Estimation of Digital Porosity of Electrospun Veils by Image Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of Emulsions
2.3. Electrospinning and Characterization of Electrospun Veils
2.4. Determination of the DP of Electrospun Veils
2.5. Prediction Model and Error Analysis
3. Results and Discussion
3.1. Physical Properties of the Nanofibers
3.2. Determination of the Digital Porosity (DP)
3.3. Proposed Model for Predicting the DP
- In the literature, it has been reported that the morphology and properties of the nanofibers, including the diameter, porosity, alignment and mechanical behavior, depend on the polymer solution properties (concentration, viscosity, surface tension and dielectric properties); on processing parameters (voltage, volumetric flow rate, injector-collector distance and intensity of the applied electric field); and environmental conditions (temperature, atmospheric pressure and moisture) [43,44].
- Additionally, the electrospinning time was considered, because it is an important variable during the electrospinning process. Essaldi et al. [45] reported that the mean size of the space between nanofibers was smaller for longer electrospinning times.
- Finally, the final moisture content of the veil was taken into account, because during the electrospinning process, solution dehydration occurs as a consequence of solvent volatilization [46].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Liang, K.; Shen, X.; Bowlin, G.L. Electrospinning and characterization of chitin nanofibril/polycaprolactone nanocomposite fiber mats. Carbohydr. Polym. 2014, 101, 68–74. [Google Scholar] [CrossRef]
- Prasanth, R.; Shubha, N.; Hng, H.H.; Srinivasan, M. Effect of poly(ethylene oxide) on ionic conductivity and electrochemical properties of poly(vinylidenefluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries. J. Power Sources 2014, 245, 283–291. [Google Scholar] [CrossRef]
- Okutan, N.; Terzi, P.; Altay, F. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocoll. 2014, 39, 19–26. [Google Scholar] [CrossRef]
- Hansen, L.M.; Smith, D.J.; Reneker, D.H.; Kataphinan, W. Water absorption and mechanical properties of electrospun structured hydrogels. J. Appl. Polym. Sci. 2004, 95, 427–434. [Google Scholar] [CrossRef]
- Gabor, A.G.; Duma, V.F.; Fabricky, M.M.C.; Marsavina, L.; Tudor, A.; Vancea, C.; Negrea, P.; Sinescu, C. Ceramic Scaffolds for Bone Augmentation: Design and Characterization with SEM and Confocal Microscopy. Materials 2022, 15, 4899. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.; Jiang, Y. Porosity, Pore Size Distribution, Micro-structure. Bio-Aggregates Based Building Materials: State-of-the-Art Report of the RILEM Techmical Committee 236-BBM; Springer: Berlin, Germany, 2017; Volume 23, pp. 39–71. [Google Scholar]
- Kononenko, N.; Nikonenko, V.; Grande, D.; Larchet, C.; Dammak, L.; Fomenko, M.; Volfkovich, Y. Porous structure of ion exchange membranes investigated by various techniques. Adv. Colloid Interface Sci. 2017, 246, 196–216. [Google Scholar] [CrossRef]
- Ghasemi-Mobarakeh, L.; Semnani, D.; Morshed, M. A novel method for porosity measurement of various surface layers of nanofibers mat using image analysis for tissue engineering applications. J. Appl. Polym. Sci. 2007, 106, 2536–2542. [Google Scholar] [CrossRef]
- Hossen, M.R.; Talbot, M.W.; Kennard, R.; Bousfield, D.W.; Mason, M.D. A comparative study of methods for porosity determination of cellulose based porous materials. Cellulose 2020, 27, 6849–6860. [Google Scholar] [CrossRef]
- Zou, Y.; Malzbender, J. Development and optimization of porosity measurement techniques. Ceram. Int. 2016, 42, 2861–2870. [Google Scholar] [CrossRef]
- Wu, Q.; Wu, B. Study of membrane morphology by image analysis of electron micrographs. J. Membr. Sci. 1995, 105, 113–120. [Google Scholar] [CrossRef]
- Crawford, E.C.; Mortensen, J.K. An ImageJ plugin for the rapid morphological characterization of separated particles and an initial application to placer gold analysis. Comput. Geosci. 2009, 35, 347–359. [Google Scholar] [CrossRef]
- Grove, C.; Jerram, D.A. jPOR: An ImageJ macro to quantify total optical porosity from blue-stained thin sections. Comput. Geosci. 2011, 37, 1850–1859. [Google Scholar] [CrossRef]
- Haeri, M.; Haeri, M. ImageJ Plugin for Analysis of Porous Scaffolds used in Tissue Engineering. J. Open Res. Softw. 2015, 3, e1. [Google Scholar] [CrossRef]
- Pal, A.; Garia, S.; Ravi, K.; Nari, A.M. Porosity Estimation by Digital Image Analysis. ONGC Bull. 2018, 53, 59–72. [Google Scholar]
- Daraei, A.; Pieters, M.; de Lange, Z.; Guthold, M. Automated Fiber Diameter and Porosity Measurement of Fibrin Clots in SEM Images. Biophys. J. 2020, 118, 293a. [Google Scholar] [CrossRef]
- Tang, Q.; Gratchev, I. Estimation of Sedimentary Rock Porosity Using a Digital Image Analysis. Appl. Sci. 2023, 13, 2066. [Google Scholar] [CrossRef]
- Fridrikh, S.V.; Yu, J.H.; Brenner, M.P.; Rutledge, G.C. Controlling the fiber diameter during electrospinning. Phys. Rev. Lett. 2003, 90, 144502. [Google Scholar] [CrossRef]
- Stepanyan, R.; Subbotin, A.; Cuperus, L.; Boonen, P.; Dorschu, M.; Oosterlinck, F.; Bulters, M. Fiber diameter control in electrospinning. Appl. Phys. Lett. 2014, 105, 173105. [Google Scholar] [CrossRef]
- Stepanyan, R.; Subbotin, A.V.; Cuperus, L.; Boonen, P.; Dorschu, M.; Oosterlinck, F.; Bulters, M.J.H. Nanofiber diameter in electrospinning of polymer solutions: Model and experiment. Polymer 2016, 97, 428–439. [Google Scholar] [CrossRef]
- Maurya, A.K.; Narayana, P.L.; Bhavani, A.G.; Jae-Keun, H.; Yeom, J.-T.; Reddy, N.S. Modeling the relationship between electrospinning process parameters and ferrofluid/polyvinyl alcohol magnetic nanofiber diameter by artificial neural networks. J. Electrost. 2020, 104, 103425. [Google Scholar] [CrossRef]
- Zhang, Y.; Mustapha, A.N.; Zhang, X.; Baiocco, D.; Wellio, G.; Davies, T.; Zhang, Z.; Li, Y. Improved volatile cargo retention and mechanical properties of capsules via sediment-free in situ polymerization with cross-linked poly(vinyl alcohol) as an emulsifier. J. Colloid Interface Sci. 2020, 568, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Baptista, J.G.C.; Rodrigues, S.P.J.; Matsushita, A.F.Y.; Vitorino, C.; Maria, T.M.R.; Burrows, H.D.; Pais, A.A.C.C.; Valente, A.J.M. Does poly(vinyl alcohol) act as an amphiphilic polymer? An interaction study with simvastatin. J. Mol. Liq. 2016, 222, 287–294. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, Y.; Xiao, L.; Lin, D.; Yang, Y.; Wang, H.; Yang, Y.; Wu, D.; Chen, H.; Zhang, Q.; et al. Physical properties and structural characterization of starch/polyvinyl alcohol/graphene oxide composite films. Int. J. Biol. Macromol. 2019, 123, 569–575. [Google Scholar] [CrossRef]
- Lamarra, J.; Calienni, M.N.; Rivero, S.; Pinotti, A. Electrospun nanofibers of poly(vinyl alcohol) and chitosan-based emulsions functionalized with cabreuva essential oil. Int. J. Biol. Macromol. 2020, 160, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Mohammadimehr, A.; Solmus, İ.; Ozyer, B.; Rees, D.A.S. Determination of Physical Properties and Thermal Conductivity of Graphite Foam with Image Analysis. Int. J. Thermophys. 2020, 41, 45. [Google Scholar] [CrossRef]
- Suryamathi, M.; Ruba, C.; Viswanathamurthi, P.; Balasubramanian, V.; Perumal, P. Tridax Procumbens Extract Loaded Electrospun PCL Nanofibers: A Novel Wound Dressing Material. Macromol. Res. 2018, 27, 55–60. [Google Scholar] [CrossRef]
- Ebadi Ghareh Koureh, L.; Ganjloo, A.; Hamishehkar, H.; Bimakr, M. Fabrication and characterization of costmary essential oil loaded salep-polyvinyl alcohol fast-dissolving electrospun nanofibrous mats. J. Food Meas. Charact. 2023, 17, 3076–3093. [Google Scholar] [CrossRef]
- Karami, N.; Kamkar, A.; Shahbazi, Y.; Misaghi, A. Electrospinning of double-layer chitosan-flaxseed mucilage nanofibers for sustained release of Ziziphora clinopodioides essential oil and sesame oil. LWT Food Sci. Technol. 2021, 140, 110812. [Google Scholar] [CrossRef]
- Rošic, R.; Pelipenko, J.; Kristl, J.; Kocbek, P.; Bešter-Rogač, M.; Baumgartner, S. Physical characteristics of poly (vinyl alcohol) solutions in relation to electrospun nanofiber formation. Eur. Polym. J. 2013, 49, 290–298. [Google Scholar] [CrossRef]
- Dehghani, S.; Noshad, M.; Rastegarzadeh, S.; Hojjati, M.; Fazlara, A. Electrospun chia seed mucilage/PVA encapsulated with green cardamonmum essential oils: Antioxidant and antibacterial property. Int. J. Biol. Macromol. 2020, 161, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.; Zhu, D.-H.; Wu, H.; Zong, M.-H.; Jing, Y.-R.; Han, S.-Y. Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control 2016, 59, 366–376. [Google Scholar] [CrossRef]
- Ardekani, N.T.; Khorram, M.; Zomorodian, K.; Yazdanpanah, S.; Veisi, H.; Veisi, H. Evaluation of electrospun poly(vinyl alcohol)-based nanofiber mats incorporated with Zataria multiflora essential oil as potential wound dressing. Int. J. Biol. Macromol. 2019, 125, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Kim, H.Y.; Lee, S.C.; Lee, D.R.; Choi, K.J. Preparation and Characterization of Nanoscaled Poly(vinyl alcohol) Fibers via Electrospinning. Fibers Polym. 2002, 3, 73–79. [Google Scholar] [CrossRef]
- Kalantary, S.; Jahani, A.; Jahani, R. MLR and ANN Approaches for Prediction of Synthetic/Natural Nanofibers Diameter in the Environmental and Medical Applications. Sci. Rep. 2020, 10, 8117. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zou, L.; Lu, H.; Kang, T. Effect of different solvent systems on PHBV/PEO electrospun fibers. RSC Adv. 2017, 7, 4000–4010. [Google Scholar] [CrossRef]
- Khajavi, R.; Abbasipour, M. Controlling nanofiber morphology by the electrospinning process. In Electrospun Nanofibers, 1st ed.; Afshari, M., Ed.; Woodhead Publishing Elsevier: Aalborg, Denmark, 2017; Volume 1, pp. 109–123. [Google Scholar]
- Nitti, P.; Gallo, N.; Natta, L.; Scalera, F.; Palazzo, B.; Sannino, A.; Gervaso, F. Influence of Nanofiber Orientation on Morphological and Mechanical Properties of Electrospun Chitosan Mats. J. Healthc. Eng. 2018, 2018, 3651480. [Google Scholar] [CrossRef]
- Baker, B.M.; Mauck, R.L. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 2007, 28, 1967–1977. [Google Scholar] [CrossRef]
- Li, W.J.; Mauck, R.L.; Cooper, J.A.; Yuan, X.; Tuan, R.S. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J. Biomech. 2007, 40, 1686–1693. [Google Scholar] [CrossRef]
- Semnani, D.; Naghashzargar, E.; Hadjianfar, M.; Dehghan Manshadi, F.; Mohammadi, S.; Karbasi, S.; Effaty, F. Evaluation of PCL/chitosan electrospun nanofibers for liver tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 2016, 66, 149–157. [Google Scholar] [CrossRef]
- Moghadam, B.H.; Haghi, A.K.; Kasaei, S.; Hasanzadeh, M. Computational-Based Approach for Predicting Porosity of Electrospun Nanofiber Mats Using Response Surface Methodology and Artificial Neural Network Methods. J. Macromol. Sci. Part B Phys. 2015, 54, 1404–1425. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Xia, Y. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Lett. 2002, 3, 1167–1171. [Google Scholar]
- Essalhi, M.; Khayet, M. Self-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 2. Theoretical analysis, polarization effects and thermal efficiency. J. Membr. Sci. 2013, 433, 180–191. [Google Scholar] [CrossRef]
- Zhang, D.; Davoodi, P.; Li, X.; Liu, Y.; Wang, W.; Huang, Y.Y.S. An empirical model to evaluate the effects of environmental humidity on the formation of wrinkled, creased and porous fibre morphology from electrospinning. Sci. Rep. 2020, 10, 18783. [Google Scholar] [CrossRef]
- Powell, H.M.; Boyce, S.T. Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes. J. Biomed. Mater. Res. Part A 2008, 84, 1078–1086. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Klingner, A. A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polym. Test. 2020, 90, 106647. [Google Scholar] [CrossRef]
Sample Veil | Composition (% w/w) | Moisture Content (g.d.b) | Viscosity (Pa·s) | Conductivity (mS cm−1) | Nanofiber Diameter (nm) | ||
---|---|---|---|---|---|---|---|
PVOH | Water | Oil | |||||
1 | 8.00 | 92.00 | 11.50 ± 0.02 | 0.28 ± 0.02 | 0.58 ± 0.01 | 175.68 ± 4.11 | |
2 | 10.00 | 90.00 | 9.00 ± 0.02 | 0.49 ± 0.02 | 0.48 ± 0.01 | 300.26 ± 7.97 | |
With olive oil | |||||||
3 | 9.60 | 86.40 | 4.00 | 6.35 ± 0.02 | 0.39 ± 0.01 | 0.55 ± 0.01 | 211.57 ± 5.17 |
4 | 9.20 | 82.80 | 8.00 | 5.16 ± 0.02 | 0.43 ± 0.01 | 0.52 ± 0.01 | 293.81 ± 5.74 |
5 | 8.80 | 79.20 | 12.00 | 3.80 ± 0.02 | 0.46 ± 0.01 | 0.49 ± 0.01 | 485.19 ± 9.30 |
With orange essential oil | |||||||
6 | 9.50 | 85.50 | 5.00 | 5.89 ± 0.02 | 0.62 ± 0.01 | 0.45 ± 0.01 | 268.90 ± 2.09 |
7 | 9.25 | 83.25 | 7.50 | 4.97 ± 0.02 | 0.71 ± 0.01 | 0.43 ± 0.01 | 279.35 ± 18.41 |
Sample Veil | Experimental Porosity (%) | ||
---|---|---|---|
Threshold I | Threshold II | Threshold III | |
1 | 43.12 ± 3.19 | 29.69 ± 0.61 | 21.52 ± 0.10 |
2 | 39.57 ± 2.04 | 27.65 ± 1.03 | 19.38 ± 0.51 |
3 | 40.47 ± 4.04 | 27.79 ± 1.41 | 19.34 ± 0.76 |
4 | 39.65 ± 1.73 | 26.95 ± 0.30 | 19.68 ± 1.85 |
5 | 34.38 ± 0.58 | 25.03 ± 0.11 | 17.87 ± 0.03 |
6 | 40.35 ± 3.74 | 27.22 ± 1.54 | 20.19 ± 0.89 |
7 | 42.42 ± 1.89 | 27.46 ± 0.29 | 19.80 ± 0.82 |
Sample Veil | Conductivity K (S/m) | Moisture Polymeric Solution Wi | Electrospun Veil Wf | Electrospinning Time (Min) |
---|---|---|---|---|
1 | 0.058 ± 0.001 | 11.50 ± 0.02 | 0.02 ± 0.002 | 60.00 ± 1.00 |
2 | 0.048 ± 0.001 | 9.00 ± 0.02 | 0.01 ± 0.001 | 62.25 ± 2.06 |
3 | 0.055 ± 0.001 | 6.35 ± 0.02 | 0.01 ± 0.001 | 61.67 ± 3.51 |
4 | 0.052 ± 0.001 | 5.16 ± 0.02 | 0.01 ± 0.001 | 60.00 ± 1.00 |
5 | 0.049 ± 0.001 | 3.80 ± 0.02 | 0.01 ± 0.001 | 61.50 ± 0.71 |
6 | 0.045 ± 0.001 | 5.89 ± 0.02 | 0.01 ± 0.001 | 61.00 ± 3.61 |
7 | 0.043 ± 0.001 | 4.97 ± 0.02 | 0.01 ± 0.001 | 58.67 ± 1.15 |
Threshold | Fractal Exponent | R2 | R | RSS | RMSE |
---|---|---|---|---|---|
I | 1.10 | 0.71 | 0.84 | 56.70 | 1.68 |
II | 0.99 | 0.97 | 0.98 | 1.01 | 0.22 |
III | 0.89 | 0.64 | 0.80 | 8.82 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuahuizo-Huitzil, G.; Olivares-Xometl, O.; Arellanes-Lozada, P.; Laguna Cortés, J.O.; Arriola Morales, J.; Santacruz-Vázquez, C.; Santacruz-Vázquez, V. Estimation of Digital Porosity of Electrospun Veils by Image Analysis. Polymers 2024, 16, 300. https://doi.org/10.3390/polym16020300
Cuahuizo-Huitzil G, Olivares-Xometl O, Arellanes-Lozada P, Laguna Cortés JO, Arriola Morales J, Santacruz-Vázquez C, Santacruz-Vázquez V. Estimation of Digital Porosity of Electrospun Veils by Image Analysis. Polymers. 2024; 16(2):300. https://doi.org/10.3390/polym16020300
Chicago/Turabian StyleCuahuizo-Huitzil, Guadalupe, Octavio Olivares-Xometl, Paulina Arellanes-Lozada, José Oscar Laguna Cortés, Janette Arriola Morales, Claudia Santacruz-Vázquez, and Verónica Santacruz-Vázquez. 2024. "Estimation of Digital Porosity of Electrospun Veils by Image Analysis" Polymers 16, no. 2: 300. https://doi.org/10.3390/polym16020300
APA StyleCuahuizo-Huitzil, G., Olivares-Xometl, O., Arellanes-Lozada, P., Laguna Cortés, J. O., Arriola Morales, J., Santacruz-Vázquez, C., & Santacruz-Vázquez, V. (2024). Estimation of Digital Porosity of Electrospun Veils by Image Analysis. Polymers, 16(2), 300. https://doi.org/10.3390/polym16020300