Electrolytes for High-Safety Lithium-Ion Batteries at Low Temperature: A Review
Abstract
:1. Introduction
2. Organic Liquid Electrolytes
2.1. Co-Solvents with Low Melting Point
2.2. LiBF4 and LiODFB Mixed-Salt Electrolyte
2.3. High-Concentration Electrolytes
3. Deep Eutectic Solvents-Based Electrolytes (DEEs)
4. Solid-State Electrolytes (SSEs)
4.1. Inorganic Solid Electrolyte
4.2. Solid-State Polymer Electrolyte
4.3. Composite Solid Electrolytes
4.4. Plastic Crystal Electrolytes
5. Ionic Liquid-Based Electrolytes
6. Liquid Inorganic Electrolytes
6.1. Aqueous Electrolytes
6.2. Non-Aqueous Electrolytes
7. Conclusions and Perspectives
- (1)
- For traditional organic liquid electrolytes: Low melting point co-solvents can lower the melting point of the electrolyte, maintain fluidity at LT, accelerate ion migration, and improve LT conductivity. Some additives can form SEI films, lowering interfacial resistance and improving battery performance. A high concentration of single/mixed lithium salts reduces side reactions between the electrolyte and the electrodes, resulting in a longer cycle life of the battery. The convergence of the advantages of different lithium salts can improve the LT performance of the battery.
- (2)
- For deep eutectic solvents-based electrolytes: They are mixtures that form eutectic structures through strong interactions and can keep the overall melting point of the solvent blend lower than that of its individual component solvents. This characteristic reduces the risk of electrolyte volatilization. Eutectic solvents typically exhibit an amorphous or locally ordered structure, enabling solvent molecules to easily rearrange and flow rather than forming a stable crystal structure at low temperatures, thus remaining liquid. However, the issue of increased battery interfacial resistance arising from the formation of a specific solvation structure between solvent molecules and lithium ions within the electrolyte remains a challenge to be addressed.
- (3)
- For solid-state electrolytes: Solid-state electrolytes have the characteristics of non-flammability, high temperature resistance, and non-corrosion, which fundamentally eliminate the safety hazards caused by electrolyte leakage and electrode short-circuiting in traditional liquid electrolytes. This allows solid-state batteries to maintain a high level of safety even under extreme conditions. Methods such as copolymerization and the addition of plasticizers can improve the ionic conductivity of polymers by reducing their crystallinity, increasing the proportion of amorphous regions, and increasing the concentration of carrier ions. Plastic crystals with ordered crystal structures are chosen to make the electrolyte more malleable and promote efficient ion migration. A low-cost and efficient solution to the poor solid-solid contact of SSEs is still a problem that needs to be explored further.
- (4)
- For ionic liquid electrolytes: Ionic liquid electrolytes usually have a low melting point and high ionic conductivity and are non-flammable, non-explosive, and have low volatility. However, the choice of raw materials for ionic liquid electrolytes affects their viscosity, and the compatibility between different ionic liquids and electrode materials needs to be constantly considered. Currently, ionic liquid electrolytes can show excellent performance under laboratory conditions, but their commercialization faces challenges such as process complexity and high production costs.
- (5)
- For inorganic liquid electrolytes: Aqueous electrolytes, whose main components are water and electrolyte salts, are non-flammable and have low raw material costs. However, they are not compatible with all electrode materials in LT applications. SO2-based inorganic liquid electrolytes have low electrical resistance, which helps to improve the Li+ transport rate at LT. They are suitable for a wide range of commercial electrode materials, have excellent cycling and multiplication performance, and are inherently non-flammable, providing high safety. SO2-based inorganic liquid electrolytes, however, have not yet been used on a large scale.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scrosati, B.; Hassoun, J.; Sun, Y.-K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295. [Google Scholar] [CrossRef]
- Diouf, B.; Pode, R. Potential of lithium-ion batteries in renewable energy. Renew. Energy 2015, 76, 375–380. [Google Scholar] [CrossRef]
- Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 2018, 3, 267–278. [Google Scholar] [CrossRef]
- Zhu, G.; Wen, K.; Lv, W.; Zhou, X.; Liang, Y.; Yang, F.; Chen, Z.; Zou, M.; Li, J.; Zhang, Y.; et al. Materials insights into low-temperature performances of lithium-ion batteries. J. Power Sources 2015, 300, 29–40. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, K.; Allen, J.; Jow, T. Effect of propylene carbonate on the low temperature performance of Li-ion cells. J. Power Sources 2002, 110, 216–221. [Google Scholar] [CrossRef]
- Nguyen, C.C.; Lucht, B.L. Development of Electrolytes for Si-Graphite Composite Electrodes. J. Electrochem. Soc. 2018, 165, A2154–A2161. [Google Scholar] [CrossRef]
- Chen, L.; Wu, H.; Ai, X.; Cao, Y.; Chen, Z. Toward wide-temperature electrolyte for lithium-ion batteries. Battery Energy 2022, 1, 20210006. [Google Scholar] [CrossRef]
- Li, Q.; Liu, G.; Cheng, H.; Sun, Q.; Zhang, J.; Ming, J. Low-Temperature Electrolyte Design for Lithium-Ion Batteries: Prospect and Challenges. Chemistry 2021, 27, 15842–15865. [Google Scholar] [CrossRef]
- Zhang, D.; Tan, C.; Ou, T.; Zhang, S.; Li, L.; Ji, X. Constructing advanced electrode materials for low-temperature lithium-ion batteries: A review. Energy Rep. 2022, 8, 4525–4534. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, W.; Li, H.; Wan, W.; Zhang, W.; Zhuo, W.; Liu, Q. Heat transfer characteristics and low-temperature performance of a lithium-ion battery with an inner cooling/heating structure. Appl. Therm. Eng. 2023, 219, 119352. [Google Scholar] [CrossRef]
- Chen, N.; Feng, M.; Li, C.; Shang, Y.; Ma, Y.; Zhang, J.; Li, Y.; Chen, G.; Wu, F.; Chen, R. Anion-Dominated Conventional-Concentrations Electrolyte to Improve Low-Temperature Performance of Lithium-Ion Batteries. Adv. Funct. Mater. 2024, 34, 2400337. [Google Scholar] [CrossRef]
- Xiao, L.F.; Cao, Y.L.; Ai, X.P.; Yang, H.X. Optimization of EC-based multi-solvent electrolytes for low temperature applications of lithium-ion batteries. Electrochim. Acta 2004, 49, 4857–4863. [Google Scholar] [CrossRef]
- Plichta, E.; Hendrickson, M.; Thompson, R.; Au, G.; Behl, W.; Smart, M.; Ratnakumar, B.; Surampudi, S. Development of low temperature Li-ion electrolytes for NASA and DoD applications. J. Power Sources 2001, 94, 160–162. [Google Scholar] [CrossRef]
- Liu, H.; Holoubek, J.; Zhou, H.; Chen, A.; Chang, N.; Wu, Z.; Yu, S.; Yan, Q.; Xing, X.; Li, Y.; et al. Ultrahigh coulombic efficiency electrolyte enables Li||SPAN batteries with superior cycling performance. Mater. Today 2021, 42, 17–28. [Google Scholar] [CrossRef]
- Zhang, S.S.; Xu, K.; Jow, T.R. A new approach toward improved low temperature performance of Li-ion battery. Electrochem. Commun. 2002, 4, 928–932. [Google Scholar] [CrossRef]
- Petzl, M.; Kasper, M.; Danzer, M.A. Lithium plating in a commercial lithium-ion battery—A low-temperature aging study. J. Power Sources 2015, 275, 799–807. [Google Scholar] [CrossRef]
- Zhang, G.; Wei, X.; Chen, S.; Han, G.; Zhu, J.; Dai, H. Investigation the Degradation Mechanisms of Lithium-Ion Batteries under Low-Temperature High-Rate Cycling. ACS Appl. Energy Mater. 2022, 5, 6462–6471. [Google Scholar] [CrossRef]
- Shah, K.; Chalise, D.; Jain, A. Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells. J. Power Sources 2016, 330, 167–174. [Google Scholar] [CrossRef]
- Wilke, S.; Schweitzer, B.; Khateeb, S.; Al-Hallaj, S. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study. J. Power Sources 2017, 340, 51–59. [Google Scholar] [CrossRef]
- Ramadass, P.; Haran, B.; White, R.; Popov, B.N. Capacity fade of Sony 18650cells cycled at elevated temperatures Part I. Cycling performance. J. Power Sources 2002, 112, 606–613. [Google Scholar] [CrossRef]
- Ould Ely, T.; Kamzabek, D.; Chakraborty, D. Batteries Safety: Recent Progress and Current Challenges. Front. Energy Res. 2019, 7, 71. [Google Scholar] [CrossRef]
- Diaz, M.; Kushima, A. Direct Observation and Quantitative Analysis of Lithium Dendrite Growth by In Situ Transmission Electron Microscopy. J. Electrochem. Soc. 2021, 168, 020535. [Google Scholar] [CrossRef]
- Belt, J.R.; Ho, C.D.; Motloch, C.G.; Miller, T.J.; Duong, T.Q. A capacity and power fade study of Li-ion cells during life cycle testing. J. Power Sources 2003, 123, 241–246. [Google Scholar] [CrossRef]
- Spotnitza, R.; Franklinb, J. Abuse behavior of high-power, lithium-ion cells. J. Power Sources 2003, 113, 81–100. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, X.; Misra, R.K.; Cai, Q.; Zhao, Y. Progress in electrolytes for beyond-lithium-ion batteries. J. Mater. Sci. Technol. 2020, 44, 237–257. [Google Scholar] [CrossRef]
- Swiderska-Mocek, A.; Naparstek, D. Physical and electrochemical properties of lithium bis(oxalate)borate—Organic mixed electrolytes in Li-ion batteries. Electrochim. Acta 2016, 204, 69–77. [Google Scholar] [CrossRef]
- Schaffner, B.; Schaffner, F.; Verevkin, S.; Borne, A. Organic Carbonates as Solvents in Synthesis and Catalysis. Chem. Rev. 2010, 110, 4554–4581. [Google Scholar] [CrossRef]
- Takenaka, N.; Suzuki, Y.; Sakai, H.; Nagaoka, M. On Electrolyte-Dependent Formation of Solid Electrolyte Interphase Film in Lithium-Ion Batteries: Strong Sensitivity to Small Structural Difference of Electrolyte Molecules. J. Phys. Chem. C 2014, 118, 10874–10882. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, T.; Wang, E.; Sun, B.; Sun, K.; Peng, Z. Unlocking the Low-Temperature Potential of Propylene Carbonate to −30 °C via N-Methylpyrrolidone. ACS Appl. Mater. Interfaces 2022, 14, 45484–45493. [Google Scholar] [CrossRef]
- Ein-Eli, Y.; Thomas, S.; Chadha, R.; Blakley, T.; Koch, V. Li-Ion Battery Electrolyte Formulated for Low-Temperature Applications. Journal of The Electrochemical Society 1997. [CrossRef]
- Smart, M.C.; Ratnakumar, B.V.; Surampudi, S.J. Electrolytes for Low-Temperature Lithium Batteries Based on Ternary. J. Electrochem. Soc. 1999, 146, 486–492. [Google Scholar] [CrossRef]
- Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104, 4303–4418. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.-G.; Li, M.; Holoubek, J.; Li, W.; Yin, Y.; Meng, Y.S.; Chen, Z. Enabling the Low-Temperature Cycling of NMC||Graphite Pouch Cells with an Ester-Based Electrolyte. ACS Energy Lett. 2021, 6, 2016–2023. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, K.; Jow, T. Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte. J. Solid State Electrochem. 2003, 7, 147–151. [Google Scholar] [CrossRef]
- Ding, M.; Richard, J. How Conductivities and Viscosities of PC-DEC and PC-EC Solutions of LiBF4, LiPF6, LiBOB, Et4NBF4, and Et4NPF6 Differ and Why. J. Electrochem. Soc. 2007, 151, A2007–A2015. [Google Scholar] [CrossRef]
- Zhang, S.S. Lithium Oxalyldifluoroborate as a Salt for the Improved Electrolytes of Li. ECS Trans. 2007, 3, 59–68. [Google Scholar] [CrossRef]
- Zhou, H.; Xiao, K.; Li, J. Lithium difluoro(oxalate)borate and LiBF4 blend salts electrolyte for LiNi0.5Mn1.5O4 cathode material. J. Power Sources 2016, 302, 274–282. [Google Scholar] [CrossRef]
- Zhang, L.-J.; Juan, X.; He, J.-Z.; Jia, L.-R.; Xiao, Y.; Zhang, X.-Y.; Sun, Y.-X. Study on synergistic effect and low temperature performance of LiODFB/LiBF4 mixed salt based electrolyte. Ionics 2023, 29, 4697–4706. [Google Scholar] [CrossRef]
- Rodrigo, N.D.; Jayawardana, C.; Rynearson, L.; Hu, E.; Yang, X.-Q.; Lucht, B.L. Use of Ethylene Carbonate Free Ester Solvent Systems with Alternative Lithium Salts for Improved Low-Temperature Performance in NCM622∣∣Graphite Li-ion Batteries. J. Electrochem. Soc. 2022, 169, 110504. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, Y.; Zhou, Y.; Hai, C.; Hu, S.; Zeng, J.; Shen, Y.; Dong, S.; Qi, G.; Li, F. Investigation of the synergetic effects of LiBF4 and LiODFB as wide-temperature electrolyte salts in lithium-ion batteries. Ionics 2018, 24, 2995–3004. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Liu, J.; Shang, Z.; Cui, X. A low-temperature electrolyte for lithium-ion batteries. Ionics 2014, 21, 901–907. [Google Scholar] [CrossRef]
- Tachikawa, N.; Yamauchi, K.; Takashima, E.; Park, J.W.; Dokko, K.; Watanabe, M. Reversibility of electrochemical reactions of sulfur supported on inverse opal carbon in glyme-Li salt molten complex electrolytes. Chem. Commun. 2011, 47, 8157–8159. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Nakamura, M.; Kazue, Y.; Tachikawa, N.; Tsuzuki, S.; Seki, S.; Dokko, K.; Watanabe, M. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. J. Am. Chem. Soc. 2011, 133, 13121–13129. [Google Scholar] [CrossRef]
- Azov, V.A.; Egorova, K.S.; Seitkalieva, M.M.; Kashin, A.S.; Ananikov, V.P. “Solvent-in-salt” systems for design of new materials in chemistry, biology and energy research. Chem. Soc. Rev. 2018, 47, 1250–1284. [Google Scholar] [CrossRef]
- Xie, J.-D.; Patra, J.; Rath, P.C.; Liu, W.-J.; Su, C.-Y.; Lee, S.-W.; Tseng, C.-J.; Gandomi, Y.A.; Chang, J.-K. Highly concentrated carbonate electrolyte for Li-ion batteries with lithium metal and graphite anodes. J. Power Sources 2020, 450, 227657. [Google Scholar] [CrossRef]
- Pham, T.D.; Bin Faheem, A.; Lee, K.K. Design of a LiF-Rich Solid Electrolyte Interphase Layer through Highly Concentrated LiFSI-THF Electrolyte for Stable Lithium Metal Batteries. Small 2021, 17, e2103375. [Google Scholar] [CrossRef]
- Ding, J.F.; Xu, R.; Yao, N.; Chen, X.; Xiao, Y.; Yao, Y.X.; Yan, C.; Xie, J.; Huang, J.Q. Non-Solvating and Low-Dielectricity Cosolvent for Anion-Derived Solid Electrolyte Interphases in Lithium Metal Batteries. Angew. Chem. 2021, 60, 11442–11447. [Google Scholar] [CrossRef]
- Borodin, O.; Suo, L.; Gobet, M.; Ren, X.; Wang, F.; Faraone, A.; Peng, J.; Olguin, M.; Schroeder, M.; Ding, M.S.; et al. Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes. ACS Nano 2017, 11, 10462–10471. [Google Scholar] [CrossRef]
- Wang, J.; Yamada, Y.; Sodeyama, K.; Chiang, C.H.; Tateyama, Y.; Yamada, A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 2016, 7, 12032. [Google Scholar] [CrossRef]
- Tian, C.; Qin, K.; Suo, L. Concentrated electrolytes for rechargeable lithium metal batteries. Mater. Futures 2023, 2, 012101. [Google Scholar] [CrossRef]
- Tsujikawa, T.; Yabuta, K.; Matsushita, T.; Matsushima, T.; Hayashi, K.; Arakawa, M. Characteristics of lithium-ion battery with non-flammable electrolyte. J. Power Sources 2009, 189, 429–434. [Google Scholar] [CrossRef]
- Sun, H.; Zhu, G.; Zhu, Y.; Lin, M.C.; Chen, H.; Li, Y.Y.; Hung, W.H.; Zhou, B.; Wang, X.; Bai, Y.; et al. High-Safety and High-Energy-Density Lithium Metal Batteries in a Novel Ionic-Liquid Electrolyte. Adv. Mater. 2020, 32, e2001741. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xue, Z.; Chu, F.; Guan, Z.; Lei, J.; Wu, F. Moderately concentrated electrolyte enabling high-performance lithium metal batteries with a wide working temperature range. J. Energy Chem. 2023, 79, 201–210. [Google Scholar] [CrossRef]
- Alvarado, J.; Schroeder, M.A.; Pollard, T.P.; Wang, X.; Lee, J.Z.; Zhang, M.; Wynn, T.; Ding, M.; Borodin, O.; Meng, Y.S.; et al. Bisalt ether electrolytes: A pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ. Sci. 2019, 12, 780–794. [Google Scholar] [CrossRef]
- Jiao, S.; Ren, X.; Cao, R.; Engelhard, M.H.; Liu, Y.; Hu, D.; Mei, D.; Zheng, J.; Zhao, W.; Li, Q.; et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 2018, 3, 739–746. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, C.; Qi, X.; Qi, Y.; Li, H.; Huang, X.; Chen, L.; Hu, Y.S. Pre-Oxidation-Tuned Microstructures of Carbon Anodes Derived from Pitch for Enhancing Na Storage Performance. Adv. Energy Mater. 2018, 8, 1800108. [Google Scholar] [CrossRef]
- Xu, G.; Shangguan, X.; Dong, S.; Zhou, X.; Cui, G. Formulation of Blended-Lithium-Salt Electrolytes for Lithium Batteries. Angew. Chem. 2020, 59, 3400–3415. [Google Scholar] [CrossRef]
- Yao, K.; Lv, X.; Zhu, X.; Cai, Z.; Zheng, G. Research progress in toxicity of carbon quantum dots. Sci. Sin. Chim. 2017, 47, 1170–1178. [Google Scholar] [CrossRef]
- Lin, S.; Hua, H.; Lai, P.; Zhao, J. A Multifunctional Dual-Salt Localized High-Concentration Electrolyte for Fast Dynamic High-Voltage Lithium Battery in Wide Temperature Range. Adv. Energy Mater. 2021, 11, 2101775. [Google Scholar] [CrossRef]
- Zhao, M.; Xu, G.; Lu, D.; Xie, B.; Huang, L.; Wang, W.; Cui, G. Formulating a Non-Flammable Highly Concentrated Dual-Salt Electrolyte for Wide Temperature High-Nickel Lithium Ion Batteries. J. Electrochem. Soc. 2021, 168, 050511. [Google Scholar] [CrossRef]
- Li, L.; Lv, W.; Chen, J.; Zhu, C.; Dmytro, S.; Zhang, Q.; Zhong, S. Lithium Difluorophosphate (LiPO2F2): An Electrolyte Additive to Help Boost Low-Temperature Behaviors for Lithium-Ion Batteries. ACS Appl. Energy Mater. 2022, 5, 11900–11914. [Google Scholar] [CrossRef]
- Navarro-Suárez, A.M.; Johansson, P. Perspective—Semi-Solid Electrolytes Based on Deep Eutectic Solvents: Opportunities and Future Directions. J. Electrochem. Soc. 2020, 167, 070511. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed]
- Alavinia, S.; Ghorbani-Vaghei, R. Magnetic Fe3O4 nanoparticles in melamine-based ternary deep eutectic solvent as a novel eco-compatible system for green synthesis of pyrido [2,3-d]pyrimidine derivatives. J. Mol. Struct. 2022, 1270, 133860. [Google Scholar] [CrossRef]
- Geiculescu, O.E.; DesMarteau, D.D.; Creager, S.E.; Haik, O.; Hirshberg, D.; Shilina, Y.; Zinigrad, E.; Levi, M.D.; Aurbach, D.; Halalay, I.C. Novel binary deep eutectic electrolytes for rechargeable Li-ion batteries based on mixtures of alkyl sulfonamides and lithium perfluoroalkylsulfonimide salts. J. Power Sources 2016, 307, 519–525. [Google Scholar] [CrossRef]
- Hardin, N.Z.; Duca, Z.; Imel, A.; Ward, P.A. Methyl Carbamate-Lithium Salt Deep Eutectic Electrolyte for Lithium-Ion Batteries. ChemElectroChem 2022, 9, e202200628. [Google Scholar] [CrossRef]
- Hu, Z.; Xian, F.; Guo, Z.; Lu, C.; Du, X.; Cheng, X.; Zhang, S.; Dong, S.; Cui, G.; Chen, L. Nonflammable Nitrile Deep Eutectic Electrolyte Enables High-Voltage Lithium Metal Batteries. Chem. Mater. 2020, 32, 3405–3413. [Google Scholar] [CrossRef]
- Li, C.; Zhang, S.; Wang, Y.; Liu, H.; Xing, T.; Lin, Y.; Rong, X.; Ren, H.; Wu, M.; Abbas, Q.; et al. Dual breaking of ionic association in water-in-LiTFSI electrolyte for low temperature battery applications. J. Power Sources 2022, 544, 231874. [Google Scholar] [CrossRef]
- Alonso, D.A.; Baeza, A.; Chinchilla, R.; Guillena, G.; Pastor, I.M.; Ramón, D.J. Deep Eutectic Solvents: The Organic Reaction Medium of the Century. Eur. J. Org. Chem. 2016, 2016, 612–632. [Google Scholar] [CrossRef]
- Quazi, M.A.; Kundu, D. Density functional theory assessment of molecular interactions and electronic properties in lithium Bis(trifluoromethanesulfonyl)imide with inorganic and organic polymer derived eutectogel. J. Power Sources 2024, 597, 234129. [Google Scholar] [CrossRef]
- Hou, X.; Pollard, T.P.; He, X.; Du, L.; Ju, X.; Zhao, W.; Li, M.; Wang, J.; Paillard, E.; Lin, H.; et al. “Water-in-Eutectogel” Electrolytes for Quasi-Solid-State Aqueous Lithium-Ion Batteries. Adv. Energy Mater. 2022, 12, 2200401. [Google Scholar] [CrossRef]
- Quartarone, E.; Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev. 2011, 40, 2525–2540. [Google Scholar] [CrossRef]
- Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262. [Google Scholar] [CrossRef]
- Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1, 16030. [Google Scholar] [CrossRef]
- Bachman, J.C.; Muy, S.; Grimaud, A.; Chang, H.H.; Pour, N.; Lux, S.F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chem. Rev. 2016, 116, 140–162. [Google Scholar] [CrossRef]
- Li, G.; Gao, Y.; He, X.; Huang, Q.; Chen, S.; Kim, S.H.; Wang, D. Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries. Nat. Commun. 2017, 8, 850. [Google Scholar] [CrossRef]
- Wu, D.; Chen, L.; Li, H.; Wu, F. Solid-state lithium batteries-from fundamental research to industrial progress. Prog. Mater. Sci. 2023, 139, 101182. [Google Scholar] [CrossRef]
- Peng, L.; Yu, C.; Zhang, Z.; Ren, H.; Zhang, J.; He, Z.; Yu, M.; Zhang, L.; Cheng, S.; Xie, J. Chlorine-rich lithium argyrodite enabling solid-state batteries with capabilities of high voltage, high rate, low-temperature and ultralong cyclability. Chem. Eng. J. 2022, 430, 132896. [Google Scholar] [CrossRef]
- Yu, C.; Li, Y.; Willans, M.; Zhao, Y.; Adair, K.R.; Zhao, F.; Li, W.; Deng, S.; Liang, J.; Banis, M.N.; et al. Superionic conductivity in lithium argyrodite solid-state electrolyte by controlled Cl-doping. Nano Energy 2020, 69, 104396. [Google Scholar] [CrossRef]
- Walther, F.; Koerver, R.; Fuchs, T.; Ohno, S.; Sann, J.; Rohnke, M.; Zeier, W.G.; Janek, J. Visualization of the Interfacial Decomposition of Composite Cathodes in Argyrodite-Based All-Solid-State Batteries Using Time-of-Flight Secondary-Ion Mass Spectrometry. Chem. Mater. 2019, 31, 3745–3755. [Google Scholar] [CrossRef]
- Li, Y.; Song, S.; Kim, H.; Nomoto, K.; Kim, H.; Sun, X.; Hori, S.; Suzuki, K.; Matsui, N.; Hirayama, M.; et al. A lithium superionic conductor for millimeter-thick battery electrode. Science 2023, 381, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem 2019, 5, 2326–2352. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Zhou, Y.; Liang, Z.; Tavajohi, N.; Li, B.; Li, T. Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Li-Based Rechargeable Batteries. Adv. Sci. 2021, 8, 2003675. [Google Scholar] [CrossRef]
- Lv, F.; Liu, K.; Wang, Z.; Zhu, J.; Zhao, Y.; Yuan, S. Ultraviolet-cured polyethylene oxide-based composite electrolyte enabling stable cycling of lithium battery at low temperature. J. Colloid Interface Sci. 2021, 596, 257–266. [Google Scholar] [CrossRef]
- Xu, S.; Sun, Z.; Sun, C.; Li, F.; Chen, K.; Zhang, Z.; Hou, G.; Cheng, H.M.; Li, F. Homogeneous and Fast Ion Conduction of PEO-Based Solid-State Electrolyte at Low Temperature. Adv. Funct. Mater. 2020, 30, 2007172. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Liu, Q.; Wang, S.; Zhou, D.; Kang, F.; Shanmukaraj, D.; Armand, M.; Rojo, T.; Li, B.; et al. A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries. Nat. Commun. 2021, 12, 5746. [Google Scholar] [CrossRef]
- Ren, W.; Zhang, Y.; Lv, R.; Guo, S.; Wu, W.; Liu, Y.; Wang, J. In-situ formation of quasi-solid polymer electrolyte for improved lithium metal battery performances at low temperatures. J. Power Sources 2022, 542, 231773. [Google Scholar] [CrossRef]
- Hou, J.; Yang, M.; Wang, D.; Zhang, J. Fundamentals and Challenges of Lithium Ion Batteries at Temperatures between −40 and 60 °C. Adv. Energy Mater. 2020, 10, 1904152. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.Q.; Li, H.R.; Zhang, Q. Cation−Solvent, Cation−Anion, and Solvent−Solvent Interactions with Electrolyte Solvation in Lithium Batteries. Batter. Supercaps 2019, 2, 128–131. [Google Scholar] [CrossRef]
- Deng, K.; Zeng, Q.; Wang, D.; Liu, Z.; Wang, G.; Qiu, Z.; Zhang, Y.; Xiao, M.; Meng, Y. Nonflammable organic electrolytes for high-safety lithium-ion batteries. Energy Storage Mater. 2020, 32, 425–447. [Google Scholar] [CrossRef]
- Yao, N.; Chen, X.; Shen, X.; Zhang, R.; Fu, Z.H.; Ma, X.X.; Zhang, X.Q.; Li, B.Q.; Zhang, Q. An Atomic Insight into the Chemical Origin and Variation of the Dielectric Constant in Liquid Electrolytes. Angew. Chem. 2021, 60, 21473–21478. [Google Scholar] [CrossRef]
- Li, Z.; Yu, R.; Weng, S.; Zhang, Q.; Wang, X.; Guo, X. Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries. Nat. Commun. 2023, 14, 482. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Z.; Wu, Y.; Ji, S.; Yuan, Z.; Liu, J.; Zhu, M. In Situ Construction a Stable Protective Layer in Polymer Electrolyte for Ultralong Lifespan Solid-State Lithium Metal Batteries. Adv. Sci. 2022, 9, e2104277. [Google Scholar] [CrossRef]
- Cote, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.G.; Su, C.Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 2011, 133, 19816–19822. [Google Scholar] [CrossRef] [PubMed]
- Xuan, Y.; Wang, Y.; He, B.; Bian, S.; Liu, J.; Xu, B.; Zhang, G. Covalent Organic Framework-Derived Quasi-Solid Electrolyte for Low-Temperature Lithium-Ion Battery. Chem. Mater. 2022, 34, 9104–9110. [Google Scholar] [CrossRef]
- Chen, Z.; Steinle, D.; Nguyen, H.-D.; Kim, J.-K.; Mayer, A.; Shi, J.; Paillard, E.; Iojoiu, C.; Passerini, S.; Bresser, D. High-energy lithium batteries based on single-ion conducting polymer electrolytes and Li[Ni0.8Co0.1Mn0.1]O2 cathodes. Nano Energy 2020, 77, 105129. [Google Scholar] [CrossRef]
- Shi, J.; Nguyen, H.-D.; Chen, Z.; Wang, R.; Steinle, D.; Barnsley, L.; Li, J.; Frielinghaus, H.; Bresser, D.; Iojoiu, C.; et al. Nanostructured block copolymer single-ion conductors for low-temperature, high-voltage and fast charging lithium-metal batteries. Energy Mater. 2023, 3, 300036. [Google Scholar] [CrossRef]
- Das, S.; Pol, V.G.; Adyam, V. Nonwoven fabric supported flame-retarding quasi-solid electrolyte for wider-temperature safer Li-ion battery. J. Power Sources 2024, 617, 235160. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Wu, Y.; Li, Y.; Yue, Z.; Chen, M. PVDF-HFP/PAN/PDA@LLZTO Composite Solid Electrolyte Enabling Reinforced Safety and Outstanding Low-Temperature Performance for Quasi-Solid-State Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2023, 15, 21526–21536. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Chen, L.; Ma, J.; Lai, C.; Huang, Y.; Mi, J.; Biao, J.; Zhang, D.; Shi, P.; Xia, H.; et al. Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cyclingsolid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Angew. Chem. Int. Ed. 2021, 60, 24668–24675. [Google Scholar] [CrossRef] [PubMed]
- Nematdoust, S.; Najjar, R.; Bresser, D.; Passerini, S. Understanding the Role of Nanoparticles in PEO-Based Hybrid Polymer Electrolytes for Solid-State Lithium–Polymer Batteries. J. Phys. Chem. C 2020, 124, 27907–27915. [Google Scholar] [CrossRef]
- Stettner, T.; Lingua, G.; Falco, M.; Balducci, A.; Gerbaldi, C. Protic Ionic Liquids-Based Crosslinked Polymer Electrolytes: A New Class of Solid Electrolytes for Energy Storage Devices. Energy Technol. 2020, 8, 2000742. [Google Scholar] [CrossRef]
- Lee, T.K.; Andersson, R.; Dzulkurnain, N.A.; Hernández, G.; Mindemark, J.; Brandell, D. Polyester-ZrO2 Nanocomposite Electrolytes with High Li Transference Numbers for Ambient Temperature All-Solid-State Lithium Batteries. Batter. Supercaps 2020, 4, 653–662. [Google Scholar] [CrossRef]
- Kwon, T.; Choi, I.; Park, M.J. Highly Conductive Solid-State Hybrid Electrolytes Operating at Subzero Temperatures. ACS Appl. Mater. Interfaces 2017, 9, 24250–24258. [Google Scholar] [CrossRef]
- Zhou, X.; Kozdra, M.; Ran, Q.; Deng, K.; Zhou, H.; Brandell, D.; Wang, J. 3-(2,2,2-Trifluoroethoxy)propionitrile-based electrolytes for high energy density lithium metal batteries. Nanoscale 2022, 14, 17237–17246. [Google Scholar] [CrossRef]
- Zhu, H.; MacFarlane, D.R.; Pringle, J.M.; Forsyth, M. Organic Ionic Plastic Crystals as Solid-State Electrolytes. Trends Chem. 2019, 1, 126–140. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L.; Liu, Y.; Zhang, X.M.; Li, J. Entropy-Driven Ultrafast Ion Conduction Via Confining Organic Plastic Crystals in Ordered Nanochannels of Covalent Organic Frameworks. Small 2023, 19, e2207831. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, F.; He, P.; Zhang, Y.; Sun, Y.; Xu, J.; Hu, J.; Zhang, H.; Wu, X. Quasi-solid-state polymer plastic crystal electrolyte for subzero lithium-ion batteries. J. Energy Chem. 2020, 46, 87–93. [Google Scholar] [CrossRef]
- Rogers, R.D.; Seddon, K.R. Ionic Liquids—Solvents of the Future? Science 2003, 302, 792–793. [Google Scholar] [CrossRef] [PubMed]
- Lian, C.; Liu, H.; Li, C.; Wu, J. Hunting ionic liquids with large electrochemical potential windows. AIChE J. 2018, 65, 804–810. [Google Scholar] [CrossRef]
- Liu, C.; Ma, X.; Xu, F.; Zheng, L.; Zhang, H.; Feng, W.; Huang, X.; Armand, M.; Nie, J.; Chen, H.; et al. Ionic liquid electrolyte of lithium bis(fluorosulfonyl)imide/N-methyl-N-propylpiperidinium bis(fluorosulfonyl)imide for Li/natural graphite cells: Effect of concentration of lithium salt on the physicochemical and electrochemical properties. Electrochim. Acta 2014, 149, 370–385. [Google Scholar] [CrossRef]
- Reiter, J.; Nádherná, M.; Dominko, R. Graphite and LiCo1/3Mn1/3Ni1/3O2 electrodes with piperidinium ionic liquid and lithium bis(fluorosulfonyl)imide for Li-ion batteries. J. Power Sources 2012, 205, 402–407. [Google Scholar] [CrossRef]
- Zheng, H.; Jiang, K.; Abe, T.; Ogumi, Z. Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes. Carbon 2006, 44, 203–210. [Google Scholar] [CrossRef]
- Pal, U.; Girard, G.M.A.; O’Dell, L.A.; Roy, B.; Wang, X.; Armand, M.; MacFarlane, D.R.; Howlett, P.C.; Forsyth, M. Improved Li-Ion Transport by DME Chelation in a Novel Ionic Liquid-Based Hybrid Electrolyte for Li–S Battery Application. J. Phys. Chem. C 2018, 122, 14373–14382. [Google Scholar] [CrossRef]
- Aguilera, L.; Scheers, J.; Matic, A. Enhanced low-temperature ionic conductivity via different Li+ solvated clusters in organic solvent/ionic liquid mixed electrolytes. Phys. Chem. Chem. Phys. 2016, 18, 25458–25464. [Google Scholar] [CrossRef]
- Moreno, M.; Simonetti, E.; Appetecchi, G.B.; Carewska, M.; Montanino, M.; Kim, G.T.; Loeffler, N.; Passerini, S. Ionic Liquid Electrolytes for Safer Lithium Batteries. J. Electrochem. Soc. 2016, 164, A6026–A6031. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Han, R.; Xu, J.; Pan, A.; Zhang, F.; Huang, D.; Wei, Y.; Wang, L.; Song, H.; et al. Establish an Advanced Electrolyte/Graphite Interphase by an Ionic Liquid-Based Localized Highly Concentrated Electrolyte for Low-Temperature and Rapid-Charging Li-Ion Batteries. ACS Sustain. Chem. Eng. 2022, 10, 12023–12029. [Google Scholar] [CrossRef]
- Pal, U.; Rakov, D.; Lu, B.; Sayahpour, B.; Chen, F.; Roy, B.; MacFarlane, D.R.; Armand, M.; Howlett, P.C.; Meng, Y.S.; et al. Interphase control for high performance lithium metal batteries using ether aided ionic liquid electrolyte. Energy Environ. Sci. 2022, 15, 1907–1919. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, Q.; Lu, Y.; Hao, Z.; Ni, Y.; Chen, J. An Ionic Liquid Electrolyte with Enhanced Li+ Transport Ability Enables Stable Li Deposition for High-Performance Li-O2 Batteries. Angew. Chem. 2021, 60, 25973–25980. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zeng, Z.; Liang, X.; Yang, L.; Hu, W.; Zhang, C.; Han, Z.; Feng, J.; Xie, J. Fluorobenzene, A Low-Density, Economical, and Bifunctional Hydrocarbon Cosolvent for Practical Lithium Metal Batteries. Adv. Funct. Mater. 2020, 31, 2005991. [Google Scholar] [CrossRef]
- Wu, Z.; Li, R.; Zhang, S.; Lv, L.; Deng, T.; Zhang, H.; Zhang, R.; Liu, J.; Ding, S.; Fan, L.; et al. Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries. Chem 2023, 9, 650–664. [Google Scholar] [CrossRef]
- Yoo, D.J.; Yang, S.; Kim, K.J.; Choi, J.W. Fluorinated Aromatic Diluent for High-Performance Lithium Metal Batteries. Angew. Chem. 2020, 59, 14869–14876. [Google Scholar] [CrossRef]
- Lee, S.; Park, K.; Koo, B.; Park, C.; Jang, M.; Lee, H.; Lee, H. Safe, Stable Cycling of Lithium Metal Batteries with Low-Viscosity, Fire-Retardant Locally Concentrated Ionic Liquid Electrolytes. Adv. Funct. Mater. 2020, 30, 2003132. [Google Scholar] [CrossRef]
- Liu, X.; Mariani, A.; Diemant, T.; Dong, X.; Su, P.H.; Passerini, S. Locally Concentrated Ionic Liquid Electrolytes Enabling Low-Temperature Lithium Metal Batteries. Angew. Chem. 2023, 62, e202305840. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, F.; Sun, Y.; Zheng, L.; Shen, Y.; Fu, D.; Li, W.; Pan, A.; Wang, L.; Xu, J.; et al. Intrinsically Nonflammable Ionic Liquid-Based Localized Highly Concentrated Electrolytes Enable High-Performance Li-Metal Batteries. Adv. Energy Mater. 2021, 11, 2003752. [Google Scholar] [CrossRef]
- Liu, X.; Mariani, A.; Diemant, T.; Pietro, M.E.D.; Dong, X.; Kuenzel, M.; Mele, A.; Passerini, S. Difluorobenzene-Based Locally Concentrated Ionic Liquid Electrolyte Enabling Stable Cycling of Lithium Metal Batteries with Nickel-Rich Cathode. Adv. Energy Mater. 2022, 12, 2200862. [Google Scholar] [CrossRef]
- Sui, Y.; Ji, X. Electrolyte Interphases in Aqueous Batteries. Angew. Chem. Int. Ed. 2023, 63, e202312585. [Google Scholar] [CrossRef]
- Becker, M.; Kühnel, R.-S.; Battaglia, C. Water-in-salt electrolytes for aqueous lithium-ion batteries with liquidus temperatures below −10 °C. Chem. Commun. 2019, 55, 12032–12035. [Google Scholar] [CrossRef]
- Chen, J.; Vatamanu, J.; Xing, L.; Borodin, O.; Chen, H.; Guan, X.; Liu, X.; Xu, K.; Li, W. Improving Electrochemical Stability and Low-Temperature Performance with Water/Acetonitrile Hybrid Electrolytes. Adv. Energy Mater. 2019, 10, 1902654. [Google Scholar] [CrossRef]
- Xing, H.; Liao, C.; Yang, Q.; Veith, G.M.; Guo, B.; Sun, X.G.; Ren, Q.; Hu, Y.S.; Dai, S. Ambient Lithium–SO2 Batteries with Ionic Liquids as Electrolytes. Angew. Chem. Int. Ed. 2014, 53, 2099–2103. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Borodin, O.; Ding, M.S.; Gobet, M.; Vatamanu, J.; Fan, X.; Gao, T.; Eidson, N.; Liang, Y.; Sun, W.; et al. Hybrid Aqueous/Non-aqueous Electrolyte for Safe and High-Energy Li-Ion Batteries. Joule 2018, 2, 927–937. [Google Scholar] [CrossRef]
- Foster, D.; Kuo, H.; Schlaikjer, C.; Dey, A. New highly conductive inorganic electrolytes the liquid SO2 solvates of the alkali and alkaline earth metal tetrachloroaluminates. J. Electrochem. Soc. 1988, 135, 2682. [Google Scholar] [CrossRef]
- Grundish, N.; Amos, C.; Goodenough, J.B. Communication-Characterization of LiAlCl4·xSO2Inorganic Liquid Li+Electrolyte. J. Electrochem. Soc. 2018, 165, A1694–A1696. [Google Scholar] [CrossRef]
- Kim, A.; Jung, H.; Song, J.; Kim, H.J.; Jeong, G.; Kim, H. Lithium-Ion Intercalation into Graphite in SO2-Based Inorganic Electrolyte toward High-Rate-Capable and Safe Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 9054–9061. [Google Scholar] [CrossRef]
- Song, J.; Chun, J.; Kim, A.; Jung, H.; Kim, H.J.; Kim, Y.J.; Jeong, G.; Kim, H. Dendrite-Free Li Metal Anode for Rechargeable Li-SO2 Batteries Employing Surface Modification with a NaAlCl4-2SO2 Electrolyte. ACS Appl. Mater. Interfaces 2018, 10, 34699–34705. [Google Scholar] [CrossRef]
- Dünger, H.-J.; Hambitzer, G.; Lutter, W. Lithium-cycling efficiency in inorganic electrolyte solution. Power Sources 1993, 43–44, 405–408. [Google Scholar] [CrossRef]
- Mews, R.L.E.; Paul, G. Watson, Bernd Gortler. Coordination chemistry in and of sulfur dioxide. Coord. Chem. Rev. 2000, 197, 277–320. [Google Scholar] [CrossRef]
- Stassen, I.; Hambitzer, G. Metallic lithium batteries for high power applications. J. Power Sources 2002, 105, 145–150. [Google Scholar] [CrossRef]
- Hartl, R.; Fleischmann, M.; Gschwind, R.; Winter, M.; Gores, H. A Liquid Inorganic Electrolyte Showing an Unusually High Lithium Ion Transference Number: A Concentrated Solution of LiAlCl4 in Sulfur Dioxide. Energies 2013, 6, 4448–4464. [Google Scholar] [CrossRef]
- Gao, T.; Wang, B.; Wang, L.; Liu, G.; Wang, F.; Luo, H.; Wang, D. LiAlCl4·3SO2 as a high conductive, non-flammable and inorganic non-aqueous liquid electrolyte for lithium ion batteries. Electrochim. Acta 2018, 286, 77–85. [Google Scholar] [CrossRef]
- Gao, T.; Wang, B.; Wang, F.; Li, R.; Wang, L.; Wang, D. LiAlCl4·3SO2: A promising inorganic electrolyte for stable Li metal anode at room and low temperature. Ionics 2019, 25, 4137–4147. [Google Scholar] [CrossRef]
Type | Composites | Ionic Conductivity (S cm−1)/ Measuring Temperature (°C) | Initial Capacity (mAh g−1)/ Capacity Rentation (%)/ Current Density/ Cycle Number/ Measuring Temperature (°C) | Reference |
---|---|---|---|---|
DEEs | MSA:LiFSI 3:1 | >1.0 × 10−4/−30 °C | - | [66] |
DMMSA:LiFSI 4:1 | >1.0 × 10−4/−30 °C | |||
LiPF6-DEE | 7.78 × 10−4/0 °C | - | [67] | |
LiTFSI-DEE | 8.26 × 10−4/0 °C | |||
D-DES | 1.0 × 10−3/RT | [68] | ||
LiMn2O4//LT-1//LiTi2 (PO4)3 | - | ~60 mAh g−1/97.5%/0.1 A g−1/20 cyc/−20 °C | [69] | |
~95 mAh g−1/98%/0.1 A g−1/20 cyc/−10 °C | ||||
~60 mAh g−1/97.5/0.1 A g−1/20 cyc/−20 °C | ||||
LMO//CP-131//LTO | - | 120 mAh g−1/83.3%/1 C/10 cyc/0 °C | [72] | |
80 mAh g−1/95%/1 C/10 cyc/−10 °C | ||||
40 mAh g−1/97%/1 C/10 cyc/−20 °C | ||||
SSE-ISEs | LSiGePSBrO | 9 × 10−3/−10 °C | - | [82] |
NCM622//Li5.5PS4.5Cl1.5//Li | -/−20 °C | ~57 mAh g−1/88.4%/1 C/100 cyc/−20 °C | [79] | |
SSE-SPEs | Li//DOL/Al(OTF)3/LiTFSI//Li | 3.26 × 10−4/0 °C | stable cycle of 710 h at a rate of 0.2 mA cm−2 with 0 °C | [88] |
DOL/FEC/Al(OTF)3/LiTFSI(FEC = 5 vol.%) | - | - | ||
LFP//Poly-DOL-10//Li | 2.4 × 10−5/−60 °C | ~70 mAh g−1/104.7%/0.2 C/100 cyc/−20 °C | ||
9.86 × 10−4/0 °C | ~112 mAh g−1/111.2%/0.2 C/400 cyc/0 °C | |||
DOL/FEC/Al(OTF)3/LiTFSI(FEC = 15 vol.%) | 1.56 × 10−3/0 °C | - | ||
Li//TXE-FDMA//NCM811 | -/0 °C | ~187 mAh g−1/99.7%/0.1 C/10 cyc/0 °C | [93] | |
2.2 × 10−4/−20 °C | ~130 mAh g−1/99.1%/0.1 C/200 cyc/−20°C | |||
Li//TXE-FDMA//LFP | -/−20 °C | ~83 mAh g−1/114.4%/0.085 C/350 cyc/−20°C | ||
LFP//Li-PEG@NUST-21//Li | 7.55 × 10−7/−40 °C | ~110 mAh g−1/113.2%/0.1 C/82 cyc/10 °C | [97] | |
5.41 × 10−5/0 °C | ||||
LFP//Li-PEG@NUST-22//Li | 4.63 × 10−7/−40 °C | ~125 mAh g−1/84.64%/0.1 C/94 cyc/10 °C | ||
3.83 × 10−5/0 °C | ||||
LFP//Li-PEG@NUST-23//Li | 9.74 × 10−7/−40 °C | ~125 mAh g−1/106.9%/0.1 C/94 cyc/10 °C | ||
7.10 × 10−5/0 °C | ||||
Li//SI10-05-70%PC//NCM811 | 6 × 10−4/20 °C | 109 mAh g−1/90%/0.5 C/500 cyc/0 °C | [98] | |
>1 × 10−4/−30 °C | ||||
Li//PTFSI-10/5-PC//NMC622 | 2.15 × 10−4/20 °C | ~75 mAh g−1/80%/0.5 C/300 cyc/0 °C | [99] | |
8.98 × 10−5/0 °C | ||||
LFP//LiQSSE//Li | 3.9 × 10−5/−20 °C | ~53 mAh g−1/93%/0.5 C/90 cyc/−10 °C | [100] | |
SSE-CESs | LFP//PPPL-10//Li | 0.4 × 10−3/25 °C | ~109 mAh g−1/99.9%/0.2 C/100 cyc/0 °C | [101] |
NCM811//PVLN-15//Li | - | ~142 mAh g−1/118.3%/0.1 C/100 cyc/−20 °C | [102] | |
ZnO-PEO | >1 × 10−4/0 °C | - | [103] | |
PEO-HPyr | >1 × 10−6/−20 °C | - | [104] | |
LTO//CSE//Li | >1 × 10−4/−10 °C | ~160 mAh g−1/94.38%/0.4 C/50 cyc/−10 °C | [105] | |
SSE-PCEs | LiPBu4TFSI@TPB-DMTP-COF | 2.1 × 10−2/−30 °C | - | [109] |
LCO//PPCE-3//LTO | 6 × 10−4/−20 °C | 128 mAh g−1/-/15mA g−1/1 cyc/−5 °C | [110] | |
120 mAh g−1/-/30mA g−1/1 cyc/−5 °C | ||||
98 mAh g−1/-/75mA g−1/1 cyc/−5 °C | ||||
73 mAh g−1/-/150 mA g−1/1 cyc/−5 °C | ||||
46 mAh g−1/-/300 mA g−1/1 cyc/−5 °C | ||||
ILs | LiTFSI-PYR13TFSI-PYR13FSI | 1 × 10−3/−20 °C | - | [118] |
Li//LiFSI−[PP13]+[FSI]−HFE//graphite | -/RT | ~230 mAh g−1/82.61%/3 C/300 cyc/RT | [119] | |
-/−10 °C | 352 mAh g−1/-/0.05 C/1 cyc/−10 °C | |||
-/−20 °C | 325 mAh g−1/-/0.05 C/1 cyc/−20 °C | |||
6 × 10−4/−30 °C | 245 mAh g−1/-/0.05 C/1 cyc/−30 °C | |||
Li//[LiFSI]1[EmimFSI]2[dFBn]2//Li | 1.67 × 10−3/−20 °C | stable cycle of 1000 h at a rate of 0.25 mA cm−2 with −20 °C | [126] | |
Li//[LiFSI]1[EmimFSI]2[dFBn]2//NCA | 156 mAh g−1/85.9%/1 C/500 cyc/−20 °C | |||
[LiFSI]1[EmimFSI]2 | 5 × 10−4/−20 °C | - | ||
Li//[LiFSI]1[EmimFSI]2[dFBn]2//NCM811 | -/RT | 192 mAh g−1/93%/1 C/500 cyc/RT | [128] | |
IEs | LiMn2O4//LiPTFSI:LiOTf(15 m:5 m)//Li | - | 110 mAh g−1/-/1 C/1 cyc/0 °C | [130] |
LiMn2O4//LiPTFSI:LiOTf(15 m:5 m)//Li | 100 mAh g−1/-/1 C/1 cyc/0 °C | |||
LiMn2O4//BSiS-A0.5//LTO | 1.34 × 10−3/0 °C | ~116 mAh g−1/95%/1 C/120 cyc/0 °C | [131] | |
6.3 × 10−4/−20 °C | ||||
Li//LiAlCl4·3SO2//LFP | 2.377 × 10−2/RT | 120 mAh g−1/93.7%/5 C/100cyc/RT | [142] | |
-/0 °C | 110 mAh g−1/104%/2 C/100cyc/0 °C | |||
Li//LiAlCl4·3SO2//LFP | 6.54 × 10−3/−20 °C | ~165 mAhg−1/95%/0.5 C/95 cyc/RT | [143] | |
11.04 × 10−3/−10 °C | ||||
27.51 × 10−3/0 °C | ||||
Li//LiAlCl4·3SO2//LTO | -/RT | 151 mAh g−1/91.23%/5 C/500 cyc/RT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, S.; Liang, X.; Xi, J.; Liao, L.; Cui, S.; Chen, L.; Li, S.; Hu, Q. Electrolytes for High-Safety Lithium-Ion Batteries at Low Temperature: A Review. Polymers 2024, 16, 2661. https://doi.org/10.3390/polym16182661
Yun S, Liang X, Xi J, Liao L, Cui S, Chen L, Li S, Hu Q. Electrolytes for High-Safety Lithium-Ion Batteries at Low Temperature: A Review. Polymers. 2024; 16(18):2661. https://doi.org/10.3390/polym16182661
Chicago/Turabian StyleYun, Shuhong, Xinghua Liang, Junjie Xi, Leyu Liao, Shuwan Cui, Lihong Chen, Siying Li, and Qicheng Hu. 2024. "Electrolytes for High-Safety Lithium-Ion Batteries at Low Temperature: A Review" Polymers 16, no. 18: 2661. https://doi.org/10.3390/polym16182661
APA StyleYun, S., Liang, X., Xi, J., Liao, L., Cui, S., Chen, L., Li, S., & Hu, Q. (2024). Electrolytes for High-Safety Lithium-Ion Batteries at Low Temperature: A Review. Polymers, 16(18), 2661. https://doi.org/10.3390/polym16182661