Utilizing Edge-Oxidized Graphene Oxide to Enhance Cement Mortar’s Properties Containing Crumb Rubber: Toward Achieving Sustainable Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Cement
2.1.2. Sand
2.1.3. Crumb Rubber
2.1.4. Edge-Oxidized Graphene Oxide (EOGO)
2.2. Mix Proportions and Specimen Preparation
2.3. Test Methods
2.3.1. Compression Test
2.3.2. Flexural Test
2.3.3. Porosity Test
2.3.4. Scanning Electron Microscopy (SEM) Test
3. Results and Discussion
3.1. Compression Test
3.2. Flexural Test
3.3. Porosity Test
3.4. Scanning Electron Microscopy (SEM) Test
4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Senin, M.S.; Shahidan, S.; Leman, A.S.; Hannan, N.I.R.R. Properties of Cement Mortar Containing Rubber Ash as Sand Replacement. IOP Conf. Ser. Mater. Sci. Eng. 2016, 160, 012055. [Google Scholar] [CrossRef]
- Nowak, J.; Jaskulski, R.; Kubissa, W.; Matusiak, B.; Banach, M. On the Need for a Paradigm Change in the Valuation of Concrete with Waste Materials Based on the Example of Concrete with Crumb Rubber. Sustainability 2023, 15, 3928. [Google Scholar] [CrossRef]
- Azevedo, F.; Pacheco-Torgal, F.; Jesus, C.; de Aguiar, J.L.B.; Camões, A.F. Properties and Durability of HPC with Tyre Rubber Wastes. Constr. Build. Mater. 2012, 34, 186–191. [Google Scholar] [CrossRef]
- Shahrul, S.; Mohammed, B.S.; Wahab, M.M.A.; Liew, M.S. Mechanical Properties of Crumb Rubber Mortar Containing Nano-Silica Using Response Surface Methodology. Materials 2021, 14, 5496. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.; Jangra, P.; Roychand, R.; Saberian, M.; Li, J. Effects of Various Additives on the Crumb Rubber Integrated Geopolymer Concrete. Clean. Mater. 2023, 8, 100181. [Google Scholar] [CrossRef]
- Alamri, M.; Lu, Q.; Elmagarhe, A.; Elnihum, A. The Effect of Incorporating 100% of Undiluted and Diluted Reclaimed Epoxy Asphalt Materials into Pervious Cement Mixes. Coatings 2023, 13, 1178. [Google Scholar] [CrossRef]
- Gillani, S.A.A.; Riaz, M.R.; Hameed, R.; Qamar, A.; Toumi, A.; Turatsinze, A. Fracture Energy of Fiber-Reinforced and Rubberized Cement-Based Composites: A Sustainable Approach towards Recycling of Waste Scrap Tires. Energy Environ. 2022, 34, 1509–1523. [Google Scholar] [CrossRef]
- Li, L.-J.; Chen, Z.-Z.; Xie, W.-F.; Liu, F. Experimental Study of Recycled Rubber-Filled High-Strength Concrete. Mag. Concr. Res. 2009, 61, 549–556. [Google Scholar] [CrossRef]
- Sukontasukkul, P. Use of Crumb Rubber to Improve Thermal and Sound Properties of Pre-Cast Concrete Panel. Constr. Build. Mater. 2009, 23, 1084–1092. [Google Scholar] [CrossRef]
- Siddique, R.; Naik, T.R. Properties of Concrete Containing Scrap-Tire Rubber—An Overview. Waste Manag. 2004, 24, 563–569. [Google Scholar] [CrossRef]
- Youssf, O.; ElGawady, M.A.; Mills, J.E.; Ma, X. An Experimental Investigation of Crumb Rubber Concrete Confined by Fibre Reinforced Polymer Tubes. Constr. Build. Mater. 2014, 53, 522–532. [Google Scholar] [CrossRef]
- Liu, F.; Meng, L.; Ning, G.-F.; Li, L.-J. Fatigue Performance of Rubber-Modified Recycled Aggregate Concrete (RRAC) for Pavement. Constr. Build. Mater. 2015, 95, 207–217. [Google Scholar] [CrossRef]
- Eldin, N.N.; Senouci, A.B. Rubber-Tire Particles as Concrete Aggregate. J. Mater. Civ. Eng. 1993, 5, 478–496. [Google Scholar] [CrossRef]
- Topçu, I.B. The Properties of Rubberized Concretes. Cem. Concr. Res. 1995, 25, 304–310. [Google Scholar] [CrossRef]
- Malik, N.H.; Al-Arainy, A.A.; Qureshi, M.I. Electrical Insulation in Power Systems; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Hernández-Olivares, F.; Barluenga, G. Fire Performance of Recycled Rubber-Filled High-Strength Concrete. Cem. Concr. Res. 2004, 34, 109–117. [Google Scholar] [CrossRef]
- Fattuhi, N.I.; Clark, L.A. Cement-Based Materials Containing Shredded Scrap Truck Tyre Rubber. Constr. Build. Mater. 1996, 10, 229–236. [Google Scholar] [CrossRef]
- Raghavan, D.; Huynh, H.; Ferraris, C.F. Workability, Mechanical Properties, and Chemical Stability of a Recycled Tyre Rubber-Filled Cementitious Composite. J. Mater. Sci. 1998, 33, 1745–1752. [Google Scholar] [CrossRef]
- Wongsa, A.; Sata, V.; Nematollahi, B.; Sanjayan, J.; Chindaprasirt, P. Mechanical and Thermal Properties of Lightweight Geopolymer Mortar Incorporating Crumb Rubber. J. Clean. Prod. 2018, 195, 1069–1080. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, H. Influence of Rubber Size on Properties of Crumb Rubber Mortars. Materials 2016, 9, 527. [Google Scholar] [CrossRef]
- Angelin, A.F.; Andrade, M.F.F.; Bonatti, R.; Lintz, R.C.C.; Gachet-Barbosa, L.A.; Osório, W.R. Effects of Spheroid and Fiber-like Waste-Tire Rubbers on Interrelation of Strength-to-Porosity in Rubberized Cement and Mortars. Constr. Build. Mater. 2015, 95, 525–536. [Google Scholar] [CrossRef]
- Herrero, S.; Mayor, P.; Hernández-Olivares, F. Influence of Proportion and Particle Size Gradation of Rubber from End-of-Life Tires on Mechanical, Thermal and Acoustic Properties of Plaster–Rubber Mortars. Mater. Des. 2013, 47, 633–642. [Google Scholar] [CrossRef]
- Letelier, V.; Bustamante, M.; Olave, B.; Martínez, C.; Ortega, J.M. Properties of Mortars Containing Crumb Rubber and Glass Powder. Dev. Built Environ. 2023, 14, 100131. [Google Scholar] [CrossRef]
- Gopinath, S.; Mouli, P.C.; Murthy, A.R.; Iyer, N.R.; Maheswaran, S. Effect of Nano Silica on Mechanical Properties and Durability of Normal Strength Concrete. Arch. Civ. Eng. 2012, LVIII, 433–444. [Google Scholar] [CrossRef]
- Liu, J.; Li, Q.; Xu, S. Influence of Nanoparticles on Fluidity and Mechanical Properties of Cement Mortar. Constr. Build. Mater. 2015, 101, 892–901. [Google Scholar] [CrossRef]
- Bunea, G.; Alexa-Stratulat, S.-M.; Mihai, P.; Toma, I.-O. Use of Clay and Titanium Dioxide Nanoparticles in Mortar and Concrete—A State-of-the-Art Analysis. Coatings 2023, 13, 506. [Google Scholar] [CrossRef]
- Alharbi, Y.; An, J.; Cho, B.H.; Khawaji, M.; Chung, W.; Nam, B.H. Mechanical and Sorptivity Characteristics of Edge-Oxidized Graphene Oxide (EOGO)-Cement Composites: Dry- and Wet-Mix Design Methods. Nanomaterials 2018, 8, 718. [Google Scholar] [CrossRef]
- Musso, S.; Tulliani, J.-M.; Ferro, G.; Tagliaferro, A. Influence of Carbon Nanotubes Structure on the Mechanical Behavior of Cement Composites. Compos. Sci. Technol. 2009, 69, 1985–1990. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Highly Dispersed Carbon Nanotube Reinforced Cement Based Materials. Cem. Concr. Res. 2010, 40, 1052–1059. [Google Scholar] [CrossRef]
- Cwirzen, A.; Habermehl-Cwirzen, K.; Penttala, V. Surface Decoration of Carbon Nanotubes and Mechanical Properties of Cement/Carbon Nanotube Composites. Adv. Cem. Res. 2008, 20, 65–73. [Google Scholar] [CrossRef]
- Gong, K.; Pan, Z.; Korayem, A.H.; Qiu, L.; Li, D.; Collins, F.; Wang, C.M.; Duan, W.H. Reinforcing Effects of Graphene Oxide on Portland Cement Paste. J. Mater. Civ. Eng. 2015, 27, A4014010. [Google Scholar] [CrossRef]
- Warner, J.H.; Schaffel, F.; Rummeli, M.; Bachmatiuk, A. Graphene: Fundamentals and Emergent Applications; Newnes: Oberon, Australia, 2012. [Google Scholar]
- Lin, C.; Wei, W.; Hu, Y.H. Catalytic Behavior of Graphene Oxide for Cement Hydration Process. J. Phys. Chem. Solids 2016, 89, 128–133. [Google Scholar] [CrossRef]
- Khawaji, M.; Cho, B.H.; Nam, B.H.; Alharbi, Y.; An, J. Edge-Oxidized Graphene Oxide as Additive in Fiber-Reinforced Concrete: Effects on Fresh and Hardened Properties. J. Mater. Civ. Eng. 2020, 32, 4020028. [Google Scholar] [CrossRef]
- An, J.; Nam, B.H.; Alharbi, Y.; Cho, B.H.; Khawaji, M. Edge-Oxidized Graphene Oxide (EOGO) in Cement Composites: Cement Hydration and Microstructure. Compos. Part B Eng. 2019, 173, 106795. [Google Scholar] [CrossRef]
- Li, X.; Lu, Z.; Chuah, S.; Li, W.; Liu, Y.; Duan, W.H.; Li, Z. Effects of Graphene Oxide Aggregates on Hydration Degree, Sorptivity, and Tensile Splitting Strength of Cement Paste. Compos. Part A Appl. Sci. Manuf. 2017, 100, 1–8. [Google Scholar] [CrossRef]
- Yang, H.; Monasterio, M.; Cui, H.; Han, N. Experimental Study of the Effects of Graphene Oxide on Microstructure and Properties of Cement Paste Composite. Compos. Part A Appl. Sci. Manuf. 2017, 102, 263–272. [Google Scholar] [CrossRef]
- Xiong, G.; Ren, Y.; Wang, C.; Zhang, Z.; Zhou, S.; Kuang, C.; Zhao, Y.; Guo, B.; Hong, S. Effect of Power Ultrasound Assisted Mixing on Graphene Oxide in Cement Paste: Dispersion, Microstructure and Mechanical Properties. J. Build. Eng. 2023, 69, 106321. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Chen, S.J.; Liu, Y.M.; Duan, W.H.; Shah, S.P. Effects of Graphene Oxide on Early-Age Hydration and Electrical Resistivity of Portland Cement Paste. Constr. Build. Mater. 2017, 136, 506–514. [Google Scholar] [CrossRef]
- Lv, S.; Ma, Y.; Qiu, C.; Sun, T.; Liu, J.; Zhou, Q. Effect of Graphene Oxide Nanosheets of Microstructure and Mechanical Properties of Cement Composites. Constr. Build. Mater. 2013, 49, 121–127. [Google Scholar] [CrossRef]
- Pan, Z.; He, L.; Qiu, L.; Korayem, A.H.; Li, G.; Zhu, J.W.; Collins, F.; Li, D.; Duan, W.H.; Wang, M.C. Mechanical Properties and Microstructure of a Graphene Oxide–Cement Composite. Cem. Concr. Compos. 2015, 58, 140–147. [Google Scholar] [CrossRef]
- Alvi, I.H.; Li, Q.; Hou, Y.; Onyekwena, C.C.; Zhang, M.; Ghaffar, A. A Critical Review of Cement Composites Containing Recycled Aggregates with Graphene Oxide Nanomaterials. J. Build. Eng. 2023, 69, 105989. [Google Scholar] [CrossRef]
- ASTM C150; Standard Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2022; pp. 1–8.
- ASTM C305; Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C109; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C348; Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM C830; Standard Test Methods for Apparent Porosity, Liquid Absorption, Apparent Specific Gravity, and Bulk Density of Refractory Shapes by Vacuum Pressure. ASTM International: West Conshohocken, PA, USA, 2023.
- Assaggaf, R.A.; Ali, M.R.; Al-Dulaijan, S.U.; Maslehuddin, M. Properties of Concrete with Untreated and Treated Crumb Rubber—A Review. J. Mater. Res. Technol. 2021, 11, 1753–1798. [Google Scholar] [CrossRef]
- Moreno, D.D.P.; Ribeiro, S.; Saron, C. Compatibilization of Recycled Rubber Aggregate in Mortar. Mater. Struct. 2020, 53, 23. [Google Scholar] [CrossRef]
# | Mix ID | Cement (g) | Water (g) | Sand (g) | Rubber (g) | EOGO (g) | Total |
---|---|---|---|---|---|---|---|
1 | M | 2225.5 | 1098.8 | 6120.2 | 0 | 0 | 9444.5 |
3 | MR5 | 2225.5 | 1099.9 | 5814.2 | 130.3 | 0 | 9269.9 |
4 | MR10 | 2225.5 | 1101.0 | 5508.1 | 260.7 | 0 | 9095.3 |
5 | MR15 | 2225.5 | 1102.1 | 5202.1 | 391.0 | 0 | 8920.7 |
2 | MG | 2225.5 | 1098.8 | 6120.2 | 0 | 2.2 | 9446.6 |
6 | MGR5 | 2225.5 | 1099.9 | 5814.2 | 130.3 | 2.2 | 9272.1 |
7 | MGR10 | 2225.5 | 1101.0 | 5508.1 | 260.7 | 2.2 | 9097.5 |
8 | MGR15 | 2225.5 | 1102.1 | 5202.1 | 391.0 | 2.2 | 8922.9 |
0.0% EOGO | 0.1% EOGO | ||||
---|---|---|---|---|---|
Mix ID | 7-Day (MPa) | 28-Day (MPa) | Mix ID | 7-Day (MPa) | 28-Day (MPa) |
M | 20.45 | 34.60 | MG | 23.92 | 35.73 |
MR5 | 19.63 | 25.75 | MGR5 | 22.20 | 29.60 |
MR10 | 17.89 | 25.32 | MGR10 | 19.21 | 25.64 |
MR15 | 14.65 | 19.27 | MGR15 | 15.87 | 20.84 |
0.0% EOGO | 0.1% EOGO | ||||
---|---|---|---|---|---|
Mix ID | 7-Day (MPa) | 28-Day (MPa) | Mix ID | 7-Day (MPa) | 28-Day (MPa) |
M | 4.09 | 5.85 | MG | 4.55 | 5.71 |
MR5 | 3.76 | 5.12 | MGR5 | 4.21 | 5.66 |
MR10 | 3.61 | 4.80 | MGR10 | 3.68 | 5.36 |
MR15 | 3.06 | 4.15 | MGR15 | 3.44 | 4.57 |
Group #1 (M) | Group #2 (MG) | p-Value | Significant? | |||||
---|---|---|---|---|---|---|---|---|
Value (Mean) | Standard Deviation | Variance | Value (Mean) | Standard Deviation | Variance | |||
Compressive (7 days) | 20.45 | 1.34 | 1.80 | 23.9 | 3.3111 | 10.9632 | 0.0957 | No |
Compressive (28 days) | 34.60 | 0.71 | 0.50 | 35.7 | 2.3543 | 5.5429 | 0.2542 | No |
Flexural (7 days) | 4.09 | 0.23 | 0.05 | 4.6 | 0.1070 | 0.0114 | 0.0254 | Yes |
Flexural (28 days) | 5.85 | 0.19 | 0.04 | 5.71 | 0.2327 | 0.0542 | 0.2435 | No |
Group #1 (MR5%) | Group #2 (MGR5%) | p-Value | Significant? | |||||
---|---|---|---|---|---|---|---|---|
Value (Mean) | Standard Deviation | Variance | Value (Mean) | Standard Deviation | Variance | |||
Compressive (7 days) | 19.63 | 1.06 | 1.12 | 22.2 | 1.4908 | 2.2224 | 0.0356 | Yes |
Compressive (28 days) | 25.75 | 2.99 | 8.92 | 29.6 | 1.0284 | 1.0576 | 0.0845 | No |
Flexural (7 days) | 3.76 | 0.08 | 0.01 | 4.2 | 0.1196 | 0.0143 | 0.0058 | Yes |
Flexural (28 days) | 5.12 | 0.24 | 0.06 | 5.66 | 0.3800 | 0.1444 | 0.0654 | No |
Group #1 (MR10%) | Group #2 (MGR10%) | p-Value | Significant? | |||||
---|---|---|---|---|---|---|---|---|
Value (Mean) | Standard Deviation | Variance | Value (Mean) | Standard Deviation | Variance | |||
Compressive (7 days) | 17.89 | 1.47 | 2.15 | 19.2 | 0.5829 | 0.3397 | 0.1217 | No |
Compressive (28 days) | 25.32 | 1.43 | 2.05 | 25.6 | 1.2875 | 1.6576 | 0.3938 | No |
Flexural (7 days) | 3.61 | 0.08 | 0.01 | 3.7 | 0.2091 | 0.0437 | 0.3095 | No |
Flexural (28 days) | 4.80 | 0.11 | 0.01 | 5.36 | 0.4593 | 0.2109 | 0.0885 | No |
Group #1 (MR15%) | Group #2 (MGR15%) | p-Value | Significant? | |||||
---|---|---|---|---|---|---|---|---|
Value (Mean) | Standard Deviation | Variance | Value (Mean) | Standard Deviation | Variance | |||
Compressive (7 days) | 14.65 | 0.62 | 0.38 | 15.9 | 0.7047 | 0.4965 | 0.0444 | Yes |
Compressive (28 days) | 19.27 | 0.88 | 0.77 | 20.8 | 1.7920 | 3.2112 | 0.1327 | No |
Flexural (7 days) | 3.06 | 0.14 | 0.02 | 3.4 | 0.2051 | 0.0421 | 0.0296 | Yes |
Flexural (28 days) | 4.15 | 0.21 | 0.05 | 4.57 | 0.0895 | 0.0080 | 0.0257 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamri, M.; Khawaji, M. Utilizing Edge-Oxidized Graphene Oxide to Enhance Cement Mortar’s Properties Containing Crumb Rubber: Toward Achieving Sustainable Materials. Polymers 2024, 16, 2082. https://doi.org/10.3390/polym16142082
Alamri M, Khawaji M. Utilizing Edge-Oxidized Graphene Oxide to Enhance Cement Mortar’s Properties Containing Crumb Rubber: Toward Achieving Sustainable Materials. Polymers. 2024; 16(14):2082. https://doi.org/10.3390/polym16142082
Chicago/Turabian StyleAlamri, Mohammed, and Mohammad Khawaji. 2024. "Utilizing Edge-Oxidized Graphene Oxide to Enhance Cement Mortar’s Properties Containing Crumb Rubber: Toward Achieving Sustainable Materials" Polymers 16, no. 14: 2082. https://doi.org/10.3390/polym16142082
APA StyleAlamri, M., & Khawaji, M. (2024). Utilizing Edge-Oxidized Graphene Oxide to Enhance Cement Mortar’s Properties Containing Crumb Rubber: Toward Achieving Sustainable Materials. Polymers, 16(14), 2082. https://doi.org/10.3390/polym16142082