Evaluation of Shape Recovery Performance of Shape Memory Polymers with Carbon-Based Fillers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Differential Scanning Calorimetry (DSC)
3.2. Thermal Conductivity
3.3. Shape Recovery Performance
3.3.1. Shape Fixation Ratio
3.3.2. Shape Recovery Ratio
3.3.3. Shape Recovery Time
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, J.; Ge, Y.; Liu, Z.; Liu, Z.; Jiang, J.; Li, G. Photoprogrammable moisture-responsive actuation of a shape memory polymer film. ACS Appl. Mater. Interfaces 2022, 14, 10836–10843. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Wei, Q.; Zhang, J. Light-responsive shape memory polymer composites. Eur. Polym. J. 2022, 173, 111314. [Google Scholar] [CrossRef]
- Xu, Z.; Ding, C.; Wei, D.W.; Bao, R.Y.; Ke, K.; Liu, Z.; Yang, W. Electro and light-active actuators based on reversible shape-memory polymer composites with segregated conductive networks. ACS Appl. Mater. Interfaces 2019, 11, 30332–30340. [Google Scholar] [CrossRef] [PubMed]
- Sachyani Keneth, E.; Lieberman, R.; Rednor, M.; Scalet, G.; Auricchio, F.; Magdassi, S. Multi-material 3D printed shape memory polymer with tunable melting and glass transition temperature activated by heat or light. Polymers 2020, 12, 710. [Google Scholar] [CrossRef]
- Melly, S.K.; Liu, L.; Liu, Y.; Leng, J. Active composites based on shape memory polymers: Overview, fabrication methods, applications, and future prospects. J. Mater. Sci. 2020, 55, 10975–11051. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, C.; Rehman, H.U.; Zheng, X.; Li, H.; Liu, H.; Hedenqvist, M.S. Shape-memory polymeric artificial muscles: Mechanisms, applications and challenges. Molecules 2020, 25, 4246. [Google Scholar] [CrossRef]
- Bhanushali, H.; Amrutkar, S.; Mestry, S.; Mhaske, S.T. Shape memory polymer nanocomposite: A review on structure–property relationship. Polym. Bull. 2022, 79, 3437–3493. [Google Scholar] [CrossRef]
- Kim, M.; Jang, S.; Choi, S.; Yang, J.; Kim, J.; Choi, D. Analysis of shape memory behavior and mechanical properties of shape memory polymer composites using thermal conductive fillers. Micromachines 2021, 12, 1107. [Google Scholar] [CrossRef] [PubMed]
- d’Almeida, J.R.M.; Monterio, S.N. The effect of the resin/hardener ratio on the compressive behavior of an epoxy system. Polym. Test. 1993, 15, 329–339. [Google Scholar] [CrossRef]
- d’Almeida, J.R.; Monterio, S.N. The influence of the amount of hardener on the tensile mechanical behavior of an epoxy system. Polym. Adv. Technol. 1998, 9, 216–221. [Google Scholar] [CrossRef]
- Lendlein, A.; Gould, O.E. Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nat. Rev. Mater. 2019, 4, 116–133. [Google Scholar] [CrossRef]
- Chen, L.; Li, W.; Liu, Y.; Leng, J. Nanocomposites of epoxy-based shape memory polymer and thermally reduced graphite oxide: Mechanical, thermal and shape memory characterizations. Compos. B Eng. 2016, 91, 75–82. [Google Scholar] [CrossRef]
- Wang, E.; Dong, Y.; Islam, M.Z.; Yu, L.; Liu, F.; Chen, S.; Hu, N. Effect of graphene oxide-carbon nanotube hybrid filler on the mechanical property and thermal response speed of shape memory epoxy composites. Compos. Sci. Technol. 2019, 169, 209–216. [Google Scholar] [CrossRef]
- Li, M.; Ali, Z.; Wei, X.; Li, L.; Song, G.; Hou, X.; Yu, J. Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites. Compos. B Eng. 2021, 208, 108599. [Google Scholar] [CrossRef]
- Wei, J.; Liao, M.; Ma, A.; Chen, Y.; Duan, Z.; Hou, X.; Yu, J. Enhanced thermal conductivity of polydimethylsiloxane composites with carbon fiber. Compos. Commun. 2020, 17, 141–146. [Google Scholar] [CrossRef]
- Bao, D.; Gao, Y.; Cui, Y.; Xu, F.; Shen, X.; Geng, H.; Wang, H. A novel modified expanded graphite/epoxy 3D composite with ultrahigh thermal conductivity. Chem. Eng. J. 2022, 433, 133519. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, R.; Wang, J.; Qi, S. Thermal conductivity improvement of epoxy composite filled with expanded graphite. Ceram. Int. 2015, 41, 13541–13546. [Google Scholar] [CrossRef]
- Wu, K.; Lei, C.; Huang, R.; Yang, W.; Chai, S.; Geng, C.; Fu, Q. Design and preparation of a unique segregated double network with excellent thermal conductive property. ACS Appl. Mater. Interfaces 2017, 9, 7637–7647. [Google Scholar] [CrossRef]
- Zhang, F.; Feng, Y.; Feng, W. Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms. Mater. Sci. Eng. R Rep. 2020, 142, 100580. [Google Scholar] [CrossRef]
- Jasmee, S.; Omar, G.; Othaman, S.S.C.; Masripan, N.A.; Hamid, H.A. Interface thermal resistance and thermal conductivity of polymer composites at different types, shapes, and sizes of fillers: A review. Polym. Compos. 2021, 42, 2629–2652. [Google Scholar] [CrossRef]
- Lu, H.; Yu, K.; Sun, S.; Liu, Y.; Leng, J. Mechanical and shape-memory behavior of shape-memory polymer composites with hybrid fillers. Polym. Int. 2010, 59, 766–771. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Z.; Moon, K.S.; Wong, C.P. Glass transition and relaxation behavior of epoxy nanocomposites. J. Polym. Sci. B Polym. Phys. 2004, 42, 3849–3858. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, Y.; Chia, L. Effects of carbon nanotube (CNT) geometries on the dispersion characterizations and adhesion properties of CNT reinforced epoxy composites. Compos. Struct. 2022, 296, 115942. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, Y.; Xia, W.; Xu, L.; Wang, X. Dispersion characteristics and mechanical properties of epoxy nanocomposites reinforced with carboxymethyl cellulose functionalized nanodiamond, carbon nanotube, and graphene. Polym. Compos. 2024, 45, 398–412. [Google Scholar] [CrossRef]
- Shin, H.; Yang, S.; Choi, J.; Chang, S.; Cho, M. Effect of interphase percolation on mechanical behavior of nanoparticle-reinforced polymer nanocomposite with filler agglomeration: A multiscale approach. Chem. Phys. Lett. 2015, 635, 80–85. [Google Scholar] [CrossRef]
- Ervina, J.; Mariatti, M.; Hamdan, S. Effect of filler loading on the tensile properties of multi-walled carbon nanotube and graphene nanopowder filled epoxy composites. Procedia Chem. 2016, 19, 897–905. [Google Scholar] [CrossRef]
- Dusoe, K.J.; Ye, X.; Kisslinger, K.; Stein, A.; Lee, S.W.; Nam, C.Y. Ultrahigh elastic strain energy storage in metal-oxide-infiltrated patterned hybrid polymer nanocomposites. Nano Lett. 2017, 17, 7416–7423. [Google Scholar] [CrossRef]
Single Filler | |
---|---|
Filler Type | Content (wt%) |
60 μm CF | 5, 10, 15, 20, 30 |
100 μm CF | |
Graphite |
Mixed Filler | ||
---|---|---|
Filler Type | Content (wt%) | |
60, 100 μm CF | Graphite | |
2.5 | 2.5 | 5 |
3 | 2 | |
3 | 7 | 10 |
3 | 12 | 15 |
5 | 10 | |
10 | 5 | |
12 | 3 | |
10 | 10 | 20 |
10 | 20 | 30 |
Epoxy Resin/Hardener | Tg (°C) |
---|---|
8:1 | 83.60 |
9:1 | 75.77 |
10:1 | 69.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Jang, S.; Yoo, S.H.; Lee, G.W.; Choi, D. Evaluation of Shape Recovery Performance of Shape Memory Polymers with Carbon-Based Fillers. Polymers 2024, 16, 2425. https://doi.org/10.3390/polym16172425
Choi S, Jang S, Yoo SH, Lee GW, Choi D. Evaluation of Shape Recovery Performance of Shape Memory Polymers with Carbon-Based Fillers. Polymers. 2024; 16(17):2425. https://doi.org/10.3390/polym16172425
Chicago/Turabian StyleChoi, Sungwoong, Seongeun Jang, Seung Hwa Yoo, Gyo Woo Lee, and Duyoung Choi. 2024. "Evaluation of Shape Recovery Performance of Shape Memory Polymers with Carbon-Based Fillers" Polymers 16, no. 17: 2425. https://doi.org/10.3390/polym16172425
APA StyleChoi, S., Jang, S., Yoo, S. H., Lee, G. W., & Choi, D. (2024). Evaluation of Shape Recovery Performance of Shape Memory Polymers with Carbon-Based Fillers. Polymers, 16(17), 2425. https://doi.org/10.3390/polym16172425