2583 | Dielectric constant (C3) | 0.5 | 0.1291 |
Dielectric loss tangent (C4) | 0.5 | 0.1291 | ||
Mechanical properties (B3) | 0.1047 | Bending strength (C5) | 0.5 | 0.0524 |
Bending modulus (C6) | 0.5 | 0.0524 |
Samples | 0 | DBDPE-1 | DBDPE-2 | DBDPE-3 | MONO-1 | MONO-2 | MONO-3 |
Gray correlation | 0.57 | 0.45 | 0.45 | 0.61 | 0.43 | 0.38 | 0.35 |
Samples | MULTI-1 | MULTI-2 | MULTI-3 | IFR-1 | IFR-2 | IFR-3 | |
Gray correlation | 0.45 | 0.49 | 0.56 | 0.5 | 0.53 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Sun, Y.; Zhang, B.; Qi, G. Mechanical, Dielectric and Flame-Retardant Properties of GF/PP Modified with Different Flame Retardants. Polymers 2024, 16, 1681. https://doi.org/10.3390/polym16121681
Li J, Sun Y, Zhang B, Qi G. Mechanical, Dielectric and Flame-Retardant Properties of GF/PP Modified with Different Flame Retardants. Polymers. 2024; 16(12):1681. https://doi.org/10.3390/polym16121681
Chicago/Turabian StyleLi, Jingwen, Yiliang Sun, Boming Zhang, and Guocheng Qi. 2024. "Mechanical, Dielectric and Flame-Retardant Properties of GF/PP Modified with Different Flame Retardants" Polymers 16, no. 12: 1681. https://doi.org/10.3390/polym16121681
APA StyleLi, J., Sun, Y., Zhang, B., & Qi, G. (2024). Mechanical, Dielectric and Flame-Retardant Properties of GF/PP Modified with Different Flame Retardants. Polymers, 16(12), 1681. https://doi.org/10.3390/polym16121681