A QbD-Navigated Approach to the Development and Evaluation of Etodolac–Phospholipid Complex Containing Polymeric Films for Improved Anti-Inflammatory Effect
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Molecular Docking Studies
2.2.2. Preparation of Etodolac–Phospholipid Complex (ETO–PLC)
2.2.3. Determination of Optimum Stoichiometric Ratio for Complex Formation
2.2.4. Characterization of the Complex
Estimation of Gibbs Free Energy
Percentage Yield (% Yield)
2.2.5. Fourier Transform Infrared Spectroscopy (FTIR) Studies
2.2.6. X-ray Diffraction Studies (XRD)
2.2.7. Differential Scanning Calorimetry (DSC)
2.2.8. Scanning Electron Microscopy (SEM) Studies
2.2.9. 1H-NMR Studies
2.2.10. Mathematical Modelling and Optimization of Blank Films Using the QbD Approach
Identifying the Quality Target Product Profile (QTPP)
Determination of Critical Quality Attributes (CQAs)
Risk Assessment
Experimental Design
2.2.11. Preparation of Transdermal Films
2.2.12. Evaluation and Characterization of Transdermal Film
Thickness
Weight Variation
Folding Endurance
Surface pH Determination
Swelling Index (SI)
Tensile Strength (TS)
Contact Angle (CA)
Determination of Water Vapor Transmission Rate (WVTR)
2.2.13. Selection of Optimized Film Using Point Prediction Method
2.2.14. In Vitro Diffusion Studies
2.2.15. Ex Vivo Permeation Studies
2.2.16. In Vivo Animal Studies/Paw Edema Method
2.2.17. Statistical Analysis
3. Results and Discussion
3.1. Molecular Docking Studies
3.2. Job Plot, Solubility, and Gibb’s Free Energy
3.3. Percentage Yield
3.4. FTIR Studies
3.5. XRD Studies
3.6. DSC Studies
3.7. SEM Studies
3.8. 1H NMR Studies
3.9. QbD Approach
3.9.1. Risk Analysis
3.9.2. Central Composite Design
3.9.3. Model Validation
3.10. In Vitro Drug Diffusion Studies
3.11. Permeation Studies
3.12. In Vivo Anti-Inflammatory Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO, Osteoarthritis. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/osteoarthritis (accessed on 12 December 2023).
- Asthana, G.S.; Asthana, A.; Singh, D.; Sharma, P.K. Etodolac containing topical niosomal gel: Formulation development and evaluation. J. Drug. Deliv. 2016, 9324567. [Google Scholar] [CrossRef]
- Karakucuk, A.; Tort, S.; Han, S.; Oktay, A.N.; Celebi, N. Etodolac nanosuspension based gel for enhanced dermal delivery: In vitro and in vivo evaluation. J. Microencap. 2021, 38, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Salah, S.; Mahmoud, A.A.; Kamel, A.O. Etodolac transdermal cubosomes for the treatment of rheumatoid arthritis: Ex vivo permeation and in vivo pharmacokinetic studies. Drug Deliv. 2017, 24, 846–856. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Naz, A.; Jabeen, N.; Ali, J. 3D Graphene for Flexible Sensors. In 3D Graphene. Carbon Nanostructures; Gupta, R.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 131–149. [Google Scholar] [CrossRef]
- Hussain, A.; Jabeen, N.; Tabassum, A.; Ali, J. 3D-Printed Conducting Polymers for Solid Oxide Fuel Cells. In 3D Printed Conducting Polymers; CRC Press: Boca Raton, FL, USA, 2024; pp. 179–195. [Google Scholar]
- Dora, C.P.; Kushwah, V.; Katiyar, S.S.; Kumar, P.; Pillay, V.; Suresh, S.; Jain, S. Improved oral bioavailability and therapeutic efficacy of erlotinib through molecular complexation with phospholipid. Int. J. Pharm. 2017, 534, 1–13. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Soares, G.A.B.E.; Chopra, H.; Rahman, M.M.; Hasan, Z.; Swain, S.S.; Cavalu, S. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Material 2022, 15, 804. [Google Scholar] [CrossRef]
- Beg, S.; Dhiman, S.; Sharma, T.; Jain, A.; Sharma, R.K.; Jain, A.; Singh, B. Stimuli responsive in situ gelling systems loaded with PLGA nanoparticles of moxifloxacin hydrochloride for effective treatment of periodontitis. AAPS Pharm. SciTech. 2020, 21, 76. [Google Scholar] [CrossRef]
- Khurana, R.K.; Bansal, A.K.; Beg, S.; Burrow, A.J.; Katare, O.P.; Singh, K.K.; Singh, B. Enhancing biopharmaceutical attributes of phospholipid complex-loaded nanostructured lipidic carriers of mangiferin: Systematic development, characterization and evaluation. Int. J. Pharm. 2017, 518, 289–306. [Google Scholar] [CrossRef]
- Wu, G.; Robertson, D.H.; Brooks, C.L.; Vieth, M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER—A CHARMm-based MD docking algorithm. J. Comp. Chem. 2003, 24, 1549–1562. [Google Scholar] [CrossRef]
- RCSB PDB, 1LN1. 2023. Available online: https://www.rcsb.org/structure/1ln1 (accessed on 15 December 2023).
- Silakari, P.; Silakari, O.; Piplani, P. Systematic in silico design, synthesis, and biological studies of some novel 1, 4-benzoquinone derivatives for the prospective management of cognitive decline. ACS Chem. Neuro. 2021, 12, 1648–1666. [Google Scholar] [CrossRef]
- Shih, K.C.; Shiau, C.W.; Chen, T.S.; Ko, C.H.; Lin, C.L.; Lin, C.Y.; Hwang, C.S.; Tang, C.Y.; Chen, W.R.; Huang, J.W. Pharmacophore modeling and virtual screening to identify potential RET kinase inhibitors, Bioorganic. Med. Chem. Let. 2011, 21, 4490–4497. [Google Scholar] [CrossRef]
- Ulatowski, F.; Dabrowa, K.; Bałakier, T.; Jurczak, J. Recognizing the limited applicability of Job plots in studying host–guest interactions in supramolecular chemistry. J. Org. Chem. 2016, 81, 1746–1756. [Google Scholar] [CrossRef] [PubMed]
- Renny, J.S.; Tomasevich, L.L.; Tallmadge, E.H.; Collum, D.B. Method of continuous variations: Applications of job plots to the study of molecular associations in organometallic chemistry. Angew. Chem. Int. Ed. Engl. 2013, 52, 11998–12013. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, P.; Petkar, B.; Pore, Y.; Kulkarni, A.K.; Burade, K. Physicochemical and molecular modeling studies of cefixime–l-arginine–cyclodextrin ternary inclusion compounds. Carbohydr. Polym. 2013, 98, 1317–1325. [Google Scholar] [CrossRef]
- Higuchi, T.; Connors, K.A. Phase Solubility Techniques. Adv. Anal. Chem. Instrum. 1965, 4, 117–212. [Google Scholar]
- Yue, P.F.; Yuan, H.L.; Li, X.Y.; Yang, M.; Zhu, W.F. Process optimization, characterization and evaluation in vivo of oxymatrine–phospholipid complex. Int. J. Pharm. 2010, 387, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Thakur, G.; Singh, A.; Singh, I. Formulation and evaluation of transdermal composite films of chitosan-montmorillonite for the delivery of curcumin. Int. J. Pharm. Investig. 2016, 6, 23. [Google Scholar] [CrossRef]
- Bassi, P.; Kaur, G. Fenugreek gum derivatives with improved bioadhesion and controlled drug release: In vitro and in vivo characterization. J. Drug Deliv. Sci. Technol. 2015, 29, 42–54. [Google Scholar] [CrossRef]
- Kumar, A.; Behl, T.; Chadha, S. Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects. Int. J. Boil. Macromol. 2020, 149, 1262–1274. [Google Scholar] [CrossRef]
- Silva, C.L.; Pereira, J.C.; Ramalho, A.; Pais, A.A.C.C.; Sousa, J.J.S. Films based on chitosan polyelectrolyte complexes for skin drug delivery: Development and characterization. J. Membr. Sci. 2008, 320, 268–279. [Google Scholar] [CrossRef]
- Khan, M.A.; Pandit, J.; Sultana, Y.; Sultana, S.; Ali, A.; Aqil, M.; Chauhan, M. Novel carbopol-based transfersomal gel of 5-fluorouracil for skin cancer treatment: In vitro characterization and in vivo study. Drug Deliv. 2015, 22, 795–802. [Google Scholar] [CrossRef]
- Arora, P.; Mukherjee, B. Design, development, physicochemical, and in vitro and in vivo evaluation of transdermal patches containing diclofenac diethylammonium salt. J. Pharm. Sci. 2002, 91, 2076–2089. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.P.; Patel, D.J.; Bhimani, D.B.; Patel, J.K. Physicochemical characterization and dissolution study of solid dispersions of furosemide with polyethylene glycol 6000 and polyvinylpyrrolidone K30. Disso. Technol. 2008, 15, 17–25. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; El-Nabarawi, M.; El-Setouhy, D.A.; Fadlalla, M.A. Polymeric surfactant based etodolac chewable tablets: Formulation and in vivo evaluation. AAPS Pharm. Sci. Tech. 2010, 11, 1730–1737. [Google Scholar] [CrossRef] [PubMed]
- Rawat, D.S.; Thakur, B.K.; Semalty, M.; Semalty, A.; Badoni, P.; Rawat, M.S.M. Baicalein-phospholipid complex: A novel drug delivery technology for phytotherapeutics. Curr. Drug Discov. Technol. 2013, 10, 224–232. [Google Scholar] [CrossRef]
- Khan, J.; Alexander, A.; Saraf, S.; Saraf, S. Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. J. Control. Rel. 2013, 168, 50–60. [Google Scholar] [CrossRef]
- Shah, K.P.; Shah, K.G.; Brittain, H.G. Etodolac. Anal. Profiles Drug Subst. Excipients. 2002, 29, 105–147. [Google Scholar] [CrossRef]
- Huang, J.; Chen, P.X.; Rogers, M.A.; Wettig, S.D. Investigating the phospholipid effect on the bioaccessibility of rosmarinic acid-phospholipid complex through a dynamic gastrointestinal in vitro model. Pharmaceut 2019, 11, 156. [Google Scholar] [CrossRef]
- Miwa, Y.; Hamamoto, H.; Ishida, T. Lidocaine self-sacrificially improves the skin permeation of the acidic and poorly water-soluble drug etodolac via its transformation into an ionic liquid. Europ. J. Pharm. Biopharm. 2016, 102, 92–100. [Google Scholar] [CrossRef]
- Chi, C.; Zhang, C.; Liu, Y.; Nie, H.; Zhou, J.; Ding, Y. Phytosome-nanosuspensions for silybin-phospholipid complex with increased bioavailability and hepatoprotection efficacy. Europ. J. Pharmceut. Sci. 2020, 144, 105212. [Google Scholar] [CrossRef]
- Sherje, A.P.; Kulkarni, V.; Murahari, M.; Nayak, U.Y.; Bhat, P.; Suvarna, V.; Dravyakar, B. Inclusion complexation of etodolac with hydroxypropyl-beta-cyclodextrin and auxiliary agents: Formulation characterization and molecular modeling studies. Mol. Pharmaceut. 2017, 14, 1231–1242. [Google Scholar] [CrossRef]
Independent Variable | Type | Level | ||
---|---|---|---|---|
Low (−1) | Medium (0) | High (+1) | ||
PVA concentration (X1) (% w/v) | Continuous | 2 | 3 | 4 |
PEG 400 concentration (X2) (% w/v) | Continuous | 5 | 6.5 | 8 |
Optimization Design matrix with 10 trials * | ||||
Trial | X1 | X2 | ||
F1 | 1 | 1 | ||
F2 | −1 | 0 | ||
F3 | 0 | 0 | ||
F4 | 0 | −1 | ||
F5 | −1 | −1 | ||
F6 | 0 | 0 | ||
F7 | 1 | −1 | ||
F8 | 1 | 0 | ||
F9 | −1 | 1 | ||
F10 | 0 | 1 |
Response | RMSE | R2 | p-Value |
---|---|---|---|
CA | 3.556 | 0.96 | 0.0077 |
SI | 3.0732 | 0.98489 | 0.0010 |
WVTR | 0.9246 | 0.98519 | 0.0009 |
TS | 0.0991 | 0.97 | 0.0041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, J.K.; Kaur, S.; Chandrasekaran, B.; Kaur, G.; Saini, B.; Kaur, R.; Silakari, P.; Kaur, N.; Bassi, P. A QbD-Navigated Approach to the Development and Evaluation of Etodolac–Phospholipid Complex Containing Polymeric Films for Improved Anti-Inflammatory Effect. Polymers 2024, 16, 2517. https://doi.org/10.3390/polym16172517
Singh JK, Kaur S, Chandrasekaran B, Kaur G, Saini B, Kaur R, Silakari P, Kaur N, Bassi P. A QbD-Navigated Approach to the Development and Evaluation of Etodolac–Phospholipid Complex Containing Polymeric Films for Improved Anti-Inflammatory Effect. Polymers. 2024; 16(17):2517. https://doi.org/10.3390/polym16172517
Chicago/Turabian StyleSingh, Jangjeet Karan, Simran Kaur, Balakumar Chandrasekaran, Gurpreet Kaur, Balraj Saini, Rajwinder Kaur, Pragati Silakari, Narinderpal Kaur, and Pallavi Bassi. 2024. "A QbD-Navigated Approach to the Development and Evaluation of Etodolac–Phospholipid Complex Containing Polymeric Films for Improved Anti-Inflammatory Effect" Polymers 16, no. 17: 2517. https://doi.org/10.3390/polym16172517
APA StyleSingh, J. K., Kaur, S., Chandrasekaran, B., Kaur, G., Saini, B., Kaur, R., Silakari, P., Kaur, N., & Bassi, P. (2024). A QbD-Navigated Approach to the Development and Evaluation of Etodolac–Phospholipid Complex Containing Polymeric Films for Improved Anti-Inflammatory Effect. Polymers, 16(17), 2517. https://doi.org/10.3390/polym16172517