Plasma Treatment of Nanocellulose to Improve the Surface Properties
Abstract
:1. Introduction
2. Theoretical Obstacles
3. Literature Survey on Plasma Treatment of Nanocellulose
3.1. Treatment of Dry Powder
3.2. Treatment of Dry Nanocellulose Products
3.3. Treatment of Powder Dispersed in Liquids
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, K.; Liu, L.; Li, N.; Junjie, S.; Yang, C.; Changzhao, L.; Yang, X.; Sun, W.; Cui, S.; Sun, Y.; et al. Supramolecular cross-linking affords superelastic and fatigue-resistant cellulose-based nanocomposites with excellent thermomechanical properties and waterproofing performance. Ind. Crops Prod. 2024, 218, 118936. [Google Scholar] [CrossRef]
- Kilic, U.; Soliman, N.; Omran, A.; Ozbulut, O.E. Effects of cellulose nanofibrils on rheological and mechanical properties of 3D printable cement composites. Cem. Concr. Compos. 2024, 152, 105617. [Google Scholar] [CrossRef]
- Wei, J.; Ma, Q.; Teng, Y.; Yang, T.; Wong, K.H.; Cui, Y.; Zheng, B.; Li, D.; Luo, D.; Yu, A. Advanced Cellulosic Materials toward High-Performance Metal Ion Batteries. Adv. Energy Mater. 2024, 14, 202400208. [Google Scholar] [CrossRef]
- Majumder, S.; Moharana, S.; Kim, K.H. Cellulose nano-papers: A comprehensive review of their synthesis methods, applications, and influence on the circular economy. J. Clean. Prod. 2024, 451, 142045. [Google Scholar] [CrossRef]
- Rashid, A.B.; Hoque, M.E.; Kabir, N.; Rifat, F.F.; Ishrak, H.; Alqahtani, A.; Chowdhury, M.E.H. Synthesis, Properties, Applications, and Future Prospective of Cellulose Nanocrystals. Polymers 2023, 15, 4070. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, Y.; Wu, M. A partial dissolution-regeneration strategy for preparing water-resistant composite film of cellulose I and cellulose II with high light transmittance and adjustable haze. Compos. Part B Eng. 2024, 274, 111285. [Google Scholar] [CrossRef]
- Misaka, M.; Teshima, H.; Hirokawa, S.; Li, Q.-Y.; Takahashi, K. Nano-captured water affects the wettability of cellulose nanofiber films. Surf. Interfaces 2024, 46, 103923. [Google Scholar] [CrossRef]
- Kusano, Y.; Madsen, B.; Berglund, L.; Aitomäki, Y.; Oksman, K. Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces. Surf. Eng. 2017, 34, 825–831. [Google Scholar] [CrossRef]
- Yu, K.; Yang, L.; Zhang, N.; Wang, S.; Liu, H. Development of nanocellulose hydrogels for application in the food and biomedical industries: A review. Int. J. Biol. Macromol. 2024, 272, 132668. [Google Scholar] [CrossRef]
- Park, K.; Choe, S.; Sadeghi, K.; Panda, P.K.; Myung, J.; Kim, D.; Seo, J. Effect of epichlorohydrin treatment on the coating process and performance of high-barrier paper packaging. Food Chem. 2024, 445, 138772. [Google Scholar] [CrossRef]
- Primc, G.; Vesel, A.; Zaplotnik, R.; Gorjanc, M.; Gselman, P.; Lehocky, M.; Mozetic, M. Recent Progress in Cellulose Hydrophobization by Gaseous Plasma Treatments. Polymers 2024, 16, 789. [Google Scholar] [CrossRef] [PubMed]
- Satulu, V.; Dinca, V.; Bacalum, M.; Mustaciosu, C.; Mitu, B.; Dinescu, G. Chemistry-Induced Effects on Cell Behavior upon Plasma Treatment of pNIPAAM. Polymers 2022, 14, 1081. [Google Scholar] [CrossRef] [PubMed]
- Correia, J.; Mathur, K.; Bourham, M.; Oliveira, F.R.; Siqueira Curto Valle, R.D.C.; Valle, J.A.B.; Seyam, A.-F.M. Surface functionalization of greige cotton knitted fabric through plasma and cationization for dyeing with reactive and acid dyes. Cellulose 2021, 28, 9971–9990. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Sawangrat, C.; Kanthiya, T.; Thipchai, P.; Kaewapai, K.; Suhr, J.; Worajittiphon, P.; Tanadchangsaeng, N.; Wattanachai, P.; Jantanasakulwong, K. Effect of Plasma Treatment on Bamboo Fiber-Reinforced Epoxy Composites. Polymers 2024, 16, 938. [Google Scholar] [CrossRef] [PubMed]
- Satulu, V.; Pandele, A.M.; Ionica, G.I.; Bobirica, L.; Bonciu, A.F.; Scarlatescu, A.; Bobirica, C.; Orbeci, C.; Voicu, S.I.; Mitu, B.; et al. Robust CA-GO-TiO2/PTFE Photocatalytic Membranes for the Degradation of the Azithromycin Formulation from Wastewaters. Polymers 2024, 16, 1368. [Google Scholar] [CrossRef]
- Primc, G.; Zaplotnik, R.; Vesel, A.; Mozetic, M. Mechanisms Involved in the Modification of Textiles by Non-Equilibrium Plasma Treatment. Molecules 2022, 27, 9064. [Google Scholar] [CrossRef]
- Popović, D.; Mozetič, M.; Vesel, A.; Primc, G.; Zaplotnik, R. Review on vacuum ultraviolet generation in low-pressure plasmas. Plasma Process. Polym. 2021, 18, e202100061. [Google Scholar] [CrossRef]
- Appold, M.; Rangou, S.; Glass, S.; Lademann, B.; Filiz, V. Enhanced UV Penetration and Cross-Linking of Isoporous Block Copolymer and Commercial Ultrafiltration Membranes Using Isorefractive Solvent. Adv. Sci. 2024; early view. [Google Scholar] [CrossRef]
- Yu, Z.; Sheng, T.Y.; Pihlstrom, B.; Luo, Z.; Collins, G.J. Wide area windowless disk plasma lamp of uniform intensity for use in microelectronic film processing. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1991, 9, 348–352. [Google Scholar] [CrossRef]
- Holländer, A.; Klemberg-Sapieha, J.E.; Wertheimer, M.R. Vacuum-ultraviolet induced oxidation of the polymers polyethylene and polypropylene. J. Polym. Sci. Part A Polym. Chem. 2003, 33, 2013–2025. [Google Scholar] [CrossRef]
- Primc, G.; Mozetic, M. Hydrophobic Recovery of Plasma-Hydrophilized Polyethylene Terephthalate Polymers. Polymers 2022, 14, 2496. [Google Scholar] [CrossRef] [PubMed]
- Polito, J.; Denning, M.; Stewart, R.; Frost, D.; Kushner, M.J. Atmospheric pressure plasma functionalization of polystyrene. J. Vac. Sci. Technol. A 2022, 40, 043001. [Google Scholar] [CrossRef]
- Luan, P.; Kondeti, V.S.S.K.; Knoll, A.J.; Bruggeman, P.J.; Oehrlein, G.S. Effect of water vapor on plasma processing at atmospheric pressure: Polymer etching and surface modification by an Ar/H2O plasma jet. J. Vac. Sci. Technol. A 2019, 37, 031305. [Google Scholar] [CrossRef]
- Booth, J.-P.; Mozetič, M.; Nikiforov, A.; Oehr, C. Foundations of plasma surface functionalization of polymers for industrial and biological applications. Plasma Sources Sci. Technol. 2022, 31, 103001. [Google Scholar] [CrossRef]
- Vesel, A.; Zaplotnik, R.; Primc, G.; Mozetic, M. Kinetics of Surface Wettability of Aromatic Polymers (PET, PS, PEEK, and PPS) upon Treatment with Neutral Oxygen Atoms from Non-Equilibrium Oxygen Plasma. Polymers 2024, 16, 1381. [Google Scholar] [CrossRef]
- Arpagaus, C.; Oberbossel, G.; Rudolf von Rohr, P. Plasma treatment of polymer powders—From laboratory research to industrial application. Plasma Process. Polym. 2018, 15, 1800133. [Google Scholar] [CrossRef]
- Šourková, H.; Špatenka, P. Plasma Activation of Polyethylene Powder. Polymers 2020, 12, 2099. [Google Scholar] [CrossRef]
- Cerny, P.; Bartos, P.; Kriz, P.; Olsan, P.; Spatenka, P. Highly Hydrophobic Organosilane-Functionalized Cellulose: A Promising Filler for Thermoplastic Composites. Materials 2021, 14, 2005. [Google Scholar] [CrossRef]
- Resnik, M.; Levicnik, E.; Gosar, Z.; Zaplotnik, R.; Kovac, J.; Ekar, J.; Mozetic, M.; Junkar, I. The Oleofobization of Paper via Plasma Treatment. Polymers 2021, 13, 2148. [Google Scholar] [CrossRef]
- Jelinek Sourkova, H.; Weberova, Z.; Anton, J.; Spatenka, P. Wettability and Adhesion of Polyethylene Powder Treated with Non-Equilibrium Various Gaseous Plasma in Semi-Industrial Equipment. Materials 2022, 15, 686. [Google Scholar] [CrossRef]
- Vida, J.; Shekargoftar, M.; Sirvio, J.A.; Homola, T. Large-area roll-to-roll atmospheric plasma treatment of nanocellulose transparent paper. In Proceedings of the 11th International Conference on Nanomaterials—Research & Application, Brno, Czech Republic, 16–18 October 2019. [Google Scholar]
- Dimic-Misic, K.; Kostić, M.; Obradović, B.; Kramar, A.; Jovanović, S.; Stepanenko, D.; Mitrović-Dankulov, M.; Lazović, S.; Johansson, L.-S.; Maloney, T.; et al. Nitrogen plasma surface treatment for improving polar ink adhesion on micro/nanofibrillated cellulose films. Cellulose 2019, 26, 3845–3857. [Google Scholar] [CrossRef]
- ISO 5269-1; Pulps—Preparation of Laboratory Sheets for Physical Testing. Conventional Sheet-Former Method. ISO: Geneva, Switzerland, 2005.
- Dimic-Misic, K.; Kostic, M.; Obradovic, B.; Kuraica, M.; Kramar, A.; Imani, M.; Gane, P. Iso- and Anisotropic Etching of Micro Nanofibrillated Cellulose Films by Sequential Oxygen and Nitrogen Gas Plasma Exposure for Tunable Wettability on Crystalline and Amorphous Regions. Materials 2021, 14, 3571. [Google Scholar] [CrossRef]
- Matouk, Z.; Torriss, B.; Rincón, R.; Dorris, A.; Beck, S.; Berry, R.M.; Chaker, M. Functionalization of cellulose nanocrystal films using Non-Thermal atmospheric-Pressure plasmas. Appl. Surf. Sci. 2020, 511, 145566. [Google Scholar] [CrossRef]
- Kutova, A.; Stankova, L.; Vejvodova, K.; Kvitek, O.; Vokata, B.; Fajstavr, D.; Kolska, Z.; Broz, A.; Bacakova, L.; Svorcik, V. Influence of Drying Method and Argon Plasma Modification of Bacterial Nanocellulose on Keratinocyte Adhesion and Growth. Nanomaterials 2021, 11, 1916. [Google Scholar] [CrossRef]
- Staňková, L.; Kutová, A.; Doubková, M.; Kvítek, O.; Vokatá, B.; Sedlář, A.; Idriss, H.; Slepička, P.; Švorčík, V.; Bačáková, L. Argon plasma-modified bacterial nanocellulose: Cell-specific differences in the interaction with fibroblasts and endothelial cells. Carbohydr. Polym. Technol. Appl. 2024, 7, 100470. [Google Scholar] [CrossRef]
- Zywicka, A.; Ciecholewska-Jusko, D.; Chareza, M.; Drozd, R.; Sobolewski, P.; Junka, A.; Gorgieva, S.; El Fray, M.; Fijalkowski, K. Argon plasma-modified bacterial cellulose filters for protection against respiratory pathogens. Carbohydr. Polym. 2023, 302, 120322. [Google Scholar] [CrossRef] [PubMed]
- Panaitescu, D.M.; Vizireanu, S.; Nicolae, C.A.; Frone, A.N.; Casarica, A.; Carpen, L.G.; Dinescu, G. Treatment of Nanocellulose by Submerged Liquid Plasma for Surface Functionalization. Nanomaterials 2018, 8, 467. [Google Scholar] [CrossRef]
- Chiulan, I.; Panaitescu, D.M.; Serafim, A.; Radu, E.R.; Ionita, G.; Raditoiu, V.; Gabor, A.R.; Nicolae, C.A.; Ghiurea, M.; Baciu, D.D. Sponges from Plasma Treated Cellulose Nanofibers Grafted with Poly(ethylene glycol)methyl Ether Methacrylate. Polymers 2022, 14, 4720. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Primc, G.; Mozetič, M. Plasma Treatment of Nanocellulose to Improve the Surface Properties. Polymers 2024, 16, 2516. https://doi.org/10.3390/polym16172516
Primc G, Mozetič M. Plasma Treatment of Nanocellulose to Improve the Surface Properties. Polymers. 2024; 16(17):2516. https://doi.org/10.3390/polym16172516
Chicago/Turabian StylePrimc, Gregor, and Miran Mozetič. 2024. "Plasma Treatment of Nanocellulose to Improve the Surface Properties" Polymers 16, no. 17: 2516. https://doi.org/10.3390/polym16172516
APA StylePrimc, G., & Mozetič, M. (2024). Plasma Treatment of Nanocellulose to Improve the Surface Properties. Polymers, 16(17), 2516. https://doi.org/10.3390/polym16172516