Molecular Dynamics Simulation of Hydrogen Barrier Performance of Modified Polyamide 6 Lining of IV Hydrogen Storage Tank with Graphene
Abstract
:1. Introduction
2. Model and Simulation Methods
2.1. Establishment of Modified Liner Models
2.2. Simulation Method
2.3. Model Reliability Verification
3. Theoretical Basis of Permeability
3.1. Adsorption Concentration
3.2. Diffusion Coefficient
3.3. Permeability Coefficient
3.4. Free Volume
4. Results and Discussion
4.1. Effect of Filler Ratio on Permeation Coefficient
4.2. Impact of Temperature Diffusion Coefficients
4.3. Effect of Pressure on Diffusion Coefficients
4.4. Analysis of H2 Diffusion Mechanism in Graphene/PA6 Composite Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, G.; Yang, F.; Liu, W.; Han, C.; Jiao, W.; Wang, P. Ultra-high gas barrier composites with aligned graphene flakes and polyethylene molecules for high-pressure gas storage tanks. J. Energy Storage 2021, 40, 102692. [Google Scholar] [CrossRef]
- Rivard, E.; Trudeau, M.; Zaghib, K. Hydrogen Storage for Mobility: A Review. Materials 2019, 12, 1973. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, A.; Kondo, M.; Goto, S.; Ogami, N. Development of High-Pressure Hydrogen Storage System for the Toyota “Mirai”. SAE Int. J. Engines 2018, 01, 1169. [Google Scholar]
- Jebeli, M.A.; Heidari-Rarani, M. Development of Abaqus WCM plugin for progressive failure analysis of type IV composite pressure vessels based on Puckfailure criterion. Eng. Fail. Anal. 2022, 131, 105851. [Google Scholar] [CrossRef]
- Guillon, D.; Espinassou, D.; Pichon, P.; Carrillo, J.J.R.; Landry, C.; Clainchard, D.; Juras, L.; Brault, R. Manufacturing, burst test and modeling of high pressure thermoplastic composite overwrap pressure vessel. Compos. Struct. 2023, 316, 116965. [Google Scholar] [CrossRef]
- Wang, X.L.; Tian, M.M.; Chen, X.D.; Xie, P.C.; Yang, J.N.; Chen, J.X.; Yang, W.M. Advances on materials design and manufacture technology of plastic liner of type Ⅳ hydrogen storage vessel. Int. J. Hydrogen Energy 2022, 47, 8382–8408. [Google Scholar] [CrossRef]
- Wang, D.L.; Liao, B.B.; Zheng, J.Y.; Huang, G.; Hua, Z.L.; Gu, C.H.; Xu, P. Development of regulations, codes and standards on composite tanks for on-board gaseous hydrogen storage. Int. J. Hydrogen Energy 2019, 44, 22643–22653. [Google Scholar] [CrossRef]
- Dong, C.F.; Liu, Y.T.; Li, J.P.; Bin, G.F.; Zhou, C.L.; Han, W.L.; Li, X. Hydrogen Permeability of Polyamide 6 Used as Liner Material for Type IV On-Board Hydrogen Storage Cylinders. Polymers 2023, 15, 3715. [Google Scholar] [CrossRef] [PubMed]
- Dao, D.Q.; Luche, J.; Rogaume, T.; Richard, F.; Bustamante-Valencia, L.; Ruban, S. Polyamide 6 and Polyurethane Used as Liner for Hydrogen Composite Cylinder: An Estimation of Fire Behaviours. Fire Technol. 2016, 52, 397–420. [Google Scholar]
- Sun, Y.; Lv, H.; Zhou, W.; Zhang, C.M. Research on hydrogen permeability of polyamide 6 as the liner material for type IV hydrogen storage tank. Int. J. Hydrogen Energy 2020, 45, 24980–24990. [Google Scholar] [CrossRef]
- Chen, M.; Hu, Z.; Jia, X.; Yang, Q.; Shen, A.; Xu, K. Research progress on key technologies of Type IV vehicle-mounted hydrogen storage vessel, Press. Vessel. Technol. 2022, 37, 39–50. [Google Scholar]
- Fang, Q.; Ji, D.M. Molecular simulation of hydrogen permeation behavior in liner polymer materials of Type IV hydrogen storage vessels. Mater. Today Commun. 2023, 35, 106302. [Google Scholar] [CrossRef]
- Maus, S.; Hapke, J.; Ranong, C.N.; Wuchner, E.; Friedlmeier, G.; Wenger, D. Filling procedure for vehicles with compressed hydrogen tanks. Int. J. Hydrogen Energy 2008, 33, 4612–4621. [Google Scholar] [CrossRef]
- Su, Y.; Lv, H.; Feng, C.; Zhang, C.M. Hydrogen permeability of polyamide 6 as the liner material of Type IV hydrogen storage tanks: A molecular dynamics investigation. Int. J. Hydrogen Energy 2024, 50, 1598–1606. [Google Scholar] [CrossRef]
- Dutta, R.C.; Bhatia, S.K. Transport Diffusion of Light Gases in Polyethylene Using Atomistic Simulations. Langmuir 2017, 23, 936–946. [Google Scholar] [CrossRef] [PubMed]
- Barth, R.R.; Simmons, K.L.; San Marchi, C. Polymers for Hydrogen Infrastructure and Vehicle Fuel Systems: Applications, Properties, and Gap Analysis; Pacific Northwest National Laboratory: Washington, DC, USA, 2013.
- Naito, Y.; Mizoguchi, K.; Terada, K.; Kamiya, Y. The effect of pressure on gas permeation through semicrystalline polymers above the glass-transition temperature. J. Polym. Sci. Polym. Phys. Ed. 1991, 29, 457–462. [Google Scholar] [CrossRef]
- Klopffer, M.H.; Flaconneche, B.; Odru, P. Transport properties of gas mixtures through polyethylene. Plast. Rubber Compos. 2007, 36, 184–189. [Google Scholar] [CrossRef]
- Liao, L.Q.; Fu, Y.Z.; Liang, X.Y.; Mei, L.Y.; Liu, Y.Q. Diffusion of CO2 Molecules in Polyethylene Terephthalate/Polylactide Blends Estimated by Molecular Dynamics Simulations. Bull. Korean Chem. Soc. 2013, 34, 753–758. [Google Scholar] [CrossRef]
- Zhao, J.W.; Wang, X.W.; Yang, Q.Q.; Yin, H.; Zhang, B.; Zhang, S.J. Molecular dynamics simulation of H2 in amorphous polyethylene system: H2 diffusion in various PE matrices and bubbling during rapid. Int. J. Hydrogen Energy 2022, 47, 39572–39585. [Google Scholar] [CrossRef]
- Takeuchi, K.; Kuo, A.T.; Hirai, T.; Miyajima, T.; Urata, S.; Okazaki, S.; Shinoda, W. Hydrogen permeation in hydrated perfluorosulfonic acid polymer membranes: Effect of polymer crystallinity and equivalent weight. J. Phys. Chem. C 2019, 123, 20628–20638. [Google Scholar] [CrossRef]
- Kane, M. Permeability, Solubility, and Interaction of Hydrogen in Polymers—An Assessment of Materials for Hydrogen Transport. Eng. Mater. Sci. 2008. [Google Scholar]
- Yi, Y.; Bi, P.; Zhao, X.F.; Wang, L.L. Molecular dynamics simulation of diffusion of hydrogen and its isotopic molecule in polystyrene. J. Polym. Res. 2018, 25, 43. [Google Scholar] [CrossRef]
- Alirezaie, A.H.H.; Navarchian, A.H.; Sabzyan, H. Molecular Dynamics Simulation of Gas Diffusion in Polyethylene-Clay Nanocomposites with Different Silicate Layers Configurations. Polym. Sci. Ser. A 2016, 58, 487–498. [Google Scholar] [CrossRef]
- Gao, J.G.; Sun, W.F. Molecular dynamics simulation study of parallel orientation structure and gas transport in graphite-nanoplatelet/polyethylene composites. Mater. Today Commun. 2017, 13, 54–67. [Google Scholar] [CrossRef]
- Yang, Q.; Achenie, L.E.K. Exploration of gas molecules transport in composite poly (4-methyl-2-pentyne) and carbon nanotubes employing molecular dynamics simulation. Comp. Mater. Sci. 2018, 143, 87–94. [Google Scholar] [CrossRef]
- Cui, Y.B.; Kundalwal, S.I.; Kumar, S. Gas barrier performance of graphene/polymer nanocomposites. Carbon 2016, 98, 313–333. [Google Scholar] [CrossRef]
- Muraru, S.; Ionita, M. A Molecular Dynamics Study of Small Gas Molecules Diffusion Through Composite Polysulfone/Carbon Nanotube and Polysulfone/Graphene Membranes. Mater. Plast. 2020, 57, 87–93. [Google Scholar] [CrossRef]
- Einstein, A. Über die von der molekularkinetischen The der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teichen [AdP 17, 549 (1905)]. Ann. Phys. 1905, 14, 182–193. [Google Scholar]
- Mozaffari, F.; Eslami, H.; Moghadasi, J. Molecular dynamics simulation of diffusion and permeation of gases in polystyrene. Polymer 2010, 51, 300–307. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, J.M.; Yang, Z.H.; Zhao, J.P. Molecular Dynamics Simulation of Helium Barrier Performance of Modified Polyamide 6 Lining of IV Hydrogen Storage Tank with Montmorillonite. Molecules 2023, 28, 3333. [Google Scholar] [CrossRef]
- Zhang, X.M.; Zhai, L.Z.; Li, H.B.; Qi, G.Q.; Gao, X.; Yang, W.H. Molecular Simulation Study on the Hydrogen Permeation Behavior and Mechanism of Common Polymers. Polymers 2024, 16, 953. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.H.; Gao, W.; Zhang, L.S.; Wang, Y.Z.; Feng, H.J. Transformation of Diffusion and Local Structure of CH4, CO2, SO2 and H2O Mixtures in Graphene Under Wide Temperature and Pressure Range: A Molecular Dynamics Simulation Study. Chemphyschem 2024, 25, e202300851. [Google Scholar] [CrossRef] [PubMed]
- Stalker, M.R.; Grant, J.; Yong, C.W.; Ohene-Yeboah, L.A.; Mays, T.J. Molecular simulation of hydrogen storage and transport in cellulose. Mol. Simul. 2021, 47, 170–179. [Google Scholar] [CrossRef]
- Sun, H. COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Chem. Phys. 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
- Lippert, R.A.; Predescu, C.; Ierardi, D.J. Accurate and efficient integration for molecular dynamics simulations at constant temperature and pressure. J. Chem. Phys. 2013, 139, 164106. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 1980, 72, 2384–2393. [Google Scholar] [CrossRef]
- Chen, L.J.; Qian, H.J.; Lu, Z.Y. An automatic coarse-graining and fine-graining simulation method: Application on polyethylene. J. Phys. Chem. B 2006, 110, 24093–24100. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Karasawa, N.; Goddard, W.A.G. Atomic level simulations on a million particles: The cell multipole method for Coulomb and London nonbond interactions. J. Chem. Phys. 1992, 97, 4309–4315. [Google Scholar] [CrossRef]
- Khosravanian, A.; Dehghani, M.; Pazirofteh, M. Grand canonical Monte Carlo and moleculardynamics simulations of the structural properties, diffusion and adsorption of hydrogen moleculesthrough poly(benzimidazoles)/nanoparticle oxidescomposites. Int. J. Engines 2018, 43, 2803–2816. [Google Scholar]
- Bian, L.; Shu, Y.; Xu, J.; Wang, L. Molecular dynamics study on permeability of gas molecules through amorphous PPX polymers. Int. Polym. Proc. 2013, 28, 24–33. [Google Scholar] [CrossRef]
- Theodorou, D.N.; Suter, U.W. Atomistic modeling of mechanical properties of polymeric glasses. Macromolecules 1986, 19, 139–154. [Google Scholar] [CrossRef]
- GB/T 42612-2023; Fully-Wrapped Carbon Fiber Reinforced Cylinders with a Plastic Liner for the On-Board Storage of Compressed Hydrogen as a Fuel for Land Vehicles. China Gas Cylinder Standardization Technical Committee (TC31SC8): Beijing, China, 2023.
- Klopffer, M.H.; Flaconneche, B. Transport properties of gases in polymers: Bibliographic review, Oil. Gas. Sci. Technol. 2001, 56, 223–244. [Google Scholar] [CrossRef]
- Li, Y.S.; Hu, H.R.; Xia, Y.; Li, G.Z.; Liu, Q.D. Molecular dynamics simulation of the microscopic properties of nano-MgO-doped polyethylene. J. At. Mol. Phys. 2020, 39, 52–60. [Google Scholar]
- Xie, Z.; Liu, G.S.; Zhao, C.H.; Li, M.; Gan, C. Molecular simulation of water diffusion behavior in cellulose. Build. Energy Environ. 2020, 39, 18–24. [Google Scholar]
- Zheng, D.K.; Li, J.F.; Liu, B.; Yu, B.; Yang, Y.F.; Han, D.X.; Li, J.L.; Huang, Z.Q. Molecular dynamics investigations into the hydrogen permeation mechanism of polyethylene pipeline material. J. Mol. Liq. 2022, 368, 120773. [Google Scholar] [CrossRef]
- Hu, H.; Li, X.; Fang, Z.; Wei, N.; Li, Q. Small-molecule gas sorption and diffusion in coal: Molecular simulation. Energy 2010, 35, 2939–2944. [Google Scholar] [CrossRef]
- Yu, S.; Fangkai, Q.; Junhong, Y. Diffusion of guest molecules in coal: Insights from simulation. Fuel 2022, 323, 124295. [Google Scholar] [CrossRef]
- Fujiwara, H.; Ono, H.; Ohyama, K.; Kasai, M.; Kaneko, F.; Nishimura, S. Hydrogen permeation under high pressure conditions and the destruction of exposed polyethylene-property of polymeric materials for high-pressure hydrogen devices (2)-. Int. J. Hydrogen Energy 2021, 46, 11832–11848. [Google Scholar] [CrossRef]
- Stern, S.; Fang, S.M.; Frisch, H. Effect of pressure on gas permeability coefficients. A new application of“ free volume” theory. J. Polym. Sci. Part A-2 Polym. Phys. 1972, 10, 201–219. [Google Scholar] [CrossRef]
- Fumitoshi, K.; Hirotada, F.; Shin, N. Influence of high-pressure hydrogen gas on crystalline polymers. In Proceedings of the 33rd Polymer Degradation Discussion Group Conference (PDDG), St Julians, Malta, 1–5 September 2019. [Google Scholar]
- Fox, T.G.; Flory, P.J. Second-Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight. J. Appl. Phys. 1950, 21, 581–591. [Google Scholar] [CrossRef]
Material System | Solubility (cm3·cm−3·Pa−1) | Diffusion Coefficient (cm2/s) | Permeation Coefficient (cm3·cm/(cm2·s·Pa)) |
---|---|---|---|
PA6 | 1.32 × 10−6 | 1.785 × 10−6 | 2.356 × 10−12 |
3%graphene/PA6 | 3.33 × 10−7 | 9.34 × 10−7 | 3.11 × 10−13 |
4%graphene/PA6 | 3.22 × 10−7 | 9.19 × 10−7 | 2.95 × 10−13 |
5%graphene/PA6 | 3.02 × 10−7 | 8.09 × 10−7 | 2.44 × 10−13 |
6%graphene/PA6 | 3.02 × 10−7 | 8.56 × 10−7 | 2.58 × 10−13 |
7%graphene/PA6 | 3.28 × 10−7 | 8.99 × 10−7 | 2.95 × 10−13 |
Material System | PA6 | 3 wt% | 4 wt% | 5 wt% | 6 wt% | 7 wt% |
---|---|---|---|---|---|---|
233 K | 3.14 × 10−7 | 2.89 × 10−7 | 1.97 × 10−7 | 3.05 × 10−7 | 3.33 × 10−7 | 3.35 × 10−7 |
298 K | 7.35 × 10−7 | 6.9 × 10−7 | 6.09 × 10−7 | 5.28 × 10−7 | 6.32 × 10−7 | 7.10 × 10−7 |
358 K | 2.28 × 10−6 | 1.02 × 10−6 | 1.08 × 10−6 | 1.26 × 10−6 | 1.36 × 10−6 | 1.34 × 10−6 |
PA6 | 3 wt% | 4 wt% | 5 wt% | 6 wt% | 7 wt% | |
---|---|---|---|---|---|---|
0.1 MPa | 2.35 × 10−12 | 3.11 × 10−13 | 2.74 × 10−13 | 2.44 × 10−13 | 2.58 × 10−13 | 2.95 × 10−13 |
35 MPa | 1.44 × 10−12 | 2.54 × 10−13 | 2.15 × 10−13 | 2.34 × 10−13 | 2.41 × 10−13 | 2.88 × 10−13 |
52.5 MPa | 1.39 × 10−12 | 2.56 × 10−13 | 2.00 × 10−13 | 2.05 × 10−13 | 2.15 × 10−13 | 2.42 × 10−13 |
70 MPa | 9.70 × 10−13 | 2.29 × 10−13 | 1.96 × 10−13 | 2.04 × 10−13 | 1.90 × 10−13 | 2.33 × 10−13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhao, X.; Liang, J.; Zhao, C.; Feng, N.; Guo, G.; Zhou, Z. Molecular Dynamics Simulation of Hydrogen Barrier Performance of Modified Polyamide 6 Lining of IV Hydrogen Storage Tank with Graphene. Polymers 2024, 16, 2185. https://doi.org/10.3390/polym16152185
Li J, Zhao X, Liang J, Zhao C, Feng N, Guo G, Zhou Z. Molecular Dynamics Simulation of Hydrogen Barrier Performance of Modified Polyamide 6 Lining of IV Hydrogen Storage Tank with Graphene. Polymers. 2024; 16(15):2185. https://doi.org/10.3390/polym16152185
Chicago/Turabian StyleLi, Jin, Xiaokou Zhao, Jianguo Liang, Chunjiang Zhao, Ning Feng, Guanyu Guo, and Zhengze Zhou. 2024. "Molecular Dynamics Simulation of Hydrogen Barrier Performance of Modified Polyamide 6 Lining of IV Hydrogen Storage Tank with Graphene" Polymers 16, no. 15: 2185. https://doi.org/10.3390/polym16152185
APA StyleLi, J., Zhao, X., Liang, J., Zhao, C., Feng, N., Guo, G., & Zhou, Z. (2024). Molecular Dynamics Simulation of Hydrogen Barrier Performance of Modified Polyamide 6 Lining of IV Hydrogen Storage Tank with Graphene. Polymers, 16(15), 2185. https://doi.org/10.3390/polym16152185