Biodegradable Polymer Packaging System for ‘Benitaka’ Table Grapes during Cold Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of Biodegradable Films and SO2-Releasing Sachets
2.1.1. Production of Biodegradable Films
2.1.2. Production of SO2-Releasing Sachets
2.2. Characterization of Biodegradable Films
2.2.1. Thickness
2.2.2. Density
2.2.3. Mass Loss in Water (MLW)
2.2.4. Water Vapor Permeability (WVP)
2.2.5. Water Sorption Isotherms
2.2.6. Mechanical Properties
2.3. Post-Harvest Conservation of ‘Benitaka’ Table Grapes Using Biodegradable Packaging and SO2-Releasing Sachets
2.3.1. Description of Treatments
2.3.2. Grapes Packaging
2.3.3. Assessments
2.4. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of the Biodegradable Film
3.2. Post-Harvest Conservation of ‘Benitaka’ Table Grapes Using Biodegradable Packaging and SO2-Releasing Sachets
3.2.1. Incidence of Gray Mold on Berries
3.2.2. Mass Loss
3.2.3. Stem Browning
3.2.4. Shattered Berries
3.2.5. Berry Bleaching
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zoungranan, Y.; Lynda, E.; Dobi-Brice, K.K.; Tchirioua, E.; Bakary, C.; Yannick, D.D. Influence of natural factors on the biodegradation of simple and composite bioplastics based on cassava starch and corn starch. J. Environ. Chem. Eng. 2020, 8, 104396. [Google Scholar] [CrossRef]
- Jamieson, A.J.; Brooks, L.S.R.; Reid, W.D.K.; Piertney, S.B.; Narayanaswamy, B.E.; Linley, T.D. Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth. Roy. Soc. Open Sci. 2019, 6, 2. [Google Scholar] [CrossRef]
- Ncube, L.K.; Ude, A.U.; Ogunmuyiwa, E.N.; Zulkifli, R.; Beas, I.N. Environmental Impact of Food Packaging Materials: A review of contemporary development from conventional plastics to polylactic acid-based materials. Materials 2020, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- Arif, Z.U.; Khalid, M.Y.; Sheikh, M.F.; Zolfagharian, A.; Bodaghi, M. Biopolymeric sustainable materials and their emerging applications. J. Environ. Chem. Eng. 2022, 10, 108159. [Google Scholar] [CrossRef]
- Landim, A.P.M.; Bernardo, C.O.; Martins, I.B.A.; Francisco, M.R.; Santos, M.B.; Melo, N.R. Sustentabilidade quanto às embalagens de alimentos no Brasil. Polímeros 2016, 26, 82–92. [Google Scholar] [CrossRef]
- Nunes, R.S.B.; Nascimento, A.A.; Serra, J.C.V. Obtenção e Caracterização de Compósitos Poliméricos Biodegradáveis Produzidos com Resíduos Agroenergéticos (Bagaço da Cana-de-Açúcar, Amido de Milho e Glicerol). Rev. Acta Ambient. Catarinence 2021, 18, 156–169. [Google Scholar] [CrossRef]
- Silva, M.J.B.; Alves, F.S.; Queiroz, R.N.; Queiroz, N.I.F.; Lago, G.V.P.; Pereira, G.V.d.S.; Moraes, N.S.; Pessoa, M.M.d.S.; Rego, J.d.A.R.; Brasil, D.d.S.B. Amido–Uma revisão sobre os produtos biopoliméricos e suas derivações. Res. Soc. Dev. 2022, 11, e280111234470. [Google Scholar] [CrossRef]
- OIV—International Organisation of Vine and Wine. Available online: https://www.oiv.int/what-we-do/global-report?oiv (accessed on 3 July 2023).
- Champa, H. Pre and post-harvest practices for quality improvement of table grapes (Vitis vinifera L.). J. Natl. Sci. Found. Sri Lanka 2015, 43, 3–9. [Google Scholar] [CrossRef]
- Saito, S.; Obenland, D.; Xiao, C.L. Influence of sulfur dioxide-emitting polyethylene packaging on blueberry decay and quality during extended storage. Post-Harvest Biol. Technol. 2020, 160, 111045. [Google Scholar] [CrossRef]
- Youssef, K.; Roberto, S.R. Chitosan/silica nanocomposite-based formulation alleviated gray mold through stimulation of the antioxidant system in table grapes. Int. J. Biol. Macromol. 2021, 168, 242–250. [Google Scholar] [CrossRef]
- Zoffoli, J.P.; Latorre, B.A.; Rodríguez, E.J.; Aldunce, P. Modified atmosphere packaging using chlorine gas generators to prevent Botrytis cinerea on table grapes. Post-Harvest. Biol. Technol. 1999, 15, 135–142. [Google Scholar] [CrossRef]
- Lichter, A.; Zutahy, Y.; Kaplunov, T.; Lurie, S. Evaluation of Table Grape Storage in Boxes with Sulfur Dioxide-releasing Pads with Either an Internal Plastic Liner or External Wrap. HortTechnology 2008, 18, 206–214. [Google Scholar] [CrossRef]
- Pires, J.C.M.; Sousa, S.I.V.; Pereira, M.C.; Alvim-Ferraz, M.C.M.; Martins, F.G. Management of air quality monitoring using principal component and cluster analysis—Part I: SO2 and PM10. Atmos. Environ. 2008, 42, 1249–1260. [Google Scholar] [CrossRef]
- Fernandez-Trujillo, J.P.; Obando-Ulloa, J.M.; Baró, R.; Martinez, J.A. Quality of two table grape guard cultivars treated with single or dual-phase release SO2 generators. J. Appl. Bot. Food Qual. 2012, 82, 1–8. [Google Scholar]
- FAO—Food and Agriculture Organization, Codex Alimentarius Commission. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%3A%2F%2Fworkspace.fao.org%2Fsites%2Fcodex%2FStandards%2FCXS+255-2007%2FCXS_255e.pdf (accessed on 3 July 2023).
- Aguiar, A.C.; Higuchi, M.T.; Yamashita, F.; Roberto, S.R. SO2-Generating Pads and Packaging Materials for Postharvest Conservation of Table Grapes: A Review. Horticulturae 2023, 9, 724. [Google Scholar] [CrossRef]
- Bortolatto, R.; Bittencourt, P.R.S.; Yamashita, F. Biodegradable composites of starch/polyvinyl alcohol/soybean hull (Glycine max L.). J. Appl. Polym. Sci. 2022, 139, e52288-351. [Google Scholar] [CrossRef]
- ASTM E96-00; Standard Test Methods for Water Transmission of Material. ASTM: Philadelphia, PA, USA, 2000.
- ASTM D882-02; Standard Test Methods for Tensile Properties of Thin Plastic Sheeting. ASTM: Philadelphia, PA, USA, 2002.
- Instituto Das Águas do Paraná. Available online: http://www.sih-web.aguasparana.pr.gov.br/sih-web/gerarRelatorioDiasChuva.do?action=carregarInterfaceInicial (accessed on 3 July 2023).
- Youssef, K.; Roberto, S.R. Applying salt solutions before and after harvest affects the quality and incidence of post-harvest gray mold of ‘Italia’ table grapes. Post-Harvest Biol. Technol. 2014, 87, 95–102. [Google Scholar] [CrossRef]
- Mattiuz, B.; Miguel, A.C.A.; Galati, V.C.; Nachtigal, J.C. Efeito da temperatura no armazenamento de uvas apirênicas minimamente processadas. Rev. Bras. Frutic. 2009, 31, 44–52. [Google Scholar] [CrossRef]
- Ngcobo, M.E.K.; Opara, U.L.; Thiart, G.D. Effects of packaging liners on cooling rate and quality attributes of table grape (cv. Regal Seedless). Packag. Technol. Sci. 2011, 25, 73–84. [Google Scholar] [CrossRef]
- Henríquez, J.L.; Pinochet, S. Impact of ventilation area of the liner bag, in the performance of SO2 generator pads in boxed table grapes. Acta Hortic. 2016, 1144, 267–272. [Google Scholar] [CrossRef]
- Kormin, S.; Kormin, F.; Beg, M.D.H.; Piah, M.B.M. Physical and mechanical properties of LDPE incorporated with different starch sources. IOP Conf. Ser. Mater. Sci. Eng. 2017, 226, 012157. [Google Scholar] [CrossRef]
- Brandelero, R.P.H.; Grossmann, M.V.E.; Yamashita, F. Effect of the method of production of the blends on mechanical and structural properties of biodegradable starch films produced by blown extrusion. Carbohydr. Polym. 2011, 86, 1344–1350. [Google Scholar] [CrossRef]
- Mali, S.; Sakanaka, L.S.; Yamashita, F.; Grossmann, M.V.E. Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydr. Polym. 2005, 60, 283. [Google Scholar] [CrossRef]
- Müller, C.M.O.; Yamashita, F.; Laurindo, J.B. Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydr. Polym. 2008, 72, 82–87. [Google Scholar] [CrossRef]
- Dias, A.P. Desenvolvimento de Filmes Biodegradáveis Multicamadas Para Embalagens Ativas de Alimentos. Master’s Thesis, Universidade Estadual de Londrina, Londrina, Brazil, 2020. [Google Scholar]
- Costa, D.L.M. Produção por Extrusão de Filmes de Alto Teor de Amido Termoplástico com Poli (Butileno Adipato Co-Tereftalato) (PBAT). Master’s Thesis, Universidade Estadual de Londrina, Londrina, Brazil, 2008. [Google Scholar]
- Olivato, J.B.; Müller, C.M.O.; Yamashita, F.; Grossmann, M.V.E.; Nobrega, M.M. Study of the compatibilizer effect in the properties of starch/polyester blends. Polímeros 2013, 23, 346–351. [Google Scholar] [CrossRef]
- Aguiar, A.C.; Higuchi, M.T.; Ribeiro, L.T.M.; Leles, N.R.; Bosso, B.E.C.; Shimizu, G.D.; Silva, M.J.R.; Marques, V.V.; Yamashita, F.; Youssef, K.; et al. Bio-based and SO2-generating plastic liners to extend the shelf life of ‘Benitaka’ table grapes. Postharvest Biol. Technol. 2023, 197, 112217. [Google Scholar] [CrossRef]
- Smilanick, J.L.; Harvey, J.M.; Hartsell, P.L.; Hensen, D.J.; Harris, C.M.; Fouse, D.C.; Assemi, M. Factors influencing sulfite residues in table grapes after sulfur dioxide fumigation. Am. J. Enol. Vitic. 1980, 41, 131–136. [Google Scholar] [CrossRef]
- Chervin, C.; Aked, A.; Crisosto, C.H. Grapes. In Crop Post-Harvest: Science and Technology, 3rd ed.; Ress, D., Farrell, G., Orchard, J., Eds.; Blackwell: Oxford, UK, 2012; pp. 187–211. [Google Scholar]
- European Union-Commission Implementing Regulation. N° 543/2011 of 7 June 2011. Laying down detailed rules for the application of Council Regulation (EC) N° 1234/2007 in respect of the fruit and vegetables and processed fruit and vegetables sectors. Off. J. Eur. Union 2011, 50, 1–163. [Google Scholar]
- UNECE—United Nations Economic Commission for Europe. Available online: http://www.unece.org/fileadmin/DAM/trade/agr/standard/standard/fresh/FFV-Std/English/19_TablesGrapes.pdf (accessed on 11 July 2023).
- Zagory, D.; Kader, A.A. Modified atmosphere packaging of fresh produce. Food Technol. 1988, 42, 70–77. [Google Scholar]
- Cia, P.; Benato, E.A.; Valentini, S.R.T.; Sanches, J.; Ponzo, F.S.; Flores, D.; Terra, M.M. Atmosfera modificada e refrigeração para conservação pós-colheita de uva ‘Niagara Rosada’. Pesqui. Agropecu. Bras. 2010, 45, 1058–1065. [Google Scholar] [CrossRef]
- Gorgatti-Netto, A. Uva Para Exportação: Procedimentos de Colheita e pós-Colheita; Programa de Apoio à Produção e Exportação de Frutas, Hortaliças, Flores e Plantas Ornamentais-FRUPEX; Ministério da Agricultura, do Abastecimento e da Reforma Agrária, Secretaria de Desenvolvimento Rural, SDR: Brasília, Brazil, 1993; Volume 2. [Google Scholar]
- Brackmann, A.; Mazaro, S.M.; Waclawovsky, A.J. Armazenamento refrigerado de uvas cvs. Tardia de Caxias e Dona Zilá. Ciênc. Rural 2000, 30, 581–586. [Google Scholar] [CrossRef]
- Lydakis, D.; Aked, J. Vapour heat treatment of Sultanina table grapes. II: Effects on post-harvest quality. Post-Harvest Biol. Technol. 2003, 27, 117–126. [Google Scholar] [CrossRef]
- Nelson, K.E. Retarding deterioration of table grapes with in–package sulfur dioxide generators with and without refrigeration. Acta Hortic. 1983, 138, 121–130. [Google Scholar] [CrossRef]
- Ahmed, S.; Roberto, S.R.; Domingues, A.R.; Shahab, M.; Chaves Júnior, O.J.; Sumida, C.H.; Souza, R.T. Effects of Different Sulfur Dioxide Pads on Botrytis Mold in ‘Italia’ Table Grapes under Cold Storage. Horticulturae 2018, 4, 29. [Google Scholar] [CrossRef]
- Brasil. Instrução Normativa n. 1 de 1º de Fevereiro de 2002. Regulamento Técnico de Identidade e de Qualidade para a Classificação da Uva Fina de Mesa; Diário Oficial [da República Federativa do Brasil]: Brasília, Brasil, 2002. [Google Scholar]
- Gomes, D.; Ferraz, A.C.d.O.; Cipolli, K.M. Avaliação da degrana e rompimento de bagas da uva Niagara Rosada observada pelos consumidores. Rev. Bras. Vitic. Enol. 2013, 5, 26–33. [Google Scholar]
- USDA—United States Department of Agriculture. Available online: https://www.ams.usda.gov/sites/default/files/media/Grapes_Inspection_Instructions%5B1%5D.pdf (accessed on 30 June 2023).
Thickness (µm) | Density (g cm−3) | MLW (%) | WVP (×1011) (g m−1 s−1 Pa−1) |
---|---|---|---|
111 ± 7 | 1.223 ± 0.020 | 15.9 ± 0.2 | 6.6 ± 0.2 |
GAB Model Parameters | |||
---|---|---|---|
C | K | m0 (g Water/100 g Solids) | R2 |
15.3 | 0.61 | 10.7 | 0.99 |
Mechanical Properties | ||
---|---|---|
Tensile Strength (MPa) | Elongation at Break (%) | Young’s Modulus (MPa) |
8.8 ± 0.3 | 604 ± 32 | 45.0 ± 0.9 |
Treatment | Incidence of Gray Mold (% of Diseased Berries) | ||
---|---|---|---|
30 Days at 1 °C | 45 Days at 1 °C | 3 Days at 22 °C without Packaging after 45 Days at 1 °C | |
Control | 2.38 ± 0.19 b | 4.60 ± 0.51 b | 7.15 ± 1.58 b |
2 g of Na2S2O5 + 2 g of SiO2 | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
4 g of Na2S2O5 + 1 g of SiO2 | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
4 g of Na2S2O5 + 2 g of SiO2 | 0.17 ± 0.17 a | 0.17 ± 0.17 a | 0.34 ± 0.34 a |
4 g of Na2S2O5 + 4 g of SiO2 | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.17 ± 0.17 a |
Treatment | Mass Loss (%) | |
---|---|---|
30 Days at 1 °C | 45 Days at 1 °C | |
Control | 3.37 ± 0.30 a | 4.62 ± 0.81 a |
2 g of Na2S2O5 + 2 g of SiO2 | 3.42 ± 0.47 a | 4.75 ± 0.45 a |
4 g of Na2S2O5 + 1 g of SiO2 | 3.52 ± 0.80 a | 4.95 ± 0.80 a |
4 g of Na2S2O5 + 2 g of SiO2 | 3.85 ± 0.24 a | 5.20 ± 0.28 a |
4 g of Na2S2O5 + 4 g of SiO2 | 4.20 ± 1.17 a | 5.82 ± 0.97 a |
Treatment | Stem Browning * | ||
---|---|---|---|
30 Days at 1 °C | 45 Days at 1 °C | 3 Days at 22 °C without Packaging after 45 Days at 1 °C | |
Control | 1.00 ± 0.00 a | 2.00 ± 0.00 b | 3.25 ± 0.25 b |
2 g of Na2S2O5 + 2 g of SiO2 | 1.00 ± 0.00 a | 1.00 ± 0.00 a | 1.50 ± 0.28 a |
4 g of Na2S2O5 + 1 g of SiO2 | 1.00 ± 0.00 a | 1.00 ± 0.45 a | 1.25 ± 0.25 a |
4 g of Na2S2O5 + 2 g of SiO2 | 1.50 ± 0.28 a | 1.50 ± 0.58 a | 1.50 ± 0.28 a |
4 g of Na2S2O5 + 4 g of SiO2 | 1.25 ± 0.25 a | 1.25 ± 0.45 a | 1.25 ± 0.25 a |
Treatment | Shattered Berries (%) | ||
---|---|---|---|
30 Days at 1 °C | 45 Days at 1 °C | 3 Days at 22 °C without Packaging after 45 Days at 1 °C | |
Control | 0.34 ± 0.19 a | 1.87 ± 0.42 a | 2.38 ± 0.44 a |
2 g of Na2S2O5 + 2 g of SiO2 | 1.19 ± 0.51 a | 2.55 ± 1.05 a | 5.44 ± 2.20 a |
4 g of Na2S2O5 + 1 g of SiO2 | 0.68 ± 0.00 a | 1.70 ± 0.43 a | 3.23 ± 0.17 a |
4 g of Na2S2O5 + 2 g of SiO2 | 1.02 ± 0.43 a | 1.87 ± 0.75 a | 4.25 ± 0.97 a |
4 g of Na2S2O5 + 4 g of SiO2 | 0.51 ± 0.17 a | 2.72 ± 0.83 a | 5.10 ± 2.18 a |
Treatment | Berry Bleaching (%) | ||
---|---|---|---|
30 Days at 1 °C | 45 Days at 1 °C | 3 Days at 22 °C without Packaging after 45 Days at 1 °C | |
Control | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
2 g of Na2S2O5 + 2 g of SiO2 | 5.62 ± 1.12 a | 17.37 ± 2.68 a | 20.94 ± 1.87 a |
4 g of Na2S2O5 + 1 g of SiO2 | 4.94 ± 0.51 a | 22.13 ± 3.10 a | 33.43 ± 3.55 a |
4 g of Na2S2O5 + 2 g of SiO2 | 6.64 ± 0.93 a | 17.54 ± 3.61 a | 25.88 ± 8.37 a |
4 g of Na2S2O5 + 4 g of SiO2 | 5.61 ± 1.95 a | 15.32 ± 2.26 a | 27.76 ± 2.12 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, R.J.; de Aguiar, A.C.; Simões, B.M.; da Silva, S.C.; Higuchi, M.T.; Roberto, S.R.; Yamashita, F. Biodegradable Polymer Packaging System for ‘Benitaka’ Table Grapes during Cold Storage. Polymers 2024, 16, 274. https://doi.org/10.3390/polym16020274
Silva RJ, de Aguiar AC, Simões BM, da Silva SC, Higuchi MT, Roberto SR, Yamashita F. Biodegradable Polymer Packaging System for ‘Benitaka’ Table Grapes during Cold Storage. Polymers. 2024; 16(2):274. https://doi.org/10.3390/polym16020274
Chicago/Turabian StyleSilva, Ricardo Josue, Aline Cristina de Aguiar, Bruno Matheus Simões, Samuel Camilo da Silva, Maíra Tiaki Higuchi, Sergio Ruffo Roberto, and Fabio Yamashita. 2024. "Biodegradable Polymer Packaging System for ‘Benitaka’ Table Grapes during Cold Storage" Polymers 16, no. 2: 274. https://doi.org/10.3390/polym16020274
APA StyleSilva, R. J., de Aguiar, A. C., Simões, B. M., da Silva, S. C., Higuchi, M. T., Roberto, S. R., & Yamashita, F. (2024). Biodegradable Polymer Packaging System for ‘Benitaka’ Table Grapes during Cold Storage. Polymers, 16(2), 274. https://doi.org/10.3390/polym16020274