Polycaprolactone—Vitamin E TPGS Micellar Formulation for Oral Delivery of Paclitaxel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Synthesis of PCL-TPGS Copolymer
2.2.2. Preparation of PTX Micelles
2.2.3. In Vitro Release of PTX from Micelles in Simulated Gastric Fluid (SGF) and Simulated Intestinal Fluid (SIF)
2.2.4. Stability of PTX Micelles in SGF and SIF
2.2.5. In Vitro Cellular Uptake Study
2.2.6. Ex Vivo Intestinal Permeability Study in Rats
2.2.7. Pharmacokinetics and Tissue Distribution Study in Rats
2.2.8. Determination of PTX Levels in Plasma and Tissues
2.2.9. Data and Statistical Analysis
3. Results
3.1. Characteristics of PCL-TPGS Copolymers and PTX Micelles
3.2. In Vitro Release Profile of PTX Micelles in SGF and SIF
3.3. In Vitro Stability of PTX Micelles in SGF and SIF
3.4. In Vitro Caco-2 Cellular Uptake
3.5. Ex Vivo Intestinal Permeability of PTX Micelles
3.6. Pharmacokinetics and Tissue Distribution of PTX Micelles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piccart-Gebhart, M.J.; Burzykowski, T.; Buyse, M.; Sledge, G.; Carmichael, J.; Lück, H.-J.; Mackey, J.R.; Nabholtz, J.-M.; Paridaens, R.; Biganzoli, L.; et al. Taxanes Alone or in Combination With Anthracyclines As First-Line Therapy of Patients With Metastatic Breast Cancer. J. Clin. Oncol. 2008, 26, 1980–1986. [Google Scholar] [CrossRef] [PubMed]
- Sparano, J.A.; Wang, M.; Martino, S.; Jones, V.; Perez, E.A.; Saphner, T.; Wolff, A.C.; Sledge, G.W.; Wood, W.C.; Davidson, N.E. Weekly Paclitaxel in the Adjuvant Treatment of Breast Cancer. N. Engl. J. Med. 2008, 358, 1663–1671. [Google Scholar] [CrossRef] [PubMed]
- Homesley, H.D.; Filiaci, V.; Markman, M.; Bitterman, P.; Eaton, L.; Kilgore, L.C.; Monk, B.J.; Ueland, F.R. Phase III Trial of Ifosfamide With or Without Paclitaxel in Advanced Uterine Carcinosarcoma: A Gynecologic Oncology Group Study. J. Clin. Oncol. 2007, 25, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.S.; Tulpule, A.; Espina, B.M.; Cabriales, S.; Bresnahan, J.; Ilaw, M.; Louie, S.; Gustafson, N.F.; Brown, M.A.; Orcutt, C.; et al. Paclitaxel Is Safe and Effective in the Treatment of Advanced AIDS-Related Kaposi’s Sarcoma. J. Clin. Oncol. 1999, 17, 1876. [Google Scholar] [CrossRef]
- Kumar, S.; Mahdi, H.; Bryant, C.; Shah, J.P.; Garg, G.; Munkarah, A. Clinical Trials and Progress with Paclitaxel in Ovarian Cancer. Int. J. Women’s Health 2010, 2, 411–427. [Google Scholar] [CrossRef] [PubMed]
- Hoskins, P.J.; Swenerton, K.D.; Pike, J.A.; Wong, F.; Lim, P.; Acquino-Parsons, C.; Lee, N. Paclitaxel and Carboplatin, Alone or With Irradiation, in Advanced or Recurrent Endometrial Cancer: A Phase II Study. J. Clin. Oncol. 2001, 19, 4048–4053. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Bálint, B.; De Boer, R.H.; Van Meerbeeck, J.P.; Wierzbicki, R.; De Souza, P.; Galimi, F.; Haddad, V.; Sabin, T.; Hei, Y.; et al. A Randomized Phase 2 Study of Paclitaxel and Carboplatin with or without Conatumumab for First-Line Treatment of Advanced Non–Small-Cell Lung Cancer. J. Thorac. Oncol. 2013, 8, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Mullick, P.; Nandakumar, K.; Mutalik, S.; Rao, C.M. Box–Behnken Design-Based Development and Validation of a Reverse-Phase HPLC Analytical Method for the Estimation of Paclitaxel in Cationic Liposomes. Chromatographia 2022, 85, 629–642. [Google Scholar] [CrossRef]
- Sofias, A.M.; Dunne, M.; Storm, G.; Allen, C. The Battle of “Nano” Paclitaxel. Adv. Drug Deliv. Rev. 2017, 122, 20–30. [Google Scholar] [CrossRef]
- Meerum Terwogt, J.M.; Malingré, M.M.; Beijnen, J.H.; ten Bokkel Huinink, W.W.; Rosing, H.; Koopman, F.J.; van Tellingen, O.; Swart, M.; Schellens, J.H. Coadministration of Oral Cyclosporin A Enables Oral Therapy with Paclitaxel. Clin. Cancer Res. 1999, 5, 3379–3384. [Google Scholar]
- Sparreboom, A.; Van Asperen, J.; Mayer, U.; Schinkel, A.H.; Smit, J.W.; Meijer, D.K.F.; Borst, P.; Nooijen, W.J.; Beijnen, J.H.; Van Tellingen, O. Limited Oral Bioavailability and Active Epithelial Excretion of Paclitaxel (Taxol) Caused by P-Glycoprotein in the Intestine. Proc. Natl. Acad. Sci. USA 1997, 94, 2031–2035. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Chen, J.-S.; Liau, C.-T.; Wang, H.-M.; Lin, Y.-C.; Yang, M.-H.; Chen, P.-M.; Gardner, E.R.; Figg, W.D.; Sparreboom, A. Oral Bioavailability of a Novel Paclitaxel Formulation (Genetaxyl) Administered with Cyclosporin A in Cancer Patients. Anti-Cancer Drugs 2008, 19, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Veltkamp, S.A.; Rosing, H.; Huitema, A.D.R.; Fetell, M.R.; Nol, A.; Beijnen, J.H.; Schellens, J.H.M. Novel Paclitaxel Formulations for Oral Application: A Phase I Pharmacokinetic Study in Patients with Solid Tumours. Cancer Chemother. Pharmacol. 2007, 60, 635–642. [Google Scholar] [CrossRef]
- Helgason, H.H.; Kruijtzer, C.M.F.; Huitema, A.D.R.; Marcus, S.G.; Ten Bokkel Huinink, W.W.; Schot, M.E.; Schornagel, J.H.; Beijnen, J.H.; Schellens, J.H.M. Phase II and Pharmacological Study of Oral Paclitaxel (Paxoral) plus Ciclosporin in Anthracycline-Pretreated Metastatic Breast Cancer. Br. J. Cancer 2006, 95, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Kruijtzer, C.M.F.; Schellens, J.H.M.; Mezger, J.; Scheulen, M.E.; Keilholz, U.; Beijnen, J.H.; Rosing, H.; Mathôt, R.A.A.; Marcus, S.; Van Tinteren, H.; et al. Phase II and Pharmacologic Study of Weekly Oral Paclitaxel Plus Cyclosporine in Patients With Advanced Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2002, 20, 4508–4516. [Google Scholar] [CrossRef] [PubMed]
- Malingré, M.M.; Terwogt, J.M.M.; Beijnen, J.H.; Rosing, H.; Koopman, F.J.; Van Tellingen, O.; Duchin, K.; Huinink, W.W.T.B.; Swart, M.; Lieverst, J.; et al. Phase I and Pharmacokinetic Study of Oral Paclitaxel. J. Clin. Oncol. 2000, 18, 2468–2475. [Google Scholar] [CrossRef] [PubMed]
- Binkhathlan, Z.; Lavasanifar, A. P-Glycoprotein Inhibition as a Therapeutic Approach for Overcoming Multidrug Resistance in Cancer: Current Status and Future Perspectives. Curr. Cancer Drug Targets 2013, 13, 326–346. [Google Scholar] [CrossRef] [PubMed]
- Varma, M.V.S.; Panchagnula, R. Enhanced Oral Paclitaxel Absorption with Vitamin E-TPGS: Effect on Solubility and Permeability in Vitro, in Situ and in Vivo. Eur. J. Pharm. Sci. 2005, 25, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, O.; Ali, R.; Alomrani, A.H.; Alshamsan, A.; Alshememry, A.K.; Almalik, A.M.; Lavasanifar, A.; Binkhathlan, Z. Design and Development of D–α–Tocopheryl Polyethylene Glycol Succinate–block–Poly(ε-Caprolactone) (TPGS−b−PCL) Nanocarriers for Solubilization and Controlled Release of Paclitaxel. Molecules 2021, 26, 2690. [Google Scholar] [CrossRef]
- Bilensoy, E.; Gürkaynak, O.; Ertan, M.; Şen, M.; Hıncal, A.A. Development of Nonsurfactant Cyclodextrin Nanoparticles Loaded With Anticancer Drug Paclitaxel. J. Pharm. Sci. 2008, 97, 1519–1529. [Google Scholar] [CrossRef]
- Guo, S.; Pham, K.; Li, D.; Penzak, S.; Dong, X. Novel in Situ Self-Assembly Nanoparticles for Formulating a Poorly Water-Soluble Drug in Oral Solid Granules, Improving Stability, Palatability, and Bioavailability. Int. J. Nanomed. 2016, 11, 1451. [Google Scholar] [CrossRef]
- Moore, J.W.; Flanner, H.H. Mathematical Comparison of Dissolution Profiles. Pharm. Technol. 1996, 20, 64–74. [Google Scholar]
- Costa, P.; Sousa Lobo, J.M. Modeling and Comparison of Dissolution Profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Jhala, D.; Rather, H.; Kedaria, D.; Shah, J.; Singh, S.; Vasita, R. Biomimetic Polycaprolactone-Chitosan Nanofibrous Substrate Influenced Cell Cycle and ECM Secretion Affect Cellular Uptake of Nanoclusters. Bioact. Mater. 2019, 4, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, W.; Al-Omrani, A.; Yassin, A.E. Novel Sulpiride-Loaded Solid Lipid Nanoparticles with Enhanced Intestinal Permeability. Int. J. Nanomed. 2013, 9, 129. [Google Scholar] [CrossRef]
- Mateer, S.W.; Cardona, J.; Marks, E.; Goggin, B.J.; Hua, S.; Keely, S. Ex Vivo Intestinal Sacs to Assess Mucosal Permeability in Models of Gastrointestinal Disease. J. Vis. Exp. 2016, 108, 53250. [Google Scholar] [CrossRef]
- Sánchez, A.B.; Calpena, A.C.; Mallandrich, M.; Clares, B. Validation of an Ex Vivo Permeation Method for the Intestinal Permeability of Different BCS Drugs and Its Correlation with Caco-2 In Vitro Experiments. Pharmaceutics 2019, 11, 638. [Google Scholar] [CrossRef] [PubMed]
- Narade, S.; Pore, Y. Optimization of Ex Vivo Permeability Characteristics of Berberine in Presence of Quercetin Using 32 Full Factorial Design. J. App Pharm. Sci. 2019, 9, 73–82. [Google Scholar] [CrossRef]
- Binkhathlan, Z.; Yusuf, O.; Ali, R.; Alomrani, A.H.; Alshamsan, A.; Alshememry, A.K.; Almomen, A.; Alkholief, M.; Aljuffali, I.A.; Alqahtani, F.; et al. Polycaprolactone—Vitamin E TPGS Micelles for Delivery of Paclitaxel: In Vitro and in Vivo Evaluation. Int. J. Pharm. X 2024, 7, 100253. [Google Scholar] [CrossRef]
- Aisner, J. Overview of the Changing Paradigm in Cancer Treatment: Oral Chemotherapy. Am. J. Health-Syst. Pharm. 2007, 64, S4–S7. [Google Scholar] [CrossRef]
- Weingart, S.N.; Brown, E.; Bach, P.B.; Eng, K.; Johnson, S.A.; Kuzel, T.M.; Langbaum, T.S.; Leedy, R.D.; Muller, R.J.; Newcomer, L.N.; et al. NCCN Task Force Report: Oral Chemotherapy. J. Natl. Compr. Canc Netw. 2008, 6 (Suppl. S3), S1–S14. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Franssen, E.; Fitch, M.I.; Warner, E. Patient Preferences for Oral versus Intravenous Palliative Chemotherapy. J. Clin. Oncol. 1997, 15, 110–115. [Google Scholar] [CrossRef]
- Schoener, C.A.; Peppas, N.A. Oral Delivery of Chemotherapeutic Agents: Background and Potential of Drug Delivery Systems for Colon Delivery. J. Drug Deliv. Sci. Technol. 2012, 22, 459–468. [Google Scholar] [CrossRef]
- Stuurman, F.E.; Nuijen, B.; Beijnen, J.H.; Schellens, J.H.M. Oral Anticancer Drugs: Mechanisms of Low Bioavailability and Strategies for Improvement. Clin. Pharmacokinet. 2013, 52, 399–414. [Google Scholar] [CrossRef] [PubMed]
- Eisenmann, E.D.; Talebi, Z.; Sparreboom, A.; Baker, S.D. Boosting the Oral Bioavailability of Anticancer Drugs through Intentional Drug–Drug Interactions. Basic. Clin. Pharma Tox 2022, 130, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Benet, L.Z. The Gut as a Barrier to Drug Absorption: Combined Role of Cytochrome P450 3A and P-Glycoprotein. Clin. Pharmacokinet. 2001, 40, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Collnot, E.-M.; Baldes, C.; Schaefer, U.F.; Edgar, K.J.; Wempe, M.F.; Lehr, C.-M. Vitamin E TPGS P-Glycoprotein Inhibition Mechanism: Influence on Conformational Flexibility, Intracellular ATP Levels, and Role of Time and Site of Access. Mol. Pharm. 2010, 7, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Collnot, E.-M.; Baldes, C.; Wempe, M.F.; Hyatt, J.; Navarro, L.; Edgar, K.J.; Schaefer, U.F.; Lehr, C.-M. Influence of Vitamin E TPGS Poly(Ethylene Glycol) Chain Length on Apical Efflux Transporters in Caco-2 Cell Monolayers. J. Control. Release 2006, 111, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Collnot, E.-M.; Baldes, C.; Wempe, M.F.; Kappl, R.; Hüttermann, J.; Hyatt, J.A.; Edgar, K.J.; Schaefer, U.F.; Lehr, C.-M. Mechanism of Inhibition of P-Glycoprotein Mediated Efflux by Vitamin E TPGS: Influence on ATPase Activity and Membrane Fluidity. Mol. Pharm. 2007, 4, 465–474. [Google Scholar] [CrossRef]
- Tavares Luiz, M.; Delello Di Filippo, L.; Carolina Alves, R.; Sousa Araújo, V.H.; Lobato Duarte, J.; Maldonado Marchetti, J.; Chorilli, M. The Use of TPGS in Drug Delivery Systems to Overcome Biological Barriers. Eur. Polym. J. 2021, 142, 110129. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, S. Self-Assembled Nanoparticles of Poly(Lactide)–Vitamin E TPGS Copolymers for Oral Chemotherapy. Int. J. Pharm. 2006, 324, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Bernabeu, E.; Gonzalez, L.; Legaspi, M.J.; Moretton, M.A.; Chiappetta, D.A. Paclitaxel-Loaded TPGS-b-PCL Nanoparticles: In Vitro Cytotoxicity and Cellular Uptake in MCF-7 and MDA-MB-231 Cells versus mPEG-b-PCL Nanoparticles and Abraxane ®. J. Nanosci. Nanotechnol. 2016, 16, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, X.; Xiong, H.; Xu, C.; Yao, J.; Zhu, X.; Zhou, J.; Yao, J. Mechanisms of TPGS and Its Derivatives Inhibiting P-Glycoprotein Efflux Pump and Application for Reversing Multidrug Resistance in Hepatocellular Carcinoma. Polym. Chem. 2018, 9, 1827–1839. [Google Scholar] [CrossRef]
- Karnik, R.; Gu, F.; Basto, P.; Cannizzaro, C.; Dean, L.; Kyei-Manu, W.; Langer, R.; Farokhzad, O.C. Microfluidic Platform for Controlled Synthesis of Polymeric Nanoparticles. Nano Lett. 2008, 8, 2906–2912. [Google Scholar] [CrossRef] [PubMed]
- Capretto, L.; Mazzitelli, S.; Brognara, E.; Lampronti, I.; Carugo, D.; Hill, M.; Zhang, X.; Gambari, R. Gambari Mithramycin Encapsulated in Polymeric Micelles by Microfluidic Technology as Novel Therapeutic Protocol for Beta-Thalassemia. Int. J. Nanomed. 2012, 7, 307–324. [Google Scholar] [CrossRef]
- Ahmadi, M.; Siavashy, S.; Ayyoubzadeh, S.M.; Kecili, R.; Ghorbani-Bidkorbeh, F. Controllable Synthesis of Polymeric Micelles by Microfluidic Platforms for Biomedical Applications: A Systematic Review. Iran. J. Pharm. Res. 2021, 20, 229. [Google Scholar] [CrossRef]
Block Copolymer | Mn (g/mol) a | Size (nm) b | PI c | Encapsulation Efficiency ± SD (%) d |
---|---|---|---|---|
PCL7000-TPGS3500 | 10,400 | 67.73 ± 0.46 | 0.293 ± 0.055 | 92.75 ± 2.25 |
Formulation | Papp × 10−5 (cm/min) | Flux (J) (ng/cm2·min) |
---|---|---|
PTX micelles (non-everted) | 1.16 ± 0.35 | 2.4 ± 0.6 |
PTX micelles (everted) | 2.34 ± 0.63 | 4.7 ± 1.2 |
Ebetaxel (non-everted) | 1.94 ± 0.47 | 3.9 ± 0.7 |
Ebetaxel (everted) | 2.43 ± 1.36 | 4.8 ± 2.7 |
Parameter | Ebetaxel® | PTX-Loaded Micelles |
---|---|---|
AUC0-tlast (ng·h/mL) | 303.95 ± 36.34 | 249.94 ± 105.86 |
AUC0-∞ (ng·h/mL) | 375.87 ± 93.72 | 317.03 ± 173.12 |
t1/2 (h) | 4.71 ± 1.93 | 3.12 ± 1.47 |
CL/F (L/kg/h) | 28.40 ± 7.25 | 39.23 ± 14.64 |
Cmax (ng/mL) | 59.60 ± 8.17 | 96.62 ± 33.74 |
Tmax (h) a | 2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binkhathlan, Z.; Ali, R.; Yusuf, O.; Alomrani, A.H.; Badran, M.M.; Alshememry, A.K.; Alshamsan, A.; Alqahtani, F.; Qamar, W.; Attwa, M.W. Polycaprolactone—Vitamin E TPGS Micellar Formulation for Oral Delivery of Paclitaxel. Polymers 2024, 16, 2232. https://doi.org/10.3390/polym16152232
Binkhathlan Z, Ali R, Yusuf O, Alomrani AH, Badran MM, Alshememry AK, Alshamsan A, Alqahtani F, Qamar W, Attwa MW. Polycaprolactone—Vitamin E TPGS Micellar Formulation for Oral Delivery of Paclitaxel. Polymers. 2024; 16(15):2232. https://doi.org/10.3390/polym16152232
Chicago/Turabian StyleBinkhathlan, Ziyad, Raisuddin Ali, Osman Yusuf, Abdullah H. Alomrani, Mohamed M. Badran, Abdullah K. Alshememry, Aws Alshamsan, Faleh Alqahtani, Wajhul Qamar, and Mohamed W. Attwa. 2024. "Polycaprolactone—Vitamin E TPGS Micellar Formulation for Oral Delivery of Paclitaxel" Polymers 16, no. 15: 2232. https://doi.org/10.3390/polym16152232
APA StyleBinkhathlan, Z., Ali, R., Yusuf, O., Alomrani, A. H., Badran, M. M., Alshememry, A. K., Alshamsan, A., Alqahtani, F., Qamar, W., & Attwa, M. W. (2024). Polycaprolactone—Vitamin E TPGS Micellar Formulation for Oral Delivery of Paclitaxel. Polymers, 16(15), 2232. https://doi.org/10.3390/polym16152232