Mass Spectrometry of Collagen-Containing Allogeneic Human Bone Tissue Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Sources and Materials
2.2. Studying Object
2.3. Sample Preparation
2.4. Mass Spectrometry (Proteomic Assay)
3. Results and Discussion
- fibril-forming collagen type I;
- cartilaginous tissue-specific collagen type II;
- collagen type IV, the main structural component of basal membranes;
- collagen type IX, a hyaline cartilage component;
- collagen type XXVII, the protein essential for cartilage calcification and cartilage-bone transformation;
- collagen type XXVIII, cell-binding protein.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
AARS2 | Alanine-tRNA-ligase |
ACN | Acetonitrile |
AHNAK | Neuroblast differentiation-associated protein |
Ala-AMP | Alanine-adenosine monophosphate |
AREs | Adenylate-uridylate-rich elements |
ATP | Adenosine triphosphate |
BMAL1/2 | Brain and muscle arnt-like 1/2, or Arntl |
CDKN1A | Cyclin Dependent Kinase Inhibitor 1A |
CLOCK | Clock Circadian Regulator |
COL1A1 | Collagen alpha-1(I) chain |
COL1A2 | Collagen alpha-2(I) chain |
COL27A1 | Collagen alpha-1(XXVII) chain |
COL28A1 | Collagen alpha-1(XXVIII) chain |
COL2A1 | Collagen alpha-1(II) chain |
COL4A2 | Collagen alpha-2(IV) chain |
COL9A2 | Collagen alpha-2(IX) chain |
CRY1 | Cryptochrome-1 |
CRY1 (2) | Cryptochrome Circadian Regulator 1 (2) |
ECM | Extracellular Matrix |
ELAVL3 | ELAV Like RNA Binding Protein 3 |
ITGA10 | Integrin alpha-10 |
JARID2 | Jumonji protein |
JMJD5 | Jumonji-C (JmjC) domain-containing protein 5 |
KDM8 | Lysine Demethylase 8 |
MSCs | Mesenchymal stem cells |
NPAS2 | Neuronal PAS Domain Protein 2 |
NR1D1 | Nuclear Receptor Subfamily 1 Group D Member 1 |
PER1/2/3 | Period Circadian Regulator 1/2/3 |
PRC2 | Polycomb repressive complex 2 |
RORA/B/G | Related Orphan Receptor A/B/G |
SDS | sodium dodecyl sulfate |
SDS-PAGE | sodium dodecyl sulfate polyacrylamide gel |
SPTBN2 | Spectrin beta chain non-erythrocytic 2 |
TTFL | Transcription/translation feedback loop |
UPLC | ultra-high performance liquid chromatography |
UPLC-MS | Ultra-high performance liquid chromatography—mass spectrometry |
VEGF | Vascular endothelial growth factor |
ZNF267 | Zinc finger protein 267 |
ZNF394 | Zinc finger protein 394 |
ZNF585 A | Zinc finger protein 585 A |
H1/2/3/4 | Histones 1/2/3/4 |
References
- Zhang, Y.; Qing, L.; Luo, G.; Ahmadpoor, X.; Li, X.; Wu, P.; Tang, J. Variations in deep iliac circumflex artery perforator chimeric flap design for single-stage customized-reconstruction of composite bone and soft-tissue defect. J. Plast. Reconstr. Aesthet. Surg. 2023, 87, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wang, L.; Ni, S.; Li, D.; Liu, J.; Chu, H.Y.; Zhang, N.; Sun, M.; Li, N.; Ren, Q.; et al. Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation. Nat. Commun. 2022, 13, 4241. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, F.; Zhai, W.; Cheng, S.; Li, J.; Wang, Y. Unraveling of Advances in 3D-Printed Polymer-Based Bone Scaffolds. Polymers 2022, 14, 566. [Google Scholar] [CrossRef]
- Gai, Y.; Yin, Y.; Guan, L.; Zhang, S.; Chen, J.; Yang, J.; Zhou, H.; Li, J. Rational Design of Bioactive Materials for Bone Hemostasis and Defect Repair. Cyborg Bionic Syst. 2023, 4, 0058. [Google Scholar] [CrossRef]
- Tsiklin, I.L.; Pugachev, E.I.; Kolsanov, A.V.; Timchenko, E.V.; Boltovskaya, V.V.; Timchenko, P.E.; Volova, L.T. Biopolymer Material from Human Spongiosa for Regenerative Medicine Application. Polymers 2022, 14, 941. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.R.; Kondiah, P.P.D.; Choonara, Y.E. Advanced Strategies for Tissue Engineering in Regenerative Medicine: A Biofabrication and Biopolymer Perspective. Molecules 2021, 26, 2518. [Google Scholar] [CrossRef]
- Williams, D.F. On the Mechanisms of Biocompatibility. Biomaterials 2008, 29, 2941–2953. [Google Scholar] [CrossRef] [PubMed]
- Prokoshkin, S.; Pustov, Y.; Zhukova, Y.; Kadirov, P.; Karavaeva, M.; Prosviryakov, A.; Dubinskiy, S. Effect of Thermomechanical Treatment on Structure and Functional Fatigue Characteristics of Biodegradable Fe-30mn-5si (Wt %) Shape Memory Alloy. Materials 2021, 14, 3327. [Google Scholar] [CrossRef]
- Vert, M.; Doi, Y.; Hellwich, K.H.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. Terminology for Biorelated Polymers and Applications (IUPAC Recommendations 2012). Pure Appl. Chem. 2012, 84, 377–410. [Google Scholar] [CrossRef]
- Yue, K.; Trujillo-de Santiago, G.; Alvarez, M.M.; Tamayol, A.; Annabi, N.; Khademhosseini, A. Synthesis, Properties, and Biomedical Applications of Gelatin Methacryloyl (GelMA) Hydrogels. Biomaterials 2015, 73, 254–271. [Google Scholar] [CrossRef]
- Hinderer, S.; Layland, S.L.; Schenke-Layland, K. ECM and ECM-like Materials—Biomaterials for Applications in Regenerative Medicine and Cancer Therapy. Adv. Drug Deliv. Rev. 2016, 97, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.M.; Gentile, P.; Chiono, V.; Ciardelli, G. Collagen for Bone Tissue Regeneration. Acta Biomater. 2012, 8, 3191–3200. [Google Scholar] [CrossRef] [PubMed]
- Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef] [PubMed]
- Gelse, K. Collagens—Structure, Function, and Biosynthesis. Adv. Drug Deliv. Rev. 2003, 55, 1531–1546. [Google Scholar] [CrossRef]
- Schmitt, T.; Kajave, N.; Cai, H.H.; Gu, L.; Albanna, M.; Kishore, V. In Vitro Characterization of Xeno-Free Clinically Relevant Human Collagen and Its Applicability in Cell-Laden 3D Bioprinting. J. Biomater. Appl. 2021, 35, 912–923. [Google Scholar] [CrossRef] [PubMed]
- Glowacki, J.; Mizuno, S. Collagen Scaffolds for Tissue Engineering. Biopolymers 2008, 89, 338–344. [Google Scholar] [CrossRef]
- Kretzschmar, M.; Bieri, O.; Miska, M.; Wiewiorski, M.; Hainc, N.; Valderrabano, V.; Studler, U. Characterization of the Collagen Component of Cartilage Repair Tissue of the Talus with Quantitative MRI: Comparison of T2 Relaxation Time Measurements with a Diffusion-Weighted Double-Echo Steady-State Sequence (DwDESS). Eur. Radiol. 2015, 25, 980–986. [Google Scholar] [CrossRef]
- Sato, N.; Taniguchi, T.; Goda, Y.; Kosaka, H.; Higashino, K.; Sakai, T.; Katoh, S.; Yasui, N.; Sairyo, K.; Taniguchi, H. Proteomic Analysis of Human Tendon and Ligament: Solubilization and Analysis of Insoluble Extracellular Matrix in Connective Tissues. J. Proteome Res. 2016, 15, 4709–4721. [Google Scholar] [CrossRef] [PubMed]
- Lammi, M.J.; Häyrinen, J.; Mahonen, A. Proteomic Analysis of Cartilage- and Bone-associated Samples. Electrophoresis 2006, 27, 2687–2701. [Google Scholar] [CrossRef]
- Chapman, J.R. Mass Spectrometry of Proteins and Peptides; Humana Press: Totowa, NJ, USA, 2000; p. 539. [Google Scholar]
- Yates, J.R.; Ruse, C.I.; Nakorchevsky, A. Proteomics by Mass Spectrometry: Approaches, Advances, and Applications. Annu. Rev. Biomed. Eng. 2009, 11, 49–79. [Google Scholar] [CrossRef]
- Addona, T.A.; Shi, X.; Keshishian, H.; Mani, D.R.; Burgess, M.; Gillette, M.A.; Clauser, K.R.; Shen, D.; Lewis, G.D.; Farrell, L.A.; et al. A Pipeline That Integrates the Discovery and Verification of Plasma Protein Biomarkers Reveals Candidate Markers for Cardiovascular Disease. Nat. Biotechnol. 2011, 29, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Naba, A.; Pearce, O.M.T.; Del Rosario, A.; Ma, D.; Ding, H.; Rajeeve, V.; Cutillas, P.R.; Balkwill, F.R.; Hynes, R.O. Characterization of the Extracellular Matrix of Normal and Diseased Tissues Using Proteomics. J. Proteome Res. 2017, 16, 3083–3091. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, T.; Ciborowski, M.; Kisluk, J.; Kretowski, A.; Barbas, C. Mass Spectrometry Based Proteomics and Metabolomics in Personalized Oncology. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2020, 1866, 165690. [Google Scholar] [CrossRef]
- Singh, M.; Singh, S.P.; Dubey, P.K.; Rachana, R.; Mani, S.; Yadav, D.; Agarwal, M.; Agarwal, S.; Agarwal, V.; Kaur, H. Advent of Proteomic Tools for Diagnostic Biomarker Analysis in Alzheimer’s Disease. Curr. Protein Pept. Sci. 2020, 21, 965–977. [Google Scholar] [CrossRef] [PubMed]
- ISO 13485:2016; Medical Devices—Quality Management Systems—Requirements for Regulatory Purposes. ISO: Geneva, Switzerland, 2016.
- ISO 9001:2015; Quality Management Systems—Requirements. ISO: Geneva, Switzerland, 2015.
- Timchenko, P.E.; Timchenko, E.V.; Volova, L.T.; Zybin, M.A.; Frolov, O.O.; Dolgushov, G.G. Optical Assessment of Dentin Materials. Opt. Mem. Neural Netw. 2020, 29, 354–357. [Google Scholar] [CrossRef]
- Volova, L.T. Method for Manufacturing Large-Block Lyophilized Bone Implants. Russian Federation Patent No. 2366173 C1, 15 May 2008. IPC A01N 1/00. No. 2008119004/14: Application. 05/15/2008: Publ. 09/10/2009. [Google Scholar]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.H.; Sponseller, P.; Mims, B.; Child, A.; Milewicz, D.M.; Blanton, S.H. Genetic Analysis of Structural Elastic Fiber and Collagen Genes in Familial Adolescent Idiopathic Scoliosis. J. Orthop. Res. 1996, 14, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Van der Rest, M.; Garrone, R. Collagen Family of Proteins. FASEB J. 1991, 5, 2814–2823. [Google Scholar] [CrossRef]
- The National Center for Biotechnology Information Advances Science and Health by Providing Access to Biomedical and Genomic Information. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 20 May 2024).
- White, D. The Collagen Receptor Subfamily of the Integrins. Int. J. Biochem. Cell Biol. 2004, 36, 1405–1410. [Google Scholar] [CrossRef]
- Camper, L.; Holmvall, K.; Wangnerud, C.; Aszodi, A.; Lundgren-Akerlund, E. Distribution of the collagenbinding integrin alpha10beta1 during mouse development. Cell Tissue Res. 2001, 306, 107–116. [Google Scholar] [CrossRef]
- Tiger, C.F.; Fougerousse, F.; Grundström, G.; Velling, T.; Gullberg, D. A11β1 Integrin Is a Receptor for Interstitial Collagens Involved in Cell Migration and Collagen Reorganization on Mesenchymal Nonmuscle Cells. Dev. Biol. 2001, 237, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Heino, J. The Collagen Receptor Integrins Have Distinct Ligand Recognition and Signaling Functions. Matrix Biol. 2000, 19, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Lehnert, K.; Ni, J.; Leung, E.; Gough, S.; Morris, C.M.; Liu, D.; Wang, S.X.; Langley, R.; Krissansen, G.W. The integrin alpha10 subunit: Expression pattern, partial gene structure, and chromosomal localization. Cytogenet. Cell Genet. 1999, 87, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Zacharias, U.; Purfürst, B.; Schöwel, V.; Morano, I.; Spuler, S.; Haase, H. Ahnak1 Abnormally Localizes in Muscular Dystrophies and Contributes to Muscle Vesicle Release. J. Muscle Res. Cell Motil. 2011, 32, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Laval, S.H.; Remoortere, A.; Baudier, J.; Benaud, C.; Anderson, L.V.B.; Straub, V.; Deelder, A.; Frants, R.R.; Dunnen, J.T.; et al. AHNAK a Novel Component of the Dysferlin Protein Complex, Redistributes to the Cytoplasm with Dysferlin during Skeletal Muscle Regeneration. FASEB J. 2007, 21, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Griffin, E.A.; Staknis, D.; Weitz, C.J. Light-Independent Role of CRY1 and CRY2 in the Mammalian Circadian Clock. Science 1999, 286, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, T.; Noshiro, M.; Sato, F.; Maemura, K.; Takeda, N.; Nagai, R.; Iwata, T.; Fujimoto, K.; Furukawa, M.; Miyazaki, K.; et al. A Novel Autofeedback Loop of Dec1 Transcription Involved in Circadian Rhythm Regulation. Biochem. Biophys. Res. Commun. 2004, 313, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Lamia, K.A.; Papp, S.J.; Yu, R.T.; Barish, G.D.; Uhlenhaut, N.H.; Jonker, J.W.; Downes, M.; Evans, R.M. Cryptochromes Mediate Rhythmic Repression of the Glucocorticoid Receptor. Nature 2011, 480, 552–556. [Google Scholar] [CrossRef]
- Na, J.; Lee, K.; Kim, H.-G.; Shin, J.-Y.; Na, W.; Jeong, H.; Lee, J.-W.; Cho, S.; Kim, W.-S.; Ju, B.-G. Role of Type II Protein Arginine Methyltransferase 5 in the Regulation of Circadian Per1 Gene. PLoS ONE 2012, 7, e48152. [Google Scholar] [CrossRef]
- Zurita Rendón, O.; Fredrickson, E.K.; Howard, C.J.; Van Vranken, J.; Fogarty, S.; Tolley, N.D.; Kalia, R.; Osuna, B.A.; Shen, P.S.; Hill, C.P.; et al. Vms1p Is a Release Factor for the Ribosome-Associated Quality Control Complex. Nat. Commun. 2018, 9, 2197. [Google Scholar] [CrossRef]
- Thrun, A.; Garzia, A.; Kigoshi-Tansho, Y.; Patil, P.R.; Umbaugh, C.S.; Dallinger, T.; Liu, J.; Kreger, S.; Patrizi, A.; Cox, G.A.; et al. Convergence of Mammalian RQC and C-End Rule Proteolytic Pathways via Alanine Tailing. Mol. Cell 2021, 81, 2112–2122.e7. [Google Scholar] [CrossRef] [PubMed]
- Youmans, D.T.; Gooding, A.R.; Dowell, R.D.; Cech, T.R. Competition between PRC2.1 and 2.2 Subcomplexes Regulates PRC2 Chromatin Occupancy in Human Stem Cells. Mol. Cell 2021, 81, 488–501.e9. [Google Scholar] [CrossRef] [PubMed]
- Da Rocha, S.T.; Boeva, V.; Escamilla-Del-Arenal, M.; Ancelin, K.; Granier, C.; Matias, N.R.; Sanulli, S.; Chow, J.; Schulz, E.; Picard, C.; et al. Jarid2 Is Implicated in the Initial Xist-Induced Targeting of PRC2 to the Inactive X Chromosome. Mol. Cell 2014, 53, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Pasini, D.; Cloos, P.A.C.; Walfridsson, J.; Olsson, L.; Bukowski, J.-P.; Johansen, J.V.; Bak, M.; Tommerup, N.; Rappsilber, J.; Helin, K. JARID2 Regulates Binding of the Polycomb Repressive Complex 2 to Target Genes in ES Cells. Nature 2010, 464, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. BMP2 Induces PANC-1 Cell Invasion by MMP-2 Overexpression through ROS and ERK. Front. Biosci. 2012, 17, 2541. [Google Scholar] [CrossRef] [PubMed]
- Trott, A.J.; Menet, J.S. Regulation of Circadian Clock Transcriptional Output by CLOCK:BMAL1. PLoS Genet. 2018, 14, e1007156. [Google Scholar] [CrossRef] [PubMed]
- Miki, T.; Zhao, Z.; Lee, C.C. Interactive Organization of the Circadian Core Regulators PER2, BMAL1, CLOCK and PML. Sci. Rep. 2016, 6, 29174. [Google Scholar] [CrossRef]
- Schnabl, B.; Czech, B.; Valletta, D.; Weiss, T.S.; Kirovski, G.; Hellerbrand, C. Increased Expression of Zinc Finger Protein 267 in Non-Alcoholic Fatty Liver Disease. Int. J. Clin. Exp. Pathol. 2011, 4, 661–666. [Google Scholar]
- Qiu, Y.; Zhao, Y.; Becker, M.; John, S.; Parekh, B.S.; Huang, S.; Hendarwanto, A.; Martinez, E.D.; Chen, Y.; Lu, H.; et al. HDAC1 Acetylation Is Linked to Progressive Modulation of Steroid Receptor-Induced Gene Transcription. Mol. Cell 2006, 22, 669–679. [Google Scholar] [CrossRef]
- Wei, W.; Liu, X.; Chen, J.; Gao, S.; Lu, L.; Zhang, H.; Ding, G.; Wang, Z.; Chen, Z.; Shi, T.; et al. Class I Histone Deacetylases Are Major Histone Decrotonylases: Evidence for Critical and Broad Function of Histone Crotonylation in Transcription. Cell Res. 2017, 27, 898–915. [Google Scholar] [CrossRef]
- Le Guezennec, X.; Vermeulen, M.; Brinkman, A.B.; Hoeijmakers, W.A.M.; Cohen, A.; Lasonder, E.; Stunnenberg, H.G. MBD2/NuRD and MBD3/NuRD, Two Distinct Complexes with Different Biochemical and Functional Properties. Mol. Cell Biol. 2006, 26, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Hubers, L.; Valderrama-Carvajal, H.; Laframboise, J.; Timbers, J.; Sanchez, G.; Côté, J. HuD Interacts with Survival Motor Neuron Protein and Can Rescue Spinal Muscular Atrophy-like Neuronal Defects. Hum. Mol. Genet. 2011, 20, 553–579. [Google Scholar] [CrossRef] [PubMed]
Ref. No. | Protein | Encoding Gene | Functions | Molecular Weight, kDa |
---|---|---|---|---|
1. | Collagen alpha-2(I) chain | COL1A2 | Participates in collagen fibril arrangement, provides a structural component of the ECM [12,13,31,32] | 129.2 |
2. | Collagen alpha-1(I) chain | COL1A1 | Participates in collagen fibril arrangement, provides a structural component of the ECM [14,16,33] | 138.9 |
3. | Collagen alpha-1(II) chain | COL2A1 | Structural component of the ECM, confers tensile properties, binds metal ions, proteoglycans and platelet-derived growth factor, provides protein homodimerization activity [12,13,33] | 141.7 |
4. | Collagen alpha-2(IV) chain | COL4A2 | Structural component of basal membranes. Has both anti-angiogenic and anti-tumor activities. Inhibits endothelial cell proliferation and migration, decreases mitochondrial membrane potential and induces apoptosis [14,33] | 167.4 |
5. | Collagen alpha-2(IX) chain | COL9A2 | Structural component of hyaline cartilage, the main structural component of basal membranes [33] | 65.1 |
6 | Collagen alpha-1(XXVII) chain | COL27A1 | Participates in the cartilage calcification and cartilage-bone transformation [33] | 186.8 |
7. | Collagen alpha-1(XXVIII) chain | COL28A1 | Participates in the cell binding (a cell-binding protein) [33] | 116.6 |
8. | Integrin alpha-10 | ITGA10 | Collagen’s membrane receptor, integral transmembrane glycoprotein consisting of non-covalently bound alpha and beta chains. Participates in the cell adhesion as well as in the cell surface-mediated signaling. Differential pattern of integrin’s expression is mediated by growth and differentiation factors and may indicate participation of integrin in bone and cartilage metabolism [33,34,35,36,37,38] | 127.5 |
9. | Spectrin beta chain, non-erythrocytic 2 (SPTBN2) and Neuroblast differentiation-associated protein (AHNAK) | SPTBN2 AHNAK | Cell membrane formation. Neurogenesis (proliferation and differentiation of nervous system cells) [5,33,39,40]. | 271.2 |
10. | Cryptochrome-1 | CRY1 | Transcription repressor, the main component of circadian clock. Transcription and translation of the main clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1, and CRY2) [33,41,42,43,44] | 66.4 |
11. | Alanine-tRNA ligase, mitochondrial | AARS2 | Catalyst of amino acid activation (aminoacylation/tRNA charging) [33,45,46] | 107.6 |
12. | Jumonji protein | JARID2 | Regulator of histone-methyltransferase complexes. Participates in the stem cell differentiation and normal embryogenesis including heart, neural tube development and haematopoiesis [33,47,48,49] | 138.3 |
13. | ELAV-like protein 3 | ELAVL3 | RNA-binding protein, stabilizes mRNA. Participates in the cell differentiation and nervous system development [33,50] | 39.5 |
14. | Bifunctional peptidase (KDM8) and arginyl hydroxylase (JMJD5) | KDM8 JMJD5 | Cleaves peptide bonds via hydrolysis reactions [33,51,52] | 47.2 |
15. | Zinc finger protein 394, Zinc finger protein 267, Zinc finger protein 585 A | ZNF394 ZNF267 ZNF585 A | DNA-binding transcription factors [33,53] | 64.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryabov, N.A.; Volova, L.T.; Alekseev, D.G.; Kovaleva, S.A.; Medvedeva, T.N.; Vlasov, M.Y. Mass Spectrometry of Collagen-Containing Allogeneic Human Bone Tissue Material. Polymers 2024, 16, 1895. https://doi.org/10.3390/polym16131895
Ryabov NA, Volova LT, Alekseev DG, Kovaleva SA, Medvedeva TN, Vlasov MY. Mass Spectrometry of Collagen-Containing Allogeneic Human Bone Tissue Material. Polymers. 2024; 16(13):1895. https://doi.org/10.3390/polym16131895
Chicago/Turabian StyleRyabov, Nikolay A., Larisa T. Volova, Denis G. Alekseev, Svetlana A. Kovaleva, Tatyana N. Medvedeva, and Mikhail Yu. Vlasov. 2024. "Mass Spectrometry of Collagen-Containing Allogeneic Human Bone Tissue Material" Polymers 16, no. 13: 1895. https://doi.org/10.3390/polym16131895
APA StyleRyabov, N. A., Volova, L. T., Alekseev, D. G., Kovaleva, S. A., Medvedeva, T. N., & Vlasov, M. Y. (2024). Mass Spectrometry of Collagen-Containing Allogeneic Human Bone Tissue Material. Polymers, 16(13), 1895. https://doi.org/10.3390/polym16131895