Inter-Oligomer Interaction Influence on Photoluminescence in Cis-Polyacetylene Semiconductor Materials
Abstract
:1. Introduction
2. Methods
2.1. Ground-State Calculations
2.2. Excited-State Calculation
2.3. Computational Details
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Cui, Y.; Yao, H.; Zhang, T.; Zhang, J.; Ma, L.; Wang, J.; Wei, Z.; Hou, J. A New Conjugated Polymer That Enables the Integration of Photovoltaic and Light-Emitting Functions in One Device. Adv. Mater. 2021, 33, 2101090. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, S.; Ren, Z. π-Conjugated Polymeric Light Emitting Diodes with Sky-Blue Emission by Employing Thermally Activated Delayed Fluorescence Mechanism. Chem. Eng. J. 2021, 417, 128089. [Google Scholar] [CrossRef]
- Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chem. Rev. 2009, 109, 5868–5923. [Google Scholar] [CrossRef] [PubMed]
- Zuo, G.; Abdalla, H.; Kemerink, M. Conjugated Polymer Blends for Organic Thermoelectrics. Adv. Electron. Mater. 2019, 5, 1800821. [Google Scholar] [CrossRef]
- Yıldız, D.E.; Cevher, D.; Yasa, M.; Cirpan, A.; Toppare, L. Selenophene-Containing Conjugated Polymers for Supercapacitor Electrodes. J. Polym. Sci. 2022, 60, 109–121. [Google Scholar] [CrossRef]
- Png, Z.M.; Chua, M.H.; Zhu, Q.; Xu, J. 15—Conjugated Polymers for Electrochromic Applications. In Conjugated Polymers for Next-Generation Applications; Kumar, V., Sharma, K., Sehgal, R., Kalia, S., Eds.; Woodhead Publishing: Sawston, UK, 2022; Volume 1, pp. 539–573. [Google Scholar] [CrossRef]
- Zhuang, Q.; Zhang, C.; Zhuang, H.; Deng, H.; Lin, X.; Li, Y.; Chen, H.; Xie, A.; Dong, W. Heteroatom-Free Conjugated Tetraphenylethylene Polymers for Selectively Fluorescent Detection of Tetracycline. Anal. Chim. Acta 2022, 1190, 339236. [Google Scholar] [CrossRef] [PubMed]
- Kenawy, E.-R.; Ghazy, A.R.; Al-Hossainy, A.F.; Rizk, H.F.; Shendy, S. Synthesis, Characterization, TD-DFT Method, and Optical Properties of Novel Nanofiber Conjugated Polymer. Synth. Met. 2022, 291, 117206. [Google Scholar] [CrossRef]
- Li, X.-G.; Huang, M.-R.; Duan, W.; Yang, Y.-L. Novel Multifunctional Polymers from Aromatic Diamines by Oxidative Polymerizations. Chem. Rev. 2002, 102, 2925–3030. [Google Scholar] [CrossRef]
- Garg, S.; Goel, N. Optoelectronic Applications of Conjugated Organic Polymers: Influence of Donor/Acceptor Groups through Density Functional Studies. J. Phys. Chem. C 2022, 126, 9313–9323. [Google Scholar] [CrossRef]
- Ashizawa, M.; Zheng, Y.; Tran, H.; Bao, Z. Intrinsically Stretchable Conjugated Polymer Semiconductors in Field Effect Transistors. Prog. Polym. Sci. 2020, 100, 101181. [Google Scholar] [CrossRef]
- Yakhanthip, T.; Kungwan, N.; Jitonnom, J.; Anuragudom, P.; Jungsuttiwong, S.; Hannongbua, S. Theoretical Investigation on the Electronic and Optical Properties of Poly(Fluorenevinylene) Derivatives as Light-Emitting Materials. Int. J. Photoenergy 2011, 2011, 570103. [Google Scholar] [CrossRef]
- Burroughes, J.H.; Bradley, D.D.C.; Brown, A.R.; Marks, R.N.; Mackay, K.; Friend, R.H.; Burns, P.L.; Holmes, A.B. Light-Emitting Diodes Based on Conjugated Polymers. Nature 1990, 347, 539–541. [Google Scholar] [CrossRef]
- Kiebooms, R.; Menon, R.; Lee, K. Chapter 1—Synthesis, Electrical, and Optical Properties of Conjugated Polymers. In Handbook of Advanced Electronic and Photonic Materials and Devices; Singh Nalwa, H., Ed.; Academic Press: Burlington, MA, USA, 2001; pp. 1–102. [Google Scholar] [CrossRef]
- Yao, Z.-F.; Wang, J.-Y.; Pei, J. Controlling Morphology and Microstructure of Conjugated Polymers via Solution-State Aggregation. Prog. Polym. Sci. 2023, 136, 101626. [Google Scholar] [CrossRef]
- Hutchison, G.R.; Zhao, Y.-J.; Delley, B.; Freeman, A.J.; Ratner, M.A.; Marks, T.J. Electronic Structure of Conducting Polymers: Limitations of Oligomer Extrapolation Approximations and Effects of Heteroatoms. Phys. Rev. B 2003, 68, 035204. [Google Scholar] [CrossRef]
- Koralli, P.; Nega, A.D.; Vagiaki, L.E.; Pavlou, A.; Siskos, M.G.; Dimitrakopoulou-Strauss, A.; Gregoriou, V.G.; Chochos, C.L. New Conjugated Polymer Nanoparticles with High Photoluminescence Quantum Yields for Far-Red and near Infrared Fluorescence Bioimaging. Mater. Chem. Front. 2020, 4, 2357–2369. [Google Scholar] [CrossRef]
- Lei, T.; Wang, J.-Y.; Pei, J. Roles of Flexible Chains in Organic Semiconducting Materials. Chem. Mater. 2014, 26, 594–603. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, J.; Luo, T. Extremely High Thermal Conductivity of Aligned Polyacetylene Predicted Using First-Principles-Informed United-Atom Force Field. ES Energy Environ. 2022, 16, 67–73. [Google Scholar] [CrossRef]
- Akagi, K. Helical Polyacetylene: Asymmetric Polymerization in a Chiral Liquid-Crystal Field. Chem. Rev. 2009, 109, 5354–5401. [Google Scholar] [CrossRef]
- Yashima, E.; Ousaka, N.; Taura, D.; Shimomura, K.; Ikai, T.; Maeda, K. Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chem. Rev. 2016, 116, 13752–13990. [Google Scholar] [CrossRef]
- Friend, R.H.; Bradley, D.D.C.; Townsend, P.D. Photo-Excitation in Conjugated Polymers. J. Phys. Appl. Phys. 1987, 20, 1367. [Google Scholar] [CrossRef]
- AlShetwi, Y.A.; Schiefer, D.; Sommer, M.; Reiter, G. Continuous Illumination of a Conjugated Polymer Causes Strong Enhancement of Photoluminescence. J. Phys. Chem. B 2021, 125, 5636–5644. [Google Scholar] [CrossRef] [PubMed]
- Sasai, M.; Fukutome, H. Zwitterionic and Diradical Breathers in Trans-Polyacetylene. Prog. Theor. Phys. 1988, 79, 61–76. [Google Scholar] [CrossRef]
- Butera, V. Density Functional Theory Methods Applied to Homogeneous and Heterogeneous Catalysis: A Short Review and a Practical User Guide. Phys. Chem. Chem. Phys. 2024, 26, 7950–7970. [Google Scholar] [CrossRef]
- Tully, J.C. Molecular Dynamics with Electronic Transitions. J. Chem. Phys. 1990, 93, 1061–1071. [Google Scholar] [CrossRef]
- Tully, J.C. Mixed Quantum–Classical Dynamics. Faraday Discuss. 1998, 110, 407–419. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Z.; Huang, S.; Han, Y.; Kilin, D.S. Effects of Surface Defects on Performance and Dynamics of CsPbI2Br Perovskite: First-Principles Nonadiabatic Molecular Dynamics Simulations. J. Phys. Chem. Lett. 2024, 15, 4782–4791. [Google Scholar] [CrossRef]
- Wang, L.; Prezhdo, O.V. A Simple Solution to the Trivial Crossing Problem in Surface Hopping. J. Phys. Chem. Lett. 2014, 5, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Sindhu, A. Pedagogical Overview of the Fewest Switches Surface Hopping Method. ACS Omega 2022, 7, 45810–45824. [Google Scholar] [CrossRef] [PubMed]
- Akimov, A.V.; Prezhdo, O.V. The PYXAID Program for Non-Adiabatic Molecular Dynamics in Condensed Matter Systems. J. Chem. Theory Comput. 2013, 9, 4959–4972. [Google Scholar] [CrossRef]
- Redfield, A.G. On the Theory of Relaxation Processes. IBM J. Res. Dev. 1957, 1, 19–31. [Google Scholar] [CrossRef]
- Jean, J.M.; Friesner, R.A.; Fleming, G.R. Application of a Multilevel Redfield Theory to Electron Transfer in Condensed Phases. J. Chem. Phys. 1992, 96, 5827–5842. [Google Scholar] [CrossRef]
- Inerbaev, T.M.; Hoefelmeyer, J.D.; Kilin, D.S. Photoinduced Charge Transfer from Titania to Surface Doping Site. J. Phys. Chem. C 2013, 117, 9673–9692. [Google Scholar] [CrossRef] [PubMed]
- Keya, K.N.; Xia, W.; Kilin, D. DFT Simulation of Conductivity of the P-Type Doped and Charge-Injected Cis-Polyacetylene. Mol. Phys. 2022, 120, e2110167. [Google Scholar] [CrossRef]
- Keya, K.N.; Jabed, M.A.; Xia, W.; Kilin, D. Photoluminescence of Cis-Polyacetylene Semiconductor Material. Appl. Sci. 2022, 12, 2830. [Google Scholar] [CrossRef]
- Micha, D.A. Density Matrix Treatment of Non-Adiabatic Photoinduced Electron Transfer at a Semiconductor Surface. J. Chem. Phys. 2012, 137, 22A521. [Google Scholar] [CrossRef] [PubMed]
- Leathers, A.S.; Micha, D.A.; Kilin, D.S. Density Matrix Treatment of Combined Instantaneous and Delayed Dissipation for an Electronically Excited Adsorbate on a Solid Surface. J. Chem. Phys. 2009, 131, 144106. [Google Scholar] [CrossRef]
- Kilin, D.S.; Micha, D.A. Relaxation of Photoexcited Electrons at a Nanostructured Si(111) Surface. J. Phys. Chem. Lett. 2010, 1, 1073–1077. [Google Scholar] [CrossRef]
- Han, Y.; Meng, Q.; Rasulev, B.; May, P.S.; Berry, M.T.; Kilin, D.S. Photoinduced Charge Transfer versus Fragmentation Pathways in Lanthanum Cyclopentadienyl Complexes. J. Chem. Theory Comput. 2017, 13, 4281–4296. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Meng, Q.; Rasulev, B.; May, P.S.; Berry, M.T.; Kilin, D.S. Photofragmentation of the Gas-Phase Lanthanum Isopropylcyclopentadienyl Complex: Computational Modeling vs Experiment. J. Phys. Chem. A 2015, 119, 10838–10848. [Google Scholar] [CrossRef]
- Forde, A.; Inerbaev, T.; Hobbie, E.K.; Kilin, D.S. Excited-State Dynamics of a CsPbBr3 Nanocrystal Terminated with Binary Ligands: Sparse Density of States with Giant Spin–Orbit Coupling Suppresses Carrier Cooling. J. Am. Chem. Soc. 2019, 141, 4388–4397. [Google Scholar] [CrossRef]
- Graupner, D.R.; Kilin, D.S. Nonadiabatic Dynamics in Two-Dimensional Perovskites Assisted by Machine Learned Force Fields. J. Phys. Chem. C 2024, 128, 3935–3944. [Google Scholar] [CrossRef]
- Han, Y.; Kilin, D.S. Nonradiative Relaxation Dynamics of a Cesium Lead Halide Perovskite Photovoltaic Architecture: Effect of External Electric Fields. J. Phys. Chem. Lett. 2020, 11, 9983–9989. [Google Scholar] [CrossRef]
- Han, Y.; Tretiak, S.; Kilin, D. Dynamics of Charge Transfer at Au/Si Metal-Semiconductor Nano-Interface. Mol. Phys. 2014, 112, 474–484. [Google Scholar] [CrossRef]
- Han, Y.; Iduoku, K.; Grant, G.; Rasulev, B.; Leontyev, A.; Hobbie, E.K.; Tretiak, S.; Kilina, S.V.; Kilin, D.S. Hot Carrier Dynamics at Ligated Silicon(111) Surfaces: A Computational Study. J. Phys. Chem. Lett. 2021, 12, 7504–7511. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Dong, J.; Drabold, D.A. Band-Tail States and the Localized-to-Extended Transition in Amorphous Diamond. Phys. Rev. B 1996, 54, 10284–10287. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal--Amorphous-Semiconductor Transition in Germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207–8215, Erratum in J. Chem. Phys. 2006, 124, 219906. [Google Scholar] [CrossRef]
- Giustino, F. Electron-Phonon Interactions from First Principles. Rev. Mod. Phys. 2017, 89, 015003. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Englman, R.; Jortner, J. The Energy Gap Law for Radiationless Transitions in Large Molecules. Mol. Phys. 1970, 18, 145–164. [Google Scholar] [CrossRef]
- Brey, D.; Burghardt, I. Coherent Transient Localization Mechanism of Interchain Exciton Transport in Regioregular P3HT: A Quantum-Dynamical Study. J. Phys. Chem. Lett. 2024, 15, 1836–1845. [Google Scholar] [CrossRef] [PubMed]
- Kraner, S.; Scholz, R.; Plasser, F.; Koerner, C.; Leo, K. Exciton Size and Binding Energy Limitations in One-Dimensional Organic Materials. J. Chem. Phys. 2015, 143, 244905. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Baumgarten, M.; Müllen, K. Designing π-Conjugated Polymers for Organic Electronics. Top. Issue Conduct. Polym. 2013, 38, 1832–1908. [Google Scholar] [CrossRef]
- Barcaro, G.; Broyer, M.; Durante, N.; Fortunelli, A.; Stener, M. Alloying Effects on the Optical Properties of Ag–Au Nanoclusters from TDDFT Calculations. J. Phy. Chem. C 2011, 115, 24085–24091. [Google Scholar] [CrossRef]
Initial Transition | ||||||
---|---|---|---|---|---|---|
A | 1.1759 | 0 | 0 | N/A | N/A | |
B | 1.5299 | 0.3540 | 0 | 0.0434 | N/A | |
C | 1.5215 | 0 | 0.3456 | N/A | 0.0260 | |
D | 1.8755 | 0.3540 | 0.3456 | 0.0434 | 0.0260 | |
C′ | 0.8122 | 0.1351 | 0 | 0.0408 | 0.0260 | |
D′ | 0.8146 | 0 | 0.1375 | N/A | 0.0303 | |
E | 2.2983 | 0.3540 | 0.7684 | 0.0434 | 0.0303 |
No. | Initial Transition | ||||
---|---|---|---|---|---|
1 | 0.3540 | 0.3546 | 0.0434 | 0.0260 | |
2 | 0.7690 | 0.7684 | 0.0408 | 0.0339 | |
3 | 1.2017 | 1.2112 | 0.0323 | 0.0303 | |
4 | 0.7690 | 0.3546 | 0.0408 | 0.0260 | |
5 | 1.6364 | 1.2112 | 0.0303 | 0.0303 | |
6 | 1.2017 | 1.6457 | 0.0408 | 0.0273 | |
7 | 2.5320 | 1.6457 | 0.0289 | 0.0273 | |
8 | 0.7690 | 1.2112 | 0.0408 | 0.0303 | |
9 | 1.2017 | 1.6457 | 0.0323 | 0.0273 | |
10 | 1.2017 | 0.3546 | 0.0323 | 0.0260 | |
11 | 1.6364 | 0.3546 | 0.0303 | 0.0260 | |
12 | 2.6454 | 0.3546 | 0.0312 | 0.0260 | |
13 | 0.3540 | 1.6457 | 0.0434 | 0.0273 | |
14 | 0.3540 | 1.2112 | 0.0434 | 0.0303 | |
15 | 2.5641 | 1.6457 | 0.0296 | 0.0273 | |
16 | 2.8152 | 1.6457 | 0.0313 | 0.0273 |
No. | Initial Transition | ||||
---|---|---|---|---|---|
1 | 0.3048 | 0.5542 | 1.3975 | 0.5011 | |
2 | 0.2500 | 0.5542 | 1.5594 | 0.5011 | |
3 | 0.2500 | 0.3801 | 1.5594 | 1.0649 | |
4 | 0.2500 | 0.3146 | 1.5594 | 0.9572 | |
5 | 0.2048 | 0.5542 | 1.7015 | 0.5011 | |
6 | 0.2048 | 0.3801 | 1.7015 | 1.0649 | |
7 | 0.2048 | 0.3146 | 1.7015 | 0.9572 | |
8 | 0.2048 | 0.3057 | 1.7015 | 1.3329 | |
9 | 0.1351 | 0.5542 | 1.8881 | 0.5011 | |
10 | 0.1351 | 0.3801 | 1.8881 | 1.0649 | |
11 | 0.1351 | 0.3146 | 1.8881 | 0.9572 | |
12 | 0.1351 | 0.3057 | 1.8881 | 1.3329 | |
13 | 0.0925 | 0.5542 | 2.0278 | 0.5011 | |
14 | 0.0925 | 0.3801 | 2.0278 | 1.0649 | |
15 | 0.0925 | 0.3146 | 2.0278 | 0.9572 | |
16 | 0.0925 | 0.3057 | 2.0278 | 1.3329 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keya, K.N.; Han, Y.; Xia, W.; Kilin, D. Inter-Oligomer Interaction Influence on Photoluminescence in Cis-Polyacetylene Semiconductor Materials. Polymers 2024, 16, 1896. https://doi.org/10.3390/polym16131896
Keya KN, Han Y, Xia W, Kilin D. Inter-Oligomer Interaction Influence on Photoluminescence in Cis-Polyacetylene Semiconductor Materials. Polymers. 2024; 16(13):1896. https://doi.org/10.3390/polym16131896
Chicago/Turabian StyleKeya, Kamrun N., Yulun Han, Wenjie Xia, and Dmitri Kilin. 2024. "Inter-Oligomer Interaction Influence on Photoluminescence in Cis-Polyacetylene Semiconductor Materials" Polymers 16, no. 13: 1896. https://doi.org/10.3390/polym16131896
APA StyleKeya, K. N., Han, Y., Xia, W., & Kilin, D. (2024). Inter-Oligomer Interaction Influence on Photoluminescence in Cis-Polyacetylene Semiconductor Materials. Polymers, 16(13), 1896. https://doi.org/10.3390/polym16131896