Stimuli-Responsive Polymer Actuator for Soft Robotics
Abstract
:1. Introduction
2. Types of Polymer Actuators
2.1. Electroactive Polymer
2.2. Polymer Gel
2.3. Biohybrid Polymer
2.4. Shape-Memory Polymers
3. Types of Polymer-Sensing Actuators and the Influence of Stimuli
3.1. Electroactive Polymer-Sensing Actuators
3.2. Temperature-Sensing Polymer Actuators
3.3. Optical-Sensing Polymer Actuators
3.4. Magnetic-Sensing Polymer Actuators
3.5. pH- and Ion-Sensing Polymer Actuators
3.6. Gas-Sensing Polymer Actuators
3.7. Stress-Sensing Polymer Actuators
4. Fabrication Techniques
4.1. Electrochemical Method
4.2. Self-Assembly Method
4.3. Dispersion Techniques
4.3.1. Reversible Deactivation Radical Polymerization (RDRP)
4.3.2. Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization
4.4. 3D Printing
4.5. 4D Printing
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, M.; Gao, Y.; Li, X.; Serpe, M.J. Stimuli-Responsive Polymers and Their Applications. Polym. Chem. 2017, 8, 127–143. [Google Scholar] [CrossRef]
- Ahn, J.; Gu, J.; Choi, J.; Han, C.; Jeong, Y.; Park, J.; Cho, S.; Oh, Y.S.; Jeong, J.H.; Amjadi, M.; et al. A Review of Recent Advances in Electrically Driven Polymer-Based Flexible Actuators: Smart Materials, Structures, and Their Applications. Adv. Mater. Technol. 2022, 7, 2200041. [Google Scholar] [CrossRef]
- Alberti, G.; Zanoni, C.; Losi, V.; Magnaghi, L.R.; Biesuz, R. Current Trends in Polymer Based Sensors. Chemosensors 2021, 9, 108. [Google Scholar] [CrossRef]
- Pavel, I.A.; Lakard, S.; Lakard, B. Flexible Sensors Based on Conductive Polymers. Chemosensors 2022, 10, 97. [Google Scholar] [CrossRef]
- Alam, M.W.; Bhat, S.I.; Al Qahtani, H.S.; Aamir, M.; Amin, M.N.; Farhan, M.; Aldabal, S.; Khan, M.S.; Jeelani, I.; Nawaz, A.; et al. Recent Progress, Challenges, and Trends in Polymer-Based Sensors: A Review. Polymers 2022, 14, 2164. [Google Scholar] [CrossRef]
- Cichosz, S.; Masek, A.; Zaborski, M. Polymer-Based Sensors: A Review. Polym. Test 2018, 67, 342–348. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, K.; Spielberg, A.; Foshey, M.; Rus, D.; Palacios, T.; Matusik, W. Digital Fabrication of Pneumatic Actuators with Integrated Sensing by Machine Knitting. In Proceedings of the Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April–5 May 2022. [Google Scholar] [CrossRef]
- Ahmed, I.; Ali, M.; Elsherif, M.; Butt, H. UV Polymerization Fabrication Method for Polymer Composite Based Optical Fiber Sensors. Sci. Rep. 2023, 13, 10823. [Google Scholar] [CrossRef]
- Shrestha, M.; Lau, G.K.; Bastola, A.K.; Lu, Z.; Asundi, A.; Teo, E.H.T. Emerging Tunable Window Technologies for Active Transparency Tuning. Appl. Phys. Rev. 2022, 9, 031304. [Google Scholar] [CrossRef]
- Delipinar, T. Fabrication and Materials Integration of Flexible Humidity Sensors for Emerging Applications. ACS Omega 2021, 6, 8744–8753. [Google Scholar] [CrossRef]
- Carrico, J.D.; Tyler, T.; Leang, K.K. A Comprehensive Review of Select Smart Polymeric and Gel Actuators for Soft Mechatronics and Robotics Applications: Fundamentals, Freeform Fabrication, and Motion Control. Int. J. Smart Nano Mater. 2017, 8, 144–213. [Google Scholar] [CrossRef]
- Gonzalez-Vazquez, A.; Garcia, L.; Kilby, J.; McNair, P. Soft Wearable Rehabilitation Robots with Artificial Muscles Based on Smart Materials: A Review. Adv. Intell. Syst. 2023, 5, 2200159. [Google Scholar] [CrossRef]
- Jing, Y.; Su, F.; Yu, X.; Fang, H.; Wan, Y. Advances in Artificial Muscles: A Brief Literature and Patent Review. Front. Bioeng. Biotechnol. 2023, 11, 1083857. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sheng, J.; O’neill, C.T.; Walsh, C.J.; Wood, R.J.; Ryu, J.-H.; Desai, J.P.; Yip, M.C. Robotic Artificial Muscles: Current Progress and Future Perspectives. IEEE Trans. Robot. 2019, 35, 761–781. [Google Scholar] [CrossRef]
- Shrestha, M.; Lau, G.K.; Asundi, A.; Lu, Z. Dielectric Elastomer Actuator-Based Multifunctional Smart Window for Transparency Tuning and Noise Absorption. Actuators 2021, 10, 16. [Google Scholar] [CrossRef]
- Han, P.; Liang, S.; Zou, H.; Wang, X. Structure, Principle and Performance of Flexible Conductive Polymer Strain Sensors: A Review. J. Mater. Sci. Mater. Electron. 2024, 35, 775. [Google Scholar] [CrossRef]
- Lu, W.; Smela, E.; Adams, P.; Zuccarello, G.; Mattes, B.R. Development of Solid-in-Hollow Electrochemical Linear Actuators Using Highly Conductive Polyaniline. Chem. Mater. 2004, 16, 1615–1621. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Gao, X.; Zou, T.; Deng, P.; Zhao, J.; Zhang, T.; Chen, Y.; He, L.; Shao, L.; et al. Carbon Nanomaterials-PEDOT: PSS Based Electrochemical Ionic Soft Actuators: Recent Development in Design and Applications. Sens. Actuators A Phys. 2023, 354, 114277. [Google Scholar] [CrossRef]
- Jeong Kim, S.; Spinks, G.M.; Prosser, S.; Whitten, P.G.; Wallace, G.G.; Kim, S.I. Surprising Shrinkage of Expanding Gels under an External Load. Nat. Mater. 2006, 5, 48–51. [Google Scholar] [CrossRef]
- Zou, Y.; Lam, A.; Brooks, D.E.; Srikantha Phani, A.; Kizhakkedathu, J.N. Bending and Stretching Actuation of Soft Materials through Surface-Initiated Polymerization. Angew. Chem. 2011, 123, 5222–5225. [Google Scholar] [CrossRef]
- Hamidi, A.; Almubarak, Y.; Rupawat, Y.M.; Warren, J.; Tadesse, Y. Poly-Saora Robotic Jellyfish: Swimming Underwater by Twisted and Coiled Polymer Actuators. Smart Mater. Struct. 2020, 29, 045039. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, Z.; Zheng, W. A Twisted and Coiled Polymer Artificial Muscles Driven Soft Crawling Robot Based on Enhanced Antagonistic Configuration. Machines 2022, 10, 142. [Google Scholar] [CrossRef]
- Chen, L.; Weng, M.; Zhou, Z.; Zhou, Y.; Zhang, L.; Li, J.; Huang, Z.; Zhang, W.; Liu, C.; Fan, S. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application. ACS Nano 2015, 9, 12189–12196. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yan, X.; Lu, H.; Zhang, N.; Ma, M. Programmable Polymer Actuators Perform Continuous Helical Motions Driven by Moisture. ACS Appl. Mater. Interfaces 2019, 11, 20473–20481. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Farajollahi, M.; Choi, Y.S.; Lin, I.T.; Marshall, J.E.; Thompson, N.M.; Kar-Narayan, S.; Madden, J.D.W.; Smoukov, S.K. Electroactive Polymers for Sensing. Interface Focus 2016, 6, 20160026. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.; Kim, S.J.; Park, M.J. Low-Voltage-Driven Soft Actuators. Chem. Commun. 2018, 54, 4895–4904. [Google Scholar] [CrossRef] [PubMed]
- Briggs, C.; Cheng, T.; Meredith, M.; Vicars, P.N.; Rasmussen, L.; Zhong, A. Synthetic Muscle Electroactive Polymer (EAP) Pressure Sensing and Controlled Shape-Morphing for Robotic Grippers. Electroact. Polym. Actuators Devices (EAPAD) XXIII 2021, 11587, 36. [Google Scholar] [CrossRef]
- Engel, K.E.; Kilmartin, P.A.; Diegel, O. Recent Advances in the 3D Printing of Ionic Electroactive Polymers and Core Ionomeric Materials. Polym. Chem. 2022, 13, 456–473. [Google Scholar] [CrossRef]
- Rivkin, B.; Becker, C.; Akbar, F.; Ravishankar, R.; Karnaushenko, D.D.; Naumann, R.; Mirhajivarzaneh, A.; Medina-Sánchez, M.; Karnaushenko, D.; Schmidt, O.G. Shape-Controlled Flexible Microelectronics Facilitated by Integrated Sensors and Conductive Polymer Actuators. Adv. Intell. Syst. 2021, 3, 2000238. [Google Scholar] [CrossRef]
- Kim, S.M.; Kim, N.; Kim, Y.; Baik, M.S.; Yoo, M.; Kim, D.; Lee, W.J.; Kang, D.H.; Kim, S.; Lee, K.; et al. High-Performance, Polymer-Based Direct Cellular Interfaces for Electrical Stimulation and Recording. NPG Asia Mater. 2018, 10, 255–265. [Google Scholar] [CrossRef]
- Horkay, F.; Douglas, J.F. Polymer Gels: Basics, Challenges, and Perspectives. ACS Symp. Ser. 2018, 1296, 1–13. [Google Scholar] [CrossRef]
- Chelu, M.; Musuc, A.M. Polymer Gels: Classification and Recent Developments in Biomedical Applications. Gels 2023, 9, 161. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Xudong, L.; Xiaoqing, C.; Zhiwei, J.; Pervaiz, M.; Weimin, Y.; Haoyi, L.; Sain, M. A Review of Electro-Stimulated Gels and Their Applications: Present State and Future Perspectives. Mater. Sci. Eng. C 2019, 103, 109852. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Jin, M.; Pan, X.; Ma, L.; Ma, X. A Flexible Polyelectrolyte-Based Gel Polymer Electrolyte for High-Performance All-Solid-State Supercapacitor Application. RSC Adv. 2020, 10, 9299–9308. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.; Santiago, A.; Judez, X.; Garbayo, I.; Coca Clemente, J.A.; Morant-Miñana, M.C.; Villaverde, A.; González-Marcos, J.A.; Zhang, H.; Armand, M.; et al. Safe, Flexible, and High-Performing Gel-Polymer Electrolyte for Rechargeable Lithium Metal Batteries. Chem. Mater. 2021, 33, 8812–8821. [Google Scholar] [CrossRef]
- Kamiyama, Y.; Tamate, R.; Hiroi, T.; Samitsu, S.; Fujii, K.; Ueki, T. Highly Stretchable and Self-Healable Polymer Gels from Physical Entanglements of Ultrahigh-Molecular Weight Polymers. Sci. Adv. 2022, 8, eadd0226. [Google Scholar] [CrossRef]
- Mestre, R.; Patiño, T.; Sánchez, S. Biohybrid Robotics: From the Nanoscale to the Macroscale. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, e01703. [Google Scholar] [CrossRef]
- Van Dongen, S.F.M.; De Hoog, H.P.M.; Peters, R.J.R.W.; Nallani, M.; Nolte, R.J.M.; Van Hest, J.C.M. Biohybrid Polymer Capsules. Chem. Rev. 2009, 109, 6212–6274. [Google Scholar] [CrossRef]
- Lin, Z.; Jiang, T.; Shang, J. The Emerging Technology of Biohybrid Micro-Robots: A Review. Biodes Manuf. 2022, 5, 107–132. [Google Scholar] [CrossRef]
- Shin, M.; Choi, J.H.; Lim, J.; Cho, S.; Ha, T.; Jeong, J.H.; Choi, J.W. Electroactive Nano-Biohybrid Actuator Composed of Gold Nanoparticle-Embedded Muscle Bundle on Molybdenum Disulfide Nanosheet-Modified Electrode for Motion Enhancement of Biohybrid Robot. Nano Converg. 2022, 9, 24. [Google Scholar] [CrossRef]
- Ricotti, L.; Trimmer, B.; Feinberg, A.W.; Raman, R.; Parker, K.K.; Bashir, R.; Sitti, M.; Martel, S.; Dario, P.; Menciassi, A. Biohybrid Actuators for Robotics: A Review of Devices Actuated by Living Cells. Sci. Robot 2017, 2, eaaq0495. [Google Scholar] [CrossRef]
- Mestre, R.; Fuentes, J.; Lefaix, L.; Wang, J.; Guix, M.; Murillo, G.; Bashir, R.; Sánchez, S. Improved Performance of Biohybrid Muscle-Based Bio-Bots Doped with Piezoelectric Boron Nitride Nanotubes. Adv. Mater. Technol. 2023, 8, 2200505. [Google Scholar] [CrossRef]
- Mudigonda, J.; Xu, D.; Amedi, A.; Lane, B.A.; Corporan, D.; Wang, V.; Padala, M. A Biohybrid Material with Extracellular Matrix Core and Polymeric Coating as a Cell Honing Cardiovascular Tissue Substitute. Front. Cardiovasc. Med. 2022, 9, 807255. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Shin, M.; Ha, T.; Su, W.W.; Yoon, J.; Choi, J.W. A Nano-Biohybrid-Based Bio-Solar Cell to Regulate the Electrical Signal Transmission to Living Cells for Biomedical Application. Adv. Mater. 2023, 35, e2303125. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-González, M.; Willner, I. Stimuli-Responsive Biomolecule-Based Hydrogels and Their Applications. Angew. Chem. Int. Ed. 2020, 59, 15342–15377. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Liu, H.; Tang, D.; Li, Y.; Li, X.J.; Xu, F. Bioactuators Based on Stimulus-Responsive Hydrogels and Their Emerging Biomedical Applications. NPG Asia Mater. 2019, 11, 64. [Google Scholar] [CrossRef]
- Mealy, J.E.; Chung, J.J.; Jeong, H.H.; Issadore, D.; Lee, D.; Atluri, P.; Burdick, J.A. Injectable Granular Hydrogels with Multifunctional Properties for Biomedical Applications. Adv. Mater. 2018, 30, 1705912. [Google Scholar] [CrossRef]
- Parker, D.; Daguerre, Y.; Dufil, G.; Mantione, D.; Solano, E.; Cloutet, E.; Hadziioannou, G.; Näsholm, T.; Berggren, M.; Pavlopoulou, E.; et al. Biohybrid Plants with Electronic Roots: Via in Vivo Polymerization of Conjugated Oligomers. Mater. Horiz. 2021, 8, 3295–3305. [Google Scholar] [CrossRef]
- Song, C.; Zhang, Y.; Bao, J.; Wang, Z.; Zhang, L.; Sun, J.; Lan, R.; Yu, Z.; Zhu, S.; Yang, H. Light-Responsive Programmable Shape-Memory Soft Actuator Based on Liquid Crystalline Polymer/Polyurethane Network. Adv. Funct. Mater. 2023, 33, 2213771. [Google Scholar] [CrossRef]
- Dayyoub, T.; Maksimkin, A.V.; Filippova, O.V.; Tcherdyntsev, V.V.; Telyshev, D.V. Shape Memory Polymers as Smart Materials: A Review. Polymers 2022, 14, 3511. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, F.; Wang, L.; Liu, Y.; Leng, J. Recent Advances in Shape Memory Polymers: Multifunctional Materials, Multiscale Structures, and Applications. Adv. Funct. Mater. 2024, 34, 2312036. [Google Scholar] [CrossRef]
- Cooper, C.B.; Nikzad, S.; Yan, H.; Ochiai, Y.; Lai, J.C.; Yu, Z.; Chen, G.; Kang, J.; Bao, Z. High Energy Density Shape Memory Polymers Using Strain-Induced Supramolecular Nanostructures. ACS Cent. Sci. 2021, 7, 1657–1667. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Qi, H.J.; Xie, T. Recent Progress in Shape Memory Polymer: New Behavior, Enabling Materials, and Mechanistic Understanding. Prog. Polym. Sci. 2015, 49–50, 79–120. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, H.; Xue, J.; Jiang, J.; Liu, Z.; Liu, Z.; Li, G.; Zhao, Y. Programmable Humidity-Responsive Actuation of Polymer Films Enabled by Combining Shape Memory Property and Surface-Tunable Hygroscopicity. ACS Appl. Mater. Interfaces 2021, 13, 38773–38782. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhu, M.; Pei, Z.; Xue, Q.; Huang, Y.; Zhi, C. A Shape Memory Supercapacitor and Its Application in Smart Energy Storage Textiles. J. Mater. Chem. A Mater. 2016, 4, 1290–1297. [Google Scholar] [CrossRef]
- Melling, D.; Martinez, J.G.; Jager, E.W.H. Conjugated Polymer Actuators and Devices: Progress and Opportunities. Adv. Mater. 2019, 31, e1808210. [Google Scholar] [CrossRef]
- Kim, Y.; Yoshida, Y. A Lightweight and Low-Voltage-Operating Linear Actuator Based on the Electroactive Polymer Polypyrrole. Polymers 2023, 15, 3455. [Google Scholar] [CrossRef]
- Arman Kuzubasoglu, B.; Kursun Bahadir, S. Flexible Temperature Sensors: A Review. Sens. Actuators A Phys. 2020, 315, 112282. [Google Scholar] [CrossRef]
- Megha, R.; Ali, F.A.; Ravikiran, Y.T.; Ramana, C.H.V.V.; Kiran Kumar, A.B.V.; Mishra, D.K.; Vijayakumari, S.C.; Kim, D. Conducting Polymer Nanocomposite Based Temperature Sensors: A Review. Inorg. Chem. Commun. 2018, 98, 11–28. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, S.; Xu, J.; Salim, T.; Li, Y.; Hu, X.; Zhang, Z.; Cheng, G.; Yuan, N.; Lam, Y.M.; et al. Thermal-Sensing Actuator Based on Conductive Polymer Ionogel for Autonomous Human-Machine Interaction. Sens. Actuators B Chem. 2024, 398, 134756. [Google Scholar] [CrossRef]
- Ryu, W.M.; Lee, Y.; Son, Y.; Park, G.; Park, S. Thermally Drawn Multi-Material Fibers Based on Polymer Nanocomposite for Continuous Temperature Sensing. Adv. Fiber. Mater. 2023, 5, 1712–1724. [Google Scholar] [CrossRef]
- Ryabchun, A.; Li, Q.; Lancia, F.; Aprahamian, I.; Katsonis, N. Shape-Persistent Actuators from Hydrazone Photoswitches. J Am. Chem. Soc. 2019, 141, 1196–1200. [Google Scholar] [CrossRef] [PubMed]
- Verpaalen, R.C.P.; Varghese, S.; Froyen, A.; Pilz da Cunha, M.; Pouderoijen, M.J.; Severn, J.R.; Bhatti, M.R.; Peijs, T.; Bastiaansen, C.W.M.; Debije, M.G.; et al. Fast, Light-Responsive, Metal-Like Polymer Actuators Generating High Stresses at Low Strain. Matter 2020, 2, 1522–1534. [Google Scholar] [CrossRef]
- García Díez, A.; Pereira, N.; Tubio, C.R.; Vilas-Vilela, J.L.; Costa, C.M.; Lanceros-Mendez, S. Magnetic Polymer Actuators with Self-Sensing Resistive Bending Response Based on Ternary Polymer Composites. ACS Appl. Electron. Mater. 2023, 5, 3426–3435. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Naguib, H.E. Hybrid Piezoelectric–Magnetic Self-Sensing Actuator Using Novel Dual-Alignment Magnetic/Mechanical Processing for Vibration Control of Whole-Body Vibrations. Adv. Intell. Syst. 2023, 5, 2300025. [Google Scholar] [CrossRef]
- Orudzhev, F.; Ramazanov, S.; Sobola, D.; Kaspar, P.; Trčka, T.; Částková, K.; Kastyl, J.; Zvereva, I.; Wang, C.; Selimov, D.; et al. Ultrasound and Water Flow Driven Piezophototronic Effect in Self-Polarized Flexible α-Fe2O3 Containing PVDF Nanofibers Film for Enhanced Catalytic Oxidation. Nano Energy 2021, 90, 106586. [Google Scholar] [CrossRef]
- Kaspar, P.; Sobola, D.; Částková, K.; Dallaev, R.; Šťastná, E.; Sedlák, P.; Knápek, A.; Trčka, T.; Holcman, V. Case Study of Polyvinylidene Fluoride Doping by Carbon Nanotubes. Materials 2021, 14, 1428. [Google Scholar] [CrossRef]
- Choi, K.R.; Troudt, B.K.; Bühlmann, P. Ion-Selective Electrodes with Sensing Membranes Covalently Attached to Both the Inert Polymer Substrate and Conductive Carbon Contact. Angew. Chem. Int. Ed. 2023, 62, e202304674. [Google Scholar] [CrossRef]
- Li, Y.; Mao, Y.; Xiao, C.; Xu, X.; Li, X. Flexible PH Sensor Based on a Conductive PANI Membrane for PH Monitoring. RSC Adv. 2019, 10, 21–28. [Google Scholar] [CrossRef]
- Sarf, F. Metal Oxide Gas Sensors by Nanostructures. In Gas Sensors; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Matindoust, S.; Farzi, G.; Nejad, M.B.; Shahrokhabadi, M.H. Polymer-Based Gas Sensors to Detect Meat Spoilage: A Review. React. Funct. Polym. 2021, 165, 104962. [Google Scholar] [CrossRef]
- Shahrbabaki, Z.; Farajikhah, S.; Ghasemian, M.B.; Oveissi, F.; Rath, R.J.; Yun, J.; Dehghani, F.; Naficy, S. A Flexible and Polymer-Based Chemiresistive CO2 Gas Sensor at Room Temperature. Adv. Mater. Technol. 2023, 8, 2201510. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, G.; Xu, J.L.; Zhang, M.; Kuo, C.C.; Wang, S.D. Conducting Polymer-Inorganic Nanocomposite-Based Gas Sensors: A Review. Sci. Technol. Adv. Mater. 2020, 21, 768–786. [Google Scholar] [CrossRef] [PubMed]
- Ikura, R.; Kajimoto, K.; Park, J.; Murayama, S.; Fujiwara, Y.; Osaki, M.; Suzuki, T.; Shirakawa, H.; Kitamura, Y.; Takahashi, H.; et al. Highly Stretchable Stress-Strain Sensor from Elastomer Nanocomposites with Movable Cross-Links and Ketjenblack. ACS Polym. Au J. 2023, 3, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Chen, Y.; Wang, X.; Jia, K.; Zhang, H.; Wang, Y.; Chu, H.; Zhong, X.; Lin, M.; Chen, P.; et al. Wearable and Regenerable Electrochemical Fabric Sensing System Based on Molecularly Imprinted Polymers for Real-Time Stress Management. Adv. Funct. Mater. 2024, 34, 2312897. [Google Scholar] [CrossRef]
- Pradeep, H.; Bindu, M.; Suresh, S.; Thadathil, A.; Periyat, P. Recent Trends and Advances in Polyindole-Based Nanocomposites as Potential Antimicrobial Agents: A Mini Review. RSC Adv. 2022, 12, 8211–8227. [Google Scholar] [CrossRef] [PubMed]
- Maerten, C.; Garnier, T.; Lupattelli, P.; Chau, N.T.T.; Schaaf, P.; Jierry, L.; Boulmedais, F. Morphogen Electrochemically Triggered Self-Construction of Polymeric Films Based on Mussel-Inspired Chemistry. Langmuir 2015, 31, 13385–13393. [Google Scholar] [CrossRef]
- Krywko-Cendrowska, A.; Marot, L.; Mathys, D.; Boulmedais, F. Ion-Imprinted Nanofilms Based on Tannic Acid and Silver Nanoparticles for Sensing of Al(III). ACS Appl. Nano Mater. 2021, 4, 5372–5382. [Google Scholar] [CrossRef]
- Hu, L.; Zhou, S.; Zhang, X.; Shi, C.; Zhang, Y.; Chen, X. Self-Assembly of Polymers and Their Applications in the Fields of Biomedicine and Materials. Polymers 2024, 16, 2097. [Google Scholar] [CrossRef]
- Wei, F.; Zhang, T.; Dong, R.; Wu, Y.; Li, W.; Fu, J.; Jing, C.; Cheng, J.; Feng, X.; Liu, S. Solution-Based Self-Assembly Synthesis of Two-Dimensional-Ordered Mesoporous Conducting Polymer Nanosheets with Versatile Properties. Nat. Protoc. 2023, 18, 2459–2484. [Google Scholar] [CrossRef]
- Varlas, S.; Neal, T.J.; Armes, S.P. Polymerization-Induced Self-Assembly and Disassembly during the Synthesis of Thermoresponsive ABC Triblock Copolymer Nano-Objects in Aqueous Solution. Chem. Sci. 2022, 13, 7295–7303. [Google Scholar] [CrossRef]
- Maafa, I.M. Inhibition of Free Radical Polymerization: A Review. Polymers 2023, 15, 488. [Google Scholar] [CrossRef]
- Corrigan, N.; Jung, K.; Moad, G.; Hawker, C.J.; Matyjaszewski, K.; Boyer, C. Reversible-Deactivation Radical Polymerization (Controlled/Living Radical Polymerization): From Discovery to Materials Design and Applications. Prog. Polym. Sci. 2020, 111, 101311. [Google Scholar] [CrossRef]
- Tian, X.; Ding, J.; Zhang, B.; Qiu, F.; Zhuang, X.; Chen, Y. Recent Advances in RAFT Polymerization: Novel Initiation Mechanisms and Optoelectronic Applications. Polymers 2018, 10, 318. [Google Scholar] [CrossRef] [PubMed]
- Moad, G.; Rizzardo, E.; Thang, S.H. RAFT Polymerization and Some of Its Applications. Proc. Chem.-Asian J. 2013, 8, 1634–1644. [Google Scholar] [CrossRef] [PubMed]
- Chiefari, J.; Chong, Y.K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T.P.T.; Mayadunne, R.T.A.; Meijs, G.F.; Moad, C.L.; Moad, G.; et al. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process. Macromolecules 1998, 31, 5559–5562. [Google Scholar] [CrossRef]
- Zheng, M.; Ye, Q.; Chen, X.; Zeng, M.; Song, G.; Zhang, J.; Yuan, J. In Situ Generation and Evolution of Polymer Toroids by Liquid Crystallization-Assisted Seeded Dispersion Polymerization. Chem. Commun. 2022, 58, 6922–6925. [Google Scholar] [CrossRef]
- Supriya, L.; Claus, R.O. Fabrication of Electrodes for Polymer Actuators and Sensors via Self-Assembly. In Proceedings of the 2004 IEEE SENSORS, Vienna, Austria, 24–27 October 2004; pp. 619–622. [Google Scholar] [CrossRef]
- Onita, K.; Onishi, M.; Omura, T.; Wakiya, T.; Suzuki, T.; Minami, H. Preparation of Monodisperse Bio-Based Polymer Particles via Dispersion Polymerization. Langmuir 2022, 38, 7341–7345. [Google Scholar] [CrossRef]
- Chou, I.C.; Chen, I.S.; Chiu, W.Y. Surfactant-free dispersion polymerization as an efficient synthesis route to a successful encapsulation of nanoparticles. RSC Adv. 2014, 4, 47436. [Google Scholar] [CrossRef]
- Park, S.; Shou, W.; Makatura, L.; Matusik, W.; Fu, K. (Kelvin) 3D Printing of Polymer Composites: Materials, Processes, and Applications. Matter 2022, 5, 43–76. [Google Scholar] [CrossRef]
- Kulkarni, O.; Enriquez-Cabrera, A.; Yang, X.; Foncy, J.; Nicu, L.; Molnár, G.; Salmon, L. Stereolithography 3D Printing of Stimuli-Responsive Spin Crossover@Polymer Nanocomposites with Optimized Actuating Properties. Nanomaterials 2024, 14, 1243. [Google Scholar] [CrossRef]
- Pagac, M.; Hajnys, J.; Ma, Q.P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3d Printing. Polymers 2021, 13, 598. [Google Scholar] [CrossRef]
- Aldawood, F.K. A Comprehensive Review of 4D Printing: State of the Arts, Opportunities, and Challenges. Actuators 2023, 12, 101. [Google Scholar] [CrossRef]
- Sajjad, R.; Chauhdary, S.T.; Anwar, M.T.; Zahid, A.; Khosa, A.A.; Imran, M.; Sajjad, M.H. A Review of 4D Printing—Technologies, Shape Shifting, Smart Polymer Based Materials, and Biomedical Applications. Adv. Ind. Eng. Polym. Res. 2024, 7, 20–36. [Google Scholar] [CrossRef]
- Shao, Y.; Long, F.; Zhao, Z.; Fang, M.; Jing, H.; Guo, J.; Shi, X.; Sun, A.; Xu, G.; Cheng, Y. 4D Printing Light-Driven Soft Actuators Based on Liquid-Vapor Phase Transition Composites with Inherent Sensing Capability. Chem. Eng. J. 2023, 454, 140271. [Google Scholar] [CrossRef]
- Halevi, O.; Chen, J.; Thangavel, G.; Morris, S.A.; Ben Uliel, T.; Tischler, Y.R.; Lee, P.S.; Magdassi, S. Synthesis through 3D Printing: Formation of 3D Coordination Polymers. RSC Adv. 2020, 10, 14812–14817. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, X.; Cole, T.; Lu, H.; Hang, J.; Li, W.; Tang, S.Y.; Boyer, C.; Davis, T.P.; Qiao, R. 3D-Printed Liquid Metal Polymer Composites as NIR-Responsive 4D Printing Soft Robot. Nat. Commun. 2023, 14, 7815. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Lee, S.-N.; Melvin, A.A.; Choi, J.-W. Stimuli-Responsive Polymer Actuator for Soft Robotics. Polymers 2024, 16, 2660. https://doi.org/10.3390/polym16182660
Kim S, Lee S-N, Melvin AA, Choi J-W. Stimuli-Responsive Polymer Actuator for Soft Robotics. Polymers. 2024; 16(18):2660. https://doi.org/10.3390/polym16182660
Chicago/Turabian StyleKim, Seewoo, Sang-Nam Lee, Ambrose Ashwin Melvin, and Jeong-Woo Choi. 2024. "Stimuli-Responsive Polymer Actuator for Soft Robotics" Polymers 16, no. 18: 2660. https://doi.org/10.3390/polym16182660
APA StyleKim, S., Lee, S. -N., Melvin, A. A., & Choi, J. -W. (2024). Stimuli-Responsive Polymer Actuator for Soft Robotics. Polymers, 16(18), 2660. https://doi.org/10.3390/polym16182660