Application of Polymeric CO2 Thickener Polymer-Viscosity-Enhance in Extraction of Low-Permeability Tight Sandstone
Abstract
:1. Introduction
2. Materials and Methods
2.1. SEM Measurement of the Rock Samples
2.2. Method for Producing Thickening Agent—PVE
2.3. FT-IR Measurement of PVE
2.4. NMR Measurement of PVE
2.5. SEM Measurement of PVE
2.6. TG and DSC Measurement of PVE
2.7. Solubility Test of PVE in scCO2
2.8. Evaluation of Viscosification Effect of PVE
2.9. Assessment of Oil Displacement Effect
2.10. Gas–Oil Relative Permeability Measurement
2.11. Analysis of the Fluid Produced
2.12. Molecular Dynamics (MD) Simulation of Thickening Mechanism
3. Results and Discussion
3.1. Rock Micromorphology Analysis
3.2. Structure and Performance Analysis of PVE
3.2.1. Enhanced Techniques for Spectral Analysis
3.2.2. Microstructure Analysis of PVE Using SEM
3.2.3. Analysis of Heat Resistance of PVE
3.2.4. Solubility of PVE in scCO2
3.3. The Impact Assessment of PVE
3.3.1. Viscosification Effect Evaluation
3.3.2. Effect of PVE on Enhancing scCO2 Flooding and Recovery
3.3.3. Analysis of Alterations in Core Permeability and Crude Oil Composition
3.4. Analysis of Molecular Dynamics (MD) Calculation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babadagli, T. Philosophy of EOR. J. Pet. Sci. Eng. 2020, 188, 106930. [Google Scholar] [CrossRef]
- Liu, C.; Sun, L.; Lu, J.; Sun, Y.; Xu, Y.; Lu, M.; Li, J. Characteristics of the Newly Found Oil-Bearing Sandstone in the Denglouku Formation of the Northern Songliao Basin, China. J. Pet. Sci. Eng. 2020, 188, 106947. [Google Scholar] [CrossRef]
- Milner, M.; McLin, R.; Petriello, J. Imaging Texture and Porosity in Mudstones and Shales: Comparison of Secondary and Ion-Milled Backscatter SEM Methods. In Proceedings of the Canadian Unconventional Resources and International Petroleum Conference, Calgary, AB, Canada, 19 October 2010; p. SPE-138975-MS. [Google Scholar]
- Khormali, A.; Ahmadi, S. Prediction of Barium Sulfate Precipitation in Dynamic Tube Blocking Tests and Its Inhibition for Waterflooding Application Using Response Surface Methodology. J. Pet. Explor. Prod. Technol. 2023, 13, 2267–2281. [Google Scholar] [CrossRef]
- Du, X.; Liu, T.; Xi, C.; Wang, B.; Qi, Z.; Zhou, Y.; Xu, J.; Lin, L.; Istratescu, G.; Babadagli, T.; et al. Can Hot Water Injection with Chemical Additives Be an Alternative to Steam Injection: Static and Dynamic Experimental Evidence. Fuel 2023, 331, 125751. [Google Scholar] [CrossRef]
- Jew, A.D.; Druhan, J.L.; Ihme, M.; Kovscek, A.R.; Battiato, I.; Kaszuba, J.P.; Bargar, J.R.; Brown, G.E. Chemical and Reactive Transport Processes Associated with Hydraulic Fracturing of Unconventional Oil/Gas Shales. Chem. Rev. 2022, 122, 9198–9263. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Li, Y.; Song, Y. A Critical Review of CO2 Enhanced Oil Recovery in Tight Oil Reservoirs of North America and China. Fuel 2020, 5, 118006. [Google Scholar] [CrossRef]
- Chang, W.; District, D.; Zhang, Y.; Zhang, L.; Lu, M. 2455: Study on the Growth of Corrosion Scales on X65 Steel in CO2 Top-of-Line Corrosion Environment. In Proceedings of the Corrosion 2013, Orlando, FL, USA, 17–21 March 2013. [Google Scholar]
- Czubinski, F.F.; Sanchez, C.J.N.; Da Silva, A.K.; Neto, M.A.M.; Barbosa, J.R. Phase Equilibrium and Liquid Viscosity Data for R-290/POE ISO 22 Mixtures between 283 and 353 K. Int. J. Refrig. 2020, 114, 79–87. [Google Scholar] [CrossRef]
- Jia, H.; Yin, S.-P.; Ma, X.-P. Enhanced Oil Recovery Mechanism of Low Oxygen Air Injection in High Water Cut Reservoir. J. Pet. Explor. Prod. Technol. 2018, 8, 917–923. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, G.; Cheng, Y.F. Downhole O2 Corrosion during Air-Assisted Steam Injection for Secondary or Tertiary Oil Recovery. Corros. Eng. Sci. Technol. 2020, 55, 189–195. [Google Scholar] [CrossRef]
- Alam, M.M.M.; Hassan, A.; Mahmoud, M.; Sibaweihi, N.; Patil, S. Dual Benefits of Enhanced Oil Recovery and CO2 Sequestration: The Impact of CO2 Injection Approach on Oil Recovery. Front. Energy Res. 2022, 10, 877212. [Google Scholar] [CrossRef]
- Kurtoglu, B.; Sorensen, J.A.; Braunberger, J.; Smith, S.; Kazemi, H. Geologic Characterization of a Bakken Reservoir for Potential CO2 EOR. In Proceedings of the Unconventional Resources Technology Conference, Denver, CO, USA, 12–14 August 2013; Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers: Denver, CO, USA, 2013; pp. 1834–1844. [Google Scholar]
- Pranesh, V. Subsurface CO2 Storage Estimation in Bakken Tight Oil and Eagle Ford Shale Gas Condensate Reservoirs by Retention Mechanism. Fuel 2018, 215, 580–591. [Google Scholar] [CrossRef]
- Xiao, P.; Yang, Z.; Wang, X.; Xiao, H.; Wang, X. Experimental Investigation on CO2 Injection in the Daqing Extra/Ultra-Low Permeability Reservoir. J. Pet. Sci. Eng. 2017, 149, 765–771. [Google Scholar] [CrossRef]
- Tan, Y.; Nookuea, W.; Li, H.; Thorin, E.; Yan, J. Property Impacts on Carbon Capture and Storage (CCS) Processes: A Review. Energy Convers. Manag. 2016, 118, 204–222. [Google Scholar] [CrossRef]
- Enick, R.M.; Olsen, D.; Ammer, J.; Schuller, W. Mobility and Conformance Control for CO2 EOR via Thickeners, Foams, and Gels—A Literature Review of 40 Years of Research and Pilot Tests. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 14 April 2012; p. SPE-154122-MS. [Google Scholar]
- Wang, X.; Zeng, F.; Gao, R.; Zhao, X.; Hao, S.; Liang, Q.; Jiang, S. Cleaner Coal and Greener Oil Production: An Integrated CCUS Approach in Yanchang Petroleum Group. Int. J. Greenh. Gas Control 2017, 62, 13–22. [Google Scholar] [CrossRef]
- Fu, C.; Liu, N. Rheology and Stability of Nanoparticle-Stabilized CO2 Foam under Reservoir Conditions. J. Pet. Sci. Eng. 2021, 196, 107671. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Li, Q.; Wang, F.; Bernardo, J.; Zhang, Y.; Bai, B.; Liu, F. Performance Improvement of Thickened Liquid CO2 by Introducing a Philic-CO2 Silicone Polymer. In Proceedings of the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Bali, Indonesia, 30 October 2019; p. D022S007R012. [Google Scholar]
- Zheng, W.-T.; Zhang, J.-B.; Liu, Y.; Huang, K. Reversible Chemical Absorption of CO2 in Polyethylenimine Supported by Low-Viscous Tetrabutylphosphonium 2-Fluorophenolate. Energy Fuels 2020, 34, 3493–3500. [Google Scholar] [CrossRef]
- Azmi, N.S.M.; Abu Bakar, N.F.; Tengku Mohd, T.A.; Azizi, A. Molecular Dynamics Simulation on CO2 Foam System with Addition of SiO2 Nanoparticles at Various Sodium Dodecyl Sulfate (SDS) Concentrations and Elevated Temperatures for Enhanced Oil Recovery (EOR) Application. Comput. Mater. Sci. 2020, 184, 109937. [Google Scholar] [CrossRef]
- O’Brien, M.J.; Perry, R.J.; Doherty, M.D.; Lee, J.J.; Dhuwe, A.; Beckman, E.J.; Enick, R.M. Anthraquinone Siloxanes as Thickening Agents for Supercritical CO2. Energy Fuels 2016, 30, 5990–5998. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Z.; Tang, J. Research on Polyether-Based Hydrocarbon Thickener for CO2. Fluid Phase Equilibr. 2021, 532, 112932. [Google Scholar] [CrossRef]
- Little, M.G.; Jackson, R.B. Potential Impacts of Leakage from Deep CO2 Geosequestration on Overlying Freshwater Aquifers. Environ. Sci. Technol. 2010, 44, 9225–9232. [Google Scholar] [CrossRef]
- Lemaire, P.C.; Alenzi, A.; Lee, J.J.; Beckman, E.J.; Enick, R.M. Thickening CO2 with Direct Thickeners, CO2-in-Oil Emulsions, or Nanoparticle Dispersions: Literature Review and Experimental Validation. Energy Fuels 2021, 35, 8510–8540. [Google Scholar] [CrossRef]
- Al-Anssari, S.; Wang, S.; Barifcani, A.; Lebedev, M.; Iglauer, S. Effect of Temperature and SiO2 Nanoparticle Size on Wettability Alteration of Oil-Wet Calcite. Fuel 2017, 206, 34–42. [Google Scholar] [CrossRef]
- Li, H.; Zheng, S.; Yang, D. Enhanced Swelling Effect and Viscosity Reduction of Solvent(s)/CO2/Heavy-Oil Systems. SPE J. 2013, 18, 695–707. [Google Scholar] [CrossRef]
- Zhang, S.; She, Y.; Gu, Y. Evaluation of Polymers as Direct Thickeners for CO2 Enhanced Oil Recovery. J. Chem. Eng. Data 2011, 56, 1069–1079. [Google Scholar] [CrossRef]
- ISO/FDIS 11358-1; Plastics–Thermogravimetry (TG) of Polymers—Part 1: General Principles. ISO: Geneva, Switzerland, 2014.
- ASTM D4525-13; Standard Test Method for Permeability of Rocks by Flowing Air. ASTM: West Conshohocken, PA, USA, 2014.
- Aminian, K. Reservoir Types and Characterization; ASTM: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Li, M.; Zhang, J.; Zou, Y.; Wang, F.; Chen, B.; Guan, L.; Wu, Y. Models for the Solubility Calculation of a CO2/Polymer System: A Review. Mater. Today Commun. 2020, 25, 101277. [Google Scholar] [CrossRef]
- Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; De Groot, B.L.; Grubmüller, H.; MacKerell, A.D. CHARMM36: An Improved Force Field for Folded and Intrinsically Disordered Proteins. Biophys. J. 2017, 112, 175a–176a. [Google Scholar] [CrossRef]
- Lu, N.; Dong, X.; Chen, Z.; Liu, H.; Zheng, W.; Zhang, B. Effect of Solvent on the Adsorption Behavior of Asphaltene on Silica Surface: A Molecular Dynamic Simulation Study. J. Pet. Sci. Eng. 2022, 212, 110212. [Google Scholar] [CrossRef]
- Wang, C.; Gao, L.; Liu, M.; Xia, S.; Han, Y. Viscosity Reduction Mechanism of Functionalized Silica Nanoparticles in Heavy Oil-Water System. Fuel Process. Technol. 2022, 237, 107454. [Google Scholar] [CrossRef]
- Sun, B.; Sun, W.; Wang, H.; Li, Y.; Fan, H.; Li, H.; Chen, X. Molecular Simulation Aided Design of Copolymer Thickeners for Supercritical CO2 as Non-Aqueous Fracturing Fluid. J. CO2 Util. 2018, 28, 107–116. [Google Scholar] [CrossRef]
- Douglas, A.; Skoog, F.; James, H.; Crouch, S.R. Principles of Instrumental Analysis; Cengage Learning: Boston, MA, USA, 2017. [Google Scholar]
- Timothy, D.W. Claridge High-Resolution NMR Techniques in Organic Chemistry; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Zhang, Y.; Zhang, L.; Wang, Y.; Wang, M.; Wang, Y.; Ren, S. Dissolution of Surfactants in Supercritical CO2 with Co-Solvents. Chem. Eng. Res. Des. 2015, 94, 624–631. [Google Scholar] [CrossRef]
- Yunoki, S.; Sugimoto, K.; Ohyabu, Y.; Ida, H.; Hiraoka, Y. Accurate and Precise Viscosity Measurements of Gelatin Solutions Using a Rotational Rheometer. FSTR 2019, 25, 217–226. [Google Scholar] [CrossRef]
- McCoy, S.T. The Economics of CO2 Transport by Pipeline and Storage in Saline. Doctoral Dissertation, Carnegie Mellon University, Pittsburgh, PA, USA, 2008. [Google Scholar]
- Dean, E.; French, J.; Pitts, M.; Wyatt, K. Practical EOR Agents—There Is More to EOR than CO2. In Proceedings of the SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 26 March 2018; p. D011S005R004. [Google Scholar]
- Nelson, M.R.; Borkman, R.F. Ab Initio Calculations on CO2 Binding to Carbonyl Groups. J. Phys. Chem. A 1998, 102, 7860–7863. [Google Scholar] [CrossRef]
- Bao, L.; Fang, S.; Hu, D.; Zhao, L.; Yuan, W.; Liu, T. Enhancement of the CO2-Philicity of Poly(Vinyl Ester)s by End-Group Modification with Branched Chains. J. Supercrit. Fluids 2017, 127, 129–136. [Google Scholar] [CrossRef]
- Liu, K.; Schuch, F.; Kiran, E. High-Pressure Viscosity and Density of Poly(Methyl Methacrylate) + acetone and Poly(Methyl Methacrylate) + acetone + CO2 Systems. J. Supercrit. Fluids 2006, 39, 89–101. [Google Scholar] [CrossRef]
- Martin, R.L.; Winters, J.C. Composition of Crude Oil through Seven Carbons as Determined by Gas Chromatography. Anal. Chem. 1959, 31, 1954–1960. [Google Scholar] [CrossRef]
- Wedberg, R.; O’Connell, J.P.; Peters, G.H.; Abildskov, J. Total and Direct Correlation Function Integrals from Molecular Simulation of Binary Systems. Fluid Phase Equilibr. 2011, 302, 32–42. [Google Scholar] [CrossRef]
- Schettino, V.; Bini, R. Constraining Molecules at the Closest Approach Chemistry at High Pressure. Chem. Soc. Rev. 2007, 36, 869–880. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Jacobsen, R.T. A Generalized Model for the Thermodynamic Properties of Mixtures. Int. J. Thermophys. 1999, 20, 825–835. [Google Scholar] [CrossRef]
- Hess, B. Determining the Shear Viscosity of Model Liquids from Molecular Dynamics Simulations. J. Chem. Phys. 2002, 116, 209–217. [Google Scholar] [CrossRef]
Gas Type | Specific Mechanism | Advantages | Limitations |
---|---|---|---|
CO2 | Extraction and gasification of light hydrocarbons to form mixed phases. | High compression ratio and excellent miscibility with crude oil [7]. Contributes to reducing greenhouse gas emissions and pollution. | Gravity differentiation leads to gravity overlap phenomenon. Restricted injection gas source. Strong corrosivity [8]. Asphalt precipitation due to light hydrocarbon extraction effects. |
N2 | It is capable of extracting light hydrocarbons, expanding the heating zone of oil reservoirs, and enhancing the efficiency of oil displacement and profile control. | Abundant resources, competitive pricing, negligible corrosion concerns, robust suction capacity, easy attainment of injection–production equilibrium, minimal gas channeling issues, higher compression coefficient compared to gas cap gases, and larger quantities of flue gas and CO2. These factors contribute to enhanced formation energy while being minimally affected by salinity. | The miscibility condition surpasses that of CO2 and hydrocarbon gas, necessitating higher injection pressure and resulting in a narrower application range. |
Flue Gas | Combination of carbon dioxide and nitrogen displacement mechanism. | Enhance environmental sustainability and economic viability by mitigating greenhouse gas emissions and reducing pollution. | Insufficient air supply and high transportation costs. Improper treatment can result in water contamination in the gas, leading to pipeline and equipment corrosion. The initial investment is substantial, with slow returns and high risks. For reservoirs with high permeability, gas flow is facilitated, but effectiveness may be limited. |
Hydrocarbon Gas | The evaporation and extraction miscible effects are limited [9]. | The pressure of miscibility is low, resulting in a suboptimal outcome. | The air supply is constrained, and the cost is comparatively elevated. |
Air | The low-temperature oxidation of crude oil consumes oxygen and generates heat, resulting in a gravity-driven displacement at the top of thick or inclined reservoirs. | The source is extensive, unrestricted by geographical boundaries, abundant in air resources, and cost-effective. | There are limits on reservoir thickness [10], and oxygen corrosion takes place [11]. |
Source of Oil Samples | Alkane, wt% | Aromatic, wt% | Non-Hydrocarbon, wt% | Asphaltene, wt% | Gross, wt% |
---|---|---|---|---|---|
Crude Oil | 67.52 | 11.58 | 8.04 | 2.89 | 90.03 |
0.25 mD | 70.01 | 11.62 | 8.05 | 2.58 | 92.26 |
0.25 mD + PVE | 69.83 | 11.63 | 8.03 | 2.67 | 92.16 |
5 mD | 68.52 | 11.59 | 8.01 | 2.88 | 91 |
5 mD + PVE | 68.43 | 11.61 | 8.03 | 2.88 | 90.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, H.; Song, K.; Pan, Y.; Song, H.; Meng, S.; Liu, M.; Bao, R.; Hao, H.; Wang, L.; Fu, X. Application of Polymeric CO2 Thickener Polymer-Viscosity-Enhance in Extraction of Low-Permeability Tight Sandstone. Polymers 2024, 16, 299. https://doi.org/10.3390/polym16020299
Fu H, Song K, Pan Y, Song H, Meng S, Liu M, Bao R, Hao H, Wang L, Fu X. Application of Polymeric CO2 Thickener Polymer-Viscosity-Enhance in Extraction of Low-Permeability Tight Sandstone. Polymers. 2024; 16(2):299. https://doi.org/10.3390/polym16020299
Chicago/Turabian StyleFu, Hong, Kaoping Song, Yiqi Pan, Hanxuan Song, Senyao Meng, Mingxi Liu, Runfei Bao, Hongda Hao, Longxin Wang, and Xindong Fu. 2024. "Application of Polymeric CO2 Thickener Polymer-Viscosity-Enhance in Extraction of Low-Permeability Tight Sandstone" Polymers 16, no. 2: 299. https://doi.org/10.3390/polym16020299
APA StyleFu, H., Song, K., Pan, Y., Song, H., Meng, S., Liu, M., Bao, R., Hao, H., Wang, L., & Fu, X. (2024). Application of Polymeric CO2 Thickener Polymer-Viscosity-Enhance in Extraction of Low-Permeability Tight Sandstone. Polymers, 16(2), 299. https://doi.org/10.3390/polym16020299