Effect of Metastable Intermolecular Composites on the Thermal Decomposition of Glycidyl Azide Polymer Energetic Thermoplastic Elastomer
Abstract
:1. Introduction
2. Experiment
2.1. Chemicals
2.2. Preparation of Samples
- (1)
- Preparation of GAP-ETPE
- (2)
- Preparation of MICs
- (3)
- Preparation of MICs/GAP-ETPE
2.3. Measurements and Characterizations
3. Results and Discussion
3.1. Characters of MICs
3.1.1. Crystal Forms
3.1.2. Morphological Characterization
3.1.3. Specific Surface Area and Pore Volume
3.2. Thermal Decomposition of GAP-ETPE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Talawar, M.B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A.K.; Gandhe, B.R.; Subhananda Rao, A. Environmentally compatible next generation green energetic materials (GEMs). J. Hazard. Mater. 2009, 161, 589–607. [Google Scholar] [CrossRef] [PubMed]
- Arun Sikder, K.; Reddy, S. Review on energetic thermoplastic elastomers (ETPEs) for military science. Propellants Explos. Pyrotech. 2013, 38, 14–28. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, G.; Wang, Z.; Zhang, Y.; Ge, Z.; Luo, Y. Synthesis and characterization of novel energetic thermoplastic elastomers based on glycidyl azide polymer (GAP) with bonding functions. Polym. Bull. 2015, 72, 1835–1847. [Google Scholar] [CrossRef]
- Badgujar, D.M.; Talawar, M.B.; Asthana, S.N.; Mahulikar, P.P. Advances in science and technology of modern energetic materials: An overview. J. Hazard. Mater. 2008, 151, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ge, Z.; Li, Q.; Li, D.; Zuo, Y.; Yan, B.; Luo, Y. Effect of Burning Rate Catalysts on the Thermal Decomposition Properties of GAP-based ETPE Energetic Thermoplastic Elastormer. Chin. J. Energetic Mater. 2016, 24, 1102–1107. [Google Scholar] [CrossRef]
- Farley, C.; Pantoya, M. Reaction kinetics of nanometric aluminum and iodine pentoxide. J. Therm. Anal. Calorim. 2010, 102, 609–613. [Google Scholar] [CrossRef]
- Pantoya, M.L.; Granier, J.J. The effect of slow heating rates on the reaction mechanisms of nano and micron composite thermite reactions. J. Therm. Anal. Calorim. 2006, 85, 37–43. [Google Scholar] [CrossRef]
- Sun, J.; Pantoya, M.L.; Simon, S.L. Dependence of size and size distribution on reactivity of aluminum nanoparticles in reactions with oxygen and MoO3. Thermochim. Acta. 2006, 444, 117–127. [Google Scholar] [CrossRef]
- Elbasuney, S.; Hamed, A.; Yehia, M.; Ramzy, H.; Mokhtar, M. The Impact of Metastable Intermolrecular Nanocomposite Particles on Kinetic Decomposition of Heterocyclic Nitramines Using Advanced Solid-Phase Decomposition Models. J. Inorg. Organomet. Polym. Mater. 2021, 31, 3665–3676. [Google Scholar] [CrossRef]
- He, W.; Ao, W.; Yang, G.; Yang, Z.; Guo, Z.; Liu, P.; Yan, Q. Metastable energetic nanocomposites of MOF-activated aluminum featured with multi-level energy releases. Chem. Eng. J. 2020, 381, 122623. [Google Scholar] [CrossRef]
- Song, Z.; Jin, M.; Xian, M.; Wang, C. Peptide-driven assembly of Al/CuO energetic nanocomposite material. Chem. Eng. J. 2020, 338, 124225. [Google Scholar] [CrossRef]
- Elbasuney, S.; Hamed, A.; Ismael, S.; Mokhtar, M.; Gobara, M. Novel high energy density material based on metastable intermolecular nanocomposite. J. Inorg. Organomet. Polym. Mater. 2020, 30, 3980–3988. [Google Scholar] [CrossRef]
- Parimi, V.S.; Huang, S.; Zheng, X. Enhancing ignition and combustion of micronsized aluminum by adding porous silicon. Proc. Combust. Inst. 2017, 36, 2317–2324. [Google Scholar] [CrossRef]
- Thiruvengadathan, R.; Staley, C.; Geeson, J.M.; Chung, S.; Raymond, K.E.; Gangopadhyay, K.; Gangopadhyay, S. Enhanced combustion characteristics of bismuth trioxide-aluminum nanocomposites prepared through graphene oxide directed self-assembly. Propellants Explos. Pyrotech. 2015, 40, 729–734. [Google Scholar] [CrossRef]
- Kim, S.B.; Kim, K.J.; Cho, M.H.; Kim, J.H.; Kim, K.T.; Kim, S.H. Micro- and nanoscale energetic materials as effective heat energy sources for enhanced gas generators. ACS Appl. Mater. Interfaces 2016, 8, 9405–9412. [Google Scholar] [CrossRef]
- Fehlberg, S.; Örnek, M.; Manship, T.D.; Son, S.F. Decomposition of ammonium-perchlorate-encapsulated nanoscale and micron-scale catalyst particles. J. Propuls. Power 2020, 36, 862–868. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Dave, P.N. Nano-metal oxide: Potential catalyst on thermal decomposition of ammonium perchlorate. J. Exp. Nanosci. 2012, 7, 205–231. [Google Scholar] [CrossRef]
- Reese, D.A.; Son, S.F.; Groven, L.J. Preparation and characterization of energetic crystals with nanoparticle inclusions. Propellants Explos. Pyrotech. 2012, 37, 635–638. [Google Scholar] [CrossRef]
- Alizadeh-Gheshlaghi, E.; Shaabani, B.; Khodayari, A. Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technol. 2012, 217, 330–339. [Google Scholar] [CrossRef]
- Chen, L.; Deng, J.; Xu, W.; Zhao, D.; Yang, W.; Yu, H. Synthesis of N-(2-Cyanoethyl) Diethanolamine. Petrochem. Technol. 2007, 36, 1029–1031. [Google Scholar]
- Sang, C.; Chen, K.; Li, G.; Jin, S.; Luo, Y. Facile mass preparation and characterization of Al/copper ferrites metastable intermolecular energetic nanocomposites. RSC Adv. 2021, 11, 7633–7643. [Google Scholar] [CrossRef] [PubMed]
- Tasca, J.E.; Quincoces, C.E.; Lavat, A. Preparation and characterization of CuFe2O4 bulk catalysts. Ceram. Int. 2011, 37, 803–812. [Google Scholar] [CrossRef]
- Yan, Q.L.; Zhao, F.Q.; Kuo, K.K.; Zhang, X.H.; Zeman, S.; Deluca, L.T. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog. Energy Combust. Sci. 2016, 57, 75–136. [Google Scholar] [CrossRef]
- Boldyrev, V.V.; Alexandrov, V.V.; Boldyreva, A.V.; Gritsan, V.I.; Karpenko, Y.Y.; Korobeinitchev, O.P.; Panfilov, V.N.; Khairetdinov, E.F. On the mechanism of the thermal decomposition of ammonium perchlorate. Combust. Flame 1970, 15, 71–77. [Google Scholar] [CrossRef]
- Liu, Z.R. Thermal Analyses for Energetic Materials; National Defense Industry Press: Beijing, China, 2008. [Google Scholar]
Label | Product | Raw Material (mol) | ||
---|---|---|---|---|
Fe(NO3)3·9H2O | Cu(NO3)2·3H2O | Al | ||
F | Fe2O3 | 0.060 | 0 | 0 |
C | CuO | 0 | 0.060 | 0 |
CF | copper ferrite | 0.012 | 0.048 | 0 |
FA | Al/Fe2O3 MICs | 0.060 | 0 | 0.180 |
CA | Al/CuO MICs | 0 | 0.060 | 0.180 |
CFA | Al/copper ferrite MICs | 0.012 | 0.048 | 0.180 |
Samples | SBET/m2 g−1 | Vtot/cm3 g−1 | Dave/nm |
---|---|---|---|
C | 2.88 | 0.02 | 29.63 |
CA | 6.39 | 0.03 | 15.92 |
F | 87.92 | 0.39 | 17.07 |
FA | 178.21 | 0.32 | 6.26 |
CF | 80.43 | 0.26 | 11.77 |
CFA | 170.55 | 0.31 | 6.39 |
Samples | TP1 (°C) | TP (°C) |
---|---|---|
G0 | 268.9 | 270.4 |
GC | 223.2 | 227.5 |
GCA | 235.5 | 239.9 |
GF | 255.1 | 256.6 |
GFA | 252.2 | 254.4 |
GCF | 243.5 | 246.4 |
GCFA | 250.1 | 252.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang, C.; Luo, Y. Effect of Metastable Intermolecular Composites on the Thermal Decomposition of Glycidyl Azide Polymer Energetic Thermoplastic Elastomer. Polymers 2024, 16, 2107. https://doi.org/10.3390/polym16152107
Sang C, Luo Y. Effect of Metastable Intermolecular Composites on the Thermal Decomposition of Glycidyl Azide Polymer Energetic Thermoplastic Elastomer. Polymers. 2024; 16(15):2107. https://doi.org/10.3390/polym16152107
Chicago/Turabian StyleSang, Chao, and Yunjun Luo. 2024. "Effect of Metastable Intermolecular Composites on the Thermal Decomposition of Glycidyl Azide Polymer Energetic Thermoplastic Elastomer" Polymers 16, no. 15: 2107. https://doi.org/10.3390/polym16152107
APA StyleSang, C., & Luo, Y. (2024). Effect of Metastable Intermolecular Composites on the Thermal Decomposition of Glycidyl Azide Polymer Energetic Thermoplastic Elastomer. Polymers, 16(15), 2107. https://doi.org/10.3390/polym16152107