Electrospun PVDF-Based Polymers for Lithium-Ion Battery Separators: A Review
Abstract
:1. Introduction
2. Electrospun PVDF-Based LIB Separators
2.1. Basic Requirements of the LIB Separators’ Key Parameters
Key Parameters | Basic Requirements | Related Formulas | Ref. | |
---|---|---|---|---|
Feature parameters | Thickness. | <25 μm | - | [47] |
Pore size | <1 μm | - | [1] | |
Porosity. | >40% | 1 | [56] | |
Electrolyte contact angle | The smaller, the better | - | [54] | |
Electrolyte uptake | - | 2 | [59] | |
Performance parameters | Ionic conductivity | - | 3 | [56] |
Tensile strength | >98.06 MPa | [46] | ||
Thermal stability | Shrinkage rate < 5% (90 °C for 1 h) | 4 | [21] |
2.2. Progress of Electrospun PVDF-Based LIB Separators
3. Influencing Factors of Electrospun PVDF-Based LIB Separators
3.1. Electrospinning Solution
3.1.1. Solution Parameters
- Solvent type
- 2.
- Solvent ratio
- 3.
- PVDF concentration
3.1.2. Solution Modification
Electrospinning Solution | Thickness /μm | Diameter /nm | Porosity /% | Electrolyte Uptake /% | Ionic Conductivity /(mS cm−1) | Tensile Strength /MPa | Thermal Stability | Ref. |
---|---|---|---|---|---|---|---|---|
PVDF-HFP | - | 150–250 | 80 | 340 | 1.29 | 6.5 | [122] | |
PVDF-HFP/PMIA | - | 66.75 | 93.75 | 913 | 1.20 | 16.31 | Shrinkage rate less than PE at 240 °C for 2 h | [101] |
PAN@PVDF-HFP | - | - | - | - | 1.20 | 45.8 | No significant shrinkage at 160 °C | [123] |
PVDF/PDA-CE | 80 | 140 | 73 ± 2 | 438 ± 29 | 2.77 | 10.48 | No significant shrinkage at 160 °C for 1 h | [124] |
PVDF-HFP@PI | 22 | - | 80 | 800 | 1.79 | 13.3 | No significant shrinkage at 140 °C for 0.5 h | [77] |
PVDF/IL[Emim][TFSI] | - | 180 | 72 | 356 | 2.88 | >1 | Thermal decomposition temperature is 458 °C | [125] |
P(VDF-TrFE/PEO/LIGC | - | 910 | 86 | >440 | 7.04 | 6.1 | - | [15] |
PVDF/MMT | 58 | 214 | 84.08 | 333 | 4.2 | 2.39 | Shrinkage rate is 14.6% at 150 °C for 1 h | [109] |
SiO2/PVDF-HFP | 45 | 130–450 | 89.7 | 483 | - | 5 | No significant shrinkage at 200 °C for 0.3 h | [126] |
Sb2O3/PVDF-CTFE | 42 | 300–400 | 72 | 356 | 2.88 | 13.5 | No significant shrinkage at 160 °C for 2 h | [127] |
MMT/PVDF-HFP-PMIA | - | 277.2 | 90.21 | 1027 | 2.41 | 25.59 | No significant shrinkage at 220 °C | [117] |
3.2. Electrospinning Process
3.2.1. Electrospinning Parameters
3.2.2. Electrospinning Methods
Separators | Electrospinning Methods | Thickness /μm | Diameter /nm | Porosity /% | Electrolyte Uptake /% | Ionic Conductivity/(mS cm−1) | Tensile Strength /MPa | Thermal Stability | Ref. |
---|---|---|---|---|---|---|---|---|---|
PA6/PVDF-HFP/PA6 | single-needle, layer-by-layer | 60 | 200–500 | 90.35 | 230 | 4.2 | 17.11 | Thermal shutdown function at 145 °C No significant shrinkage at 230 °C | [141] |
TPP@PVDF | Coaxial electrospinning | - | 355.42 | 85.13 | 339.72 | 1.829 | - | Thermal shutdown function at 177 °C | [49] |
PAN/PVDF | Coaxial electrospinning | 60 | 249.3 | 81.61 | - | 1.62 | 3.6 | No significant shrinkage at 170 °C for 1 h | [138] |
SiO2/PVDF | Conjugated electrospinning | - | - | 70 ± 6 | 370 ± 9 | 2.6 ± 0.3 | 13 | No significant shrinkage at 150 °C for 0.5 h | [107] |
SiO2/PVDF | Needleless electrospinning | 60 | - | 134.5 | 541.6 | 1.43, 25 °C | 1.3 | No significant shrinkage at 140 °C | [147] |
M-PAN/PVDF-HFP | Side-by-side electrospinning | - | 372 ± 41 | 82.09 | 553.23 | 2.81 | 14.36 | Shrinkage rate is 30% at 200 °C for 0.5 h | [50] |
3.3. Post-Treatment Methods
3.3.1. Heat Treatment
3.3.2. Coating
3.3.3. Hot-Pressing Treatment
Separators | Electrospinning Methods | Post- Treatment Methods | Thickness /μm | Diameter /nm | Porosity /% | Electrolyte Uptake /% | Ionic Conductivity/(mS cm−1) | Tensile Strength/MPa | Thermal Stability | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
PVDF-24 wt% | General syringe | Thermal treatment at 80 °C for 2 h | 70 | 237.4–626.8 | 79.1 | 429 | 1.65 | - | No significant shrinkage at 150 °C for 0.5 h | [100] |
PVDF-HFP/PI | Side-by-side electrospinning | Thermal treatment at 145 °C for 20 min | 23 | 177.9 | 85.9 | 483.5 | 1.78 | 9.76 | No significant shrinkage at 200 °C for 0.5 h | [144] |
PAN/PVDF-HFP/PVP | General syringe | Thermal treatment at 170 °C for 0.5 h | - | - | 74.5 | 605.8 | 1.97 | 22.13 | No significant shrinkage at 200 °C | [155] |
PMIA@PAN/PVDF-HFP/TiO2 | Coaxial electrospinning | Thermal treatment at 170 °C | - | - | 48.2 | 207.3 | 1.36 | 29.7 | No significant shrinkage at 220 °C for 1 h | [73] |
PAN/CB/VOOH-PAN/PVDF-(HFP) | General syringe | Pressing under 25 MPa for 1/3 h and then heat treated at 155 °C for 0.5 h | - | 10–90 | 70.7 | 510.4 | 2.81 | 20.8 | No significant shrinkage at 250 °C | [51] |
PAN/HCNFs@PVDF/UiO-66 | Coaxial electrospinning | Hot pressing at 120 °C under 10 MPa for 2 h | 25 | 489.6 | 77.61 | 570.97 | 1.59 | 24.77 | No significant shrinkage at 200 °C for 1 h | [76] |
0°PAN/PVDF/90°PAN | General syringe, layer-by-layer | Hot pressing at 35 °C under 2 MPa for 60 s | 46 | 210 | 85.64 | - | - | 10.33 | Slight folds at 180 °C for 0.5 h | [134] |
4. Conclusions and Outlook
- (1)
- Electrospinning solution. The development and application of green solvents are critical to the sustainable development of electrospun PVDF-based LIB separators due to the toxic nature of most solvents. Furthermore, the inferior dispersion resulting from inorganic nanomaterials can be alleviated by washing with organic solvents of low-surface tension, such as anhydrous ethanol, adding surfactants during the preparation of fillers, and functionalizing nanomaterial. In addition, emerging materials such as MOFs and COFs with large specific surface areas and high-strength carbon fibers should be further researched;
- (2)
- Electrospinning process. Traditional orthogonal experiments are inefficient in terms of optimizing electrospinning parameters; thus, it may be possible to combine machine learning to efficiently predict the setting of electrospinning conditions in the future, and the interaction research of gradient speed and other factors on the morphology and properties of electrospun PVDF-based LIB separators will be more systematic;
- (3)
- Post-processing methods. The inorganic material coating will cause the risk of clogging separator pores, which will be alleviated by electrophoretic coating. Moreover, although separators theoretically meet the operating temperature of the LIBs, the internal temperature rises rapidly and continuously when the thermal runaway of the LIBs occurs, which exceeds the withstand temperature of the separators. Therefore, it is pivotal to continuously improve the separators’ thermal stability to ensure the safety of the LIBs.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Number | Abbreviation | Explanation | Number | Abbreviation | Explanation |
---|---|---|---|---|---|
1 | PVDF | Poly(vinylidene fluoride) | 23 | AFD | Average fiber diameter |
2 | LIBs | Lithium-ion batteries | 24 | PI | Polyimide |
3 | Li+ | Lithium-ions | 25 | PET | Polyethylene terephthalate |
4 | PP | Polypropylene | 26 | PMIA | Polymethyl methacrylate |
5 | PE | Polyethylene | 27 | TM | Talcum |
6 | PAN | Polyacrylonitrile | 28 | MMT | Montmorillonite |
7 | HCNFs | Helical carbon nanofibers | 29 | MOFs | A metal-organic framework |
8 | UiO-66 | A Zr-based metal-organic framework | 30 | COFs | A novel hollow tube covalent organic frameworks |
9 | PEG | Polyethylene glycol | 31 | CE | 4′-aminobenzo-15-crown-5 |
10 | PBS | Polybutylene succinate | 32 | IL | Ionic liquids |
11 | PVDF-HFP | Polyvinylidene fluoride-hexafluoropropylene | 33 | [Emim][TFSI] | 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide |
12 | SiO2 | Silicon dioxide | 34 | P(VDF-TrFE) | Poly(vinylidene fluoride-trifluoroethylene |
13 | F-TiO2 | Functionalized TiO2 | 35 | PEO | Polyethylene oxide |
14 | PDA | Polydopamine | 36 | LIGC-[15] | Lignocellulose |
15 | Al2O3 | Aluminium oxide | 37 | Sb2O3 | Antimony trioxide |
16 | CA | Cellulose acetate | 38 | PVDF-CTFE | Poly(vinylidene fluoride-co-chlorotrifluoroethylene) |
17 | HNT | Halloysite nanotube | 39 | TPP | Triphenyl phosphate |
18 | DMF | N,N-dimethylformamide | 40 | PA6 | Nylon 6 |
19 | DMAc | N,N-dimethylacetamide | 41 | CB | Carbon black |
20 | ACET | Acetone | 42 | VOOH | The adsorption-catalysis material synthesized hydrothermally |
21 | NMP | N-methyl pyrrolidone | 43 | PVP | Polyvinyl pyrrolidone |
22 | DMSO | Dimethyl sulfoxide | / |
References
- Zou, Z.; Hu, Z.; Pu, H. Lithium-Ion Battery Separators Based-on Nanolayer Co-Extrusion Prepared Polypropylene Nanobelts Reinforced Cellulose. J. Membr. Sci. 2022, 666, 121120. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, B.; Luo, M.; Yang, Y.; Wang, Y.; Miao, J.; Wang, S.; Zheng, Z.; Qian, J.; Xia, R.; et al. Considerably Enhanced Electrochemical and Thermomechanical Performance of Lithium Battery (LIB) Separators of PVDF/Vermiculite Nanosheets (VNs) Composites via Constructing Well-Defined Hierarchical Microstructure. Electrochim. Acta 2023, 446, 142074. [Google Scholar] [CrossRef]
- Francis, C.F.J.; Kyratzis, I.L.; Best, A.S. Lithium-Ion Battery Separators for Ionic-Liquid Electrolytes: A Review. Adv. Mater. 2020, 32, 1904205. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shen, J.; Shi, J.; Li, Y.; You, J.; Bian, F. Crystallization-Templated High-Performance PVDF Separator Used in Lithium-Ion Batteries. J. Membr. Sci. 2023, 670, 121359. [Google Scholar] [CrossRef]
- Hong, J.; Zhang, J.; Li, X.; Guo, Y.; Zhou, X.; Liu, Z. Graphene-Wrapped Composites of Si Nanoparticles, Carbon Nanofibers, and Pyrolytic Carbon as Anode Materials for Lithium-Ion Batteries. ACS Appl. Nano Mater. 2023, 6, 10138–10147. [Google Scholar] [CrossRef]
- Li, J.; Fleetwood, J.; Hawley, W.B.; Kays, W. From Materials to Cell: State-of-the-Art and Prospective Technologies for Lithium-Ion Battery Electrode Processing. Chem. Rev. 2022, 122, 903–956. [Google Scholar] [CrossRef]
- Zeng, W.; Xia, F.; Tian, W.; Cao, F.; Chen, J.; Wu, J.; Song, R.; Mu, S. Single-Crystal High-Nickel Layered Cathodes for Lithium-Ion Batteries: Advantages, Mechanism, Challenges and Approaches. Curr. Opin. Electrochem. 2022, 31, 100831. [Google Scholar] [CrossRef]
- Yu, J.; Dong, N.; Liu, B.; Tian, G.; Qi, S.; Wu, D. A Newly-Developed Heat-Resistance Polyimide Microsphere Coating to Enhance the Thermal Stability of Commercial Polyolefin Separators for Advanced Lithium-Ion Battery. Chem. Eng. J. 2022, 442, 136314. [Google Scholar] [CrossRef]
- Xie, S.; Yang, X.; Sun, Q.; Wang, Z.; He, Y. Research Progress and Prospects on Thermal Safety of Lithium-Ion Batteries in Aviation Low-Temperature and Low-Pressure Environments. J. Energy Storage 2024, 83, 110734. [Google Scholar] [CrossRef]
- Du, S.; Gao, F.; Nie, Z.; Liu, Y.; Sun, B.; Gong, X. Comparison of Electric Vehicle Lithium-Ion Battery Recycling Allocation Methods. Environ. Sci. Technol. 2022, 56, 17977–17987. [Google Scholar] [CrossRef]
- Xu, X.; Han, X.; Lu, L.; Wang, F.; Yang, M.; Liu, X.; Wu, Y.; Tang, S.; Hou, Y.; Hou, J.; et al. Challenges and Opportunities toward Long-Life Lithium-Ion Batteries. J. Power Sources 2024, 603, 234445. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, X.; Xiao, X.; Duan, Q.; Bai, H.; Cao, Y.; Zhang, Y.; Alee, M.; Yu, L. Improved Hydrophobicity, Antibacterial and Mechanical Properties of Polyvinyl Alcohol/Quaternary Chitosan Composite Films for Antibacterial Packaging. Carbohydr. Polym. 2023, 312, 120755. [Google Scholar] [CrossRef] [PubMed]
- Abu, S.M.; Hannan, M.A.; Hossain Lipu, M.S.; Mannan, M.; Ker, P.J.; Hossain, M.J.; Mahlia, T.M.I. State of the Art of Lithium-Ion Battery Material Potentials: An Analytical Evaluations, Issues and Future Research Directions. J. Clean Prod. 2023, 394, 136246. [Google Scholar] [CrossRef]
- Arora, P.; Zhang, Z. Battery Separators. Chem. Rev. 2004, 104, 4419–4462. [Google Scholar] [CrossRef]
- Bicy, K.; Mathew, D.E.; Stephen, A.M.; Royaud, I.; Poncot, M.; Godard, O.; Aranda, L.; Rouxel, D.; Kalarikkal, N.; Thomas, S. Sustainable Lithium-Ion Battery Separators Derived from Polyethylene Oxide/Lignocellulose Coated Electrospun P(VDF-TrFE) Nanofibrous Membranes. Surf. Interfaces 2022, 29, 101716. [Google Scholar] [CrossRef]
- Kim, P.J. Surface-Functionalized Separator for Stable and Reliable Lithium Metal Batteries: A Review. Nanomaterials 2021, 11, 2275. [Google Scholar] [CrossRef]
- Ren, W.; Zheng, Y.; Cui, Z.; Tao, Y.; Li, B.; Wang, W. Recent Progress of Functional Separators in Dendrite Inhibition for Lithium Metal Batteries. Energy Storage Mater. 2021, 35, 157–168. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Yang, M.; Chen, W. High-Safety Separators for Lithium-Ion Batteries and Sodium-Ion Batteries: Advances and Perspective. Energy Storage Mater. 2021, 41, 522–545. [Google Scholar] [CrossRef]
- Wu, D.; Deng, L.; Sun, Y.; Teh, K.S.; Shi, C.; Tan, Q.; Zhao, J.; Sun, D.; Lin, L. A High-Safety PVDF/Al2O3 Composite Separator for Li-Ion Batteries via Tip-Induced Electrospinning and Dip-Coating. RSC Adv. 2017, 7, 24410–24416. [Google Scholar] [CrossRef]
- Zheng, H.; Zhou, X.; Cheng, S.; Xia, R.; Nie, S.; Liang, X.; Sun, Y.; Xiang, H. High-Voltage LiNi0.5Mn1.5O4 Cathode Stability of Fluorinated Ether Based on Enhanced Separator Wettability. J. Electrochem. Soc. 2019, 166, A1456. [Google Scholar] [CrossRef]
- Babiker, D.M.D.; Usha, Z.R.; Wan, C.; Hassaan, M.M.E.; Chen, X.; Li, L. Recent Progress of Composite Polyethylene Separators for Lithium/Sodium Batteries. J. Power Sources 2023, 564, 232853. [Google Scholar] [CrossRef]
- Yang, C.; Jia, Z.; Guan, Z.; Wang, L. Polyvinylidene Fluoride Membrane by Novel Electrospinning System for Separator of Li-Ion Batteries. J. Power Sources 2009, 189, 716–720. [Google Scholar] [CrossRef]
- Venugopal, G.; Moore, J.; Howard, J.; Pendalwar, S. Characterization of Microporous Separators for Lithium-Ion Batteries. J. Power Sources 1999, 77, 34–41. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Bai, J.; Gao, T.; Mao, N. Heat Generation and Thermal Runaway Mechanisms Induced by Overcharging of Aged Lithium-Ion Battery. Appl. Therm. Eng. 2022, 212, 118565. [Google Scholar] [CrossRef]
- Zhang, S.S. A Review on the Separators of Liquid Electrolyte Li-Ion Batteries. J. Power Sources 2007, 164, 351–364. [Google Scholar] [CrossRef]
- Tang, L.; Wu, Y.; He, D.; Lei, Z.; Liu, N.; He, Y.; De Guzman, M.R.; Chen, J. Electrospun PAN Membranes Toughened and Strengthened by TPU/SHNT for High-Performance Lithium-Ion Batteries. J. Electroanal. Chem. 2023, 931, 117181. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Yuan, S.; Chang, C.; Yan, S.; Zhou, P.; Qian, X.; Yuan, M.; Liu, K. A Review of Fire-Extinguishing Agent on Suppressing Lithium-Ion Batteries Fire. J. Energy Chem. 2021, 62, 262–280. [Google Scholar] [CrossRef]
- Chen, J.; Ayranci, C.; Tang, T. Piezoelectric Performance of Electrospun PVDF and PVDF Composite Fibers: A Review and Machine Learning-Based Analysis. Mater. Today Chem. 2023, 30, 101571. [Google Scholar] [CrossRef]
- Ribeiro, C.; Costa, C.M.; Correia, D.M.; Nunes-Pereira, J.; Oliveira, J.; Martins, P.; Gonçalves, R.; Cardoso, V.F.; Lanceros-Méndez, S. Electroactive Poly(Vinylidene Fluoride)-Based Structures for Advanced Applications. Nat. Protoc. 2018, 13, 681–704. [Google Scholar] [CrossRef]
- Li, X.; Cheruvally, G.; Kim, J.-K.; Choi, J.-W.; Ahn, J.-H.; Kim, K.-W.; Ahn, H.-J. Polymer Electrolytes Based on an Electrospun Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) Membrane for Lithium Batteries. J. Power Sources 2007, 167, 491–498. [Google Scholar] [CrossRef]
- Saxena, P.; Shukla, P. A Comprehensive Review on Fundamental Properties and Applications of Poly(Vinylidene Fluoride) (PVDF). Adv. Compos. Hybrid Mater. 2021, 4, 8–26. [Google Scholar] [CrossRef]
- Yang, M.; Ji, Y.; Dong, Y.; Yuan, B.; Dong, L.; Liu, Y.; Hao, S.; Yang, C.; Wu, X.; Kong, Q.; et al. Talcum-Doped Composite Separator with Superior Wettability and Heatproof Properties for High-Rate Lithium Metal Batteries. Chin. Chem. Lett. 2023, 34, 107087. [Google Scholar] [CrossRef]
- Si, Y.; Shi, S.; Hu, J. Applications of Electrospinning in Human Health: From Detection, Protection, Regulation to Reconstruction. Nano Today 2023, 48, 101723. [Google Scholar] [CrossRef]
- Carol, P.; Ramakrishnan, P.; John, B.; Cheruvally, G. Preparation and Characterization of Electrospun Poly(Acrylonitrile) Fibrous Membrane Based Gel Polymer Electrolytes for Lithium-Ion Batteries. J. Power Sources 2011, 196, 10156–10162. [Google Scholar] [CrossRef]
- Pu, Y.; Yang, X.; Zhang, Y.; Li, L.; Xie, Y.; He, B.; Yuan, D.; Ning, X. Fabrication and Characterization of Highly Oriented Composite Nanofibers with Excellent Mechanical Strength and Thermal Stability. Macromol. Mater. Eng. 2020, 305, 1900691. [Google Scholar] [CrossRef]
- Sahu, S.; Dhar Purkayastha, D. 1D/2D ZnO Nanoneedles/Ti3C2 MXene Enrobed PVDF Electrospun Membrane for Effective Water Purification. Appl. Surf. Sci. 2023, 622, 156905. [Google Scholar] [CrossRef]
- Lu, W.; Yuan, Z.; Zhao, Y.; Zhang, H.; Zhang, H.; Li, X. Porous Membranes in Secondary Battery Technologies. Chem. Soc. Rev. 2017, 46, 2199–2236. [Google Scholar] [CrossRef]
- Badmus, M.; Liu, J.; Wang, N.; Radacsi, N.; Zhao, Y. Hierarchically Electrospun Nanofibers and Their Applications: A Review. Nano Mater. Sci. 2021, 3, 213–232. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Z.; Song, X.; Peng, W.; Zhao, X.; Zhao, H.; Liang, D.; Huang, C.; Duan, Q. A Silver Nanoparticles-Polylactic Acid Microspheres/Polylactic Acid-Thermoplastic Polyurethane Nanofibers Hierarchical Antibacterial Film. Ind. Crop. Prod. 2024, 207, 117773. [Google Scholar] [CrossRef]
- Duan, Q.; Peng, W.; He, J.; Zhang, Z.; Wu, Z.; Zhang, Y.; Wang, S.; Nie, S. Rational Design of Advanced Triboelectric Materials for Energy Harvesting and Emerging Applications. Small Methods 2023, 7, 2201251. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, Z.; Wei, W.; Yin, Y.; Huang, C.; Ding, J.; Duan, Q. Investigation of a Novel Poly (Lactic Acid) Porous Material Toughened by Thermoplastic Polyurethane. J. Mater. Sci. 2022, 57, 5456–5466. [Google Scholar] [CrossRef]
- Guo, M.; Dong, S.; Xiong, J.; Jin, X.; Wan, P.; Lu, S.; Zhang, Y.; Xu, J.; Fan, H. Flexible Core-Shell PAN/CNTs@PVDF-HFP/Uio-66-NH2 Hybrid Nanofibers Membrane for Advanced Lithium-Ion Batteries Separator. Mater. Today Chem. 2023, 30, 101552. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, C.; Zheng, H.; Han, Y. Zeolitic Imidazolate Framework-8 Modified Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)/Polyacrylonitrile Composite Separators for Li-Ion Batteries. Chin. J. Chem. Eng. 2023, 62, 291–296. [Google Scholar] [CrossRef]
- Xing, J.; Fan, W.; Li, J.; Wang, Z.; Wei, Z.; Zhao, Y. Orientation Gradient Architecture of Nanofibrous Separator towards Mechanical Enhancement and Ion Transport Acceleration for Lithium-Ion Batteries. Electrochim. Acta 2022, 441, 141794. [Google Scholar] [CrossRef]
- Bicy, K.; Gueye, A.B.; Rouxel, D.; Kalarikkal, N.; Thomas, S. Lithium-Ion Battery Separators Based on Electrospun PVDF: A Review. Surf. Interfaces 2022, 31, 101977. [Google Scholar] [CrossRef]
- Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. A Review of Recent Developments in Membrane Separators for Rechargeable Lithium-Ion Batteries. Energy Environ. Sci. 2014, 7, 3857–3886. [Google Scholar] [CrossRef]
- Choi, S.W.; Jo, S.M.; Lee, W.S.; Kim, Y.R. An Electrospun Poly(Vinylidene Fluoride) Nanofibrous Membrane and Its Battery Applications. Adv. Mater. 2003, 15, 2027–2032. [Google Scholar] [CrossRef]
- Zheng, G.; Zeng, Z.; Shao, Z.; Shen, R.; Li, H.; Jiang, J.; Wang, X.; Li, W.; Liu, Y. Coaxial Electrospun Core-Shell Lithium-Ion Battery Separator with Flame Retardant and Thermal Shutdown Functions. Mater. Chem. Phys. 2023, 301, 127647. [Google Scholar] [CrossRef]
- Guo, M.; Xiong, J.; Jin, X.; Lu, S.; Zhang, Y.; Xu, J.; Fan, H. Mussel Stimulated Modification of Flexible Janus PAN/PVDF-HFP Nanofiber Hybrid Membrane for Advanced Lithium-Ion Batteries Separator. J. Membr. Sci. 2023, 675, 121533. [Google Scholar] [CrossRef]
- Leng, X.; Xiao, W.; Yang, M.; Zeng, J.; Li, C.; Chen, J.; Arifeen, W.U.; Yoo, K.; Shim, J.; Ko, T.J. Boosting the Cycle Stability and Safety of Lithium-Sulfur Batteries via a Bilayer, Heat-Treated Electrospun Separator. Electrochim. Acta 2023, 437, 141506. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Song, W.-J.; Lee, K.J. Syringeless Electrospun Non-Woven Separator Membrane for High-Energy and High-Power Li-Ion Battery Application. J. Alloys Compd. 2023, 968, 171882. [Google Scholar] [CrossRef]
- Muche, Z.B.; Nikodimos, Y.; Tekaligne, T.M.; Merso, S.K.; Agnihotri, T.; Serbessa, G.G.; Wu, S.-H.; Su, W.-N.; Hwang, B.J. Thermally Stable 3D Cross-Linked Fluorinated Polyimide/PVDF-HFP Hybrid Separator for Lithium Battery Applications. Chem. Eng. J. 2023, 476, 146400. [Google Scholar] [CrossRef]
- Hou, Y.; Huang, Z.; Chen, Z.; Li, X.; Chen, A.; Li, P.; Wang, Y.; Zhi, C. Bifunctional Separators Design for Safe Lithium-Ion Batteries: Suppressed Lithium Dendrites and Fire Retardance. Nano Energy 2022, 97, 107204. [Google Scholar] [CrossRef]
- Raghavan, P.; Zhao, X.; Shin, C.; Baek, D.-H.; Choi, J.-W.; Manuel, J.; Heo, M.-Y.; Ahn, J.-H.; Nah, C. Preparation and Electrochemical Characterization of Polymer Electrolytes Based on Electrospun Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)/Polyacrylonitrile Blend/Composite Membranes for Lithium Batteries. J. Power Sources 2010, 195, 6088–6094. [Google Scholar] [CrossRef]
- Zhong, S.; Yuan, B.; Guang, Z.; Chen, D.; Li, Q.; Dong, L.; Ji, Y.; Dong, Y.; Han, J.; He, W. Recent Progress in Thin Separators for Upgraded Lithium Ion Batteries. Energy Storage Mater. 2021, 41, 805–841. [Google Scholar] [CrossRef]
- Cheng, C.; Yang, R.; Wang, Y.; Fu, D.; Sheng, J.; Guo, X. A Bacterial Cellulose-Based Separator with Tunable Pore Size for Lithium-Ion Batteries. Carbohydr. Polym. 2022, 304, 120489. [Google Scholar] [CrossRef]
- Costa, C.M.; Silva, M.M.; Lanceros-Méndez, S. Battery Separators Based on Vinylidene Fluoride (VDF) Polymers and Copolymers for Lithium Ion Battery Applications. RSC Adv. 2013, 3, 11404–11417. [Google Scholar] [CrossRef]
- Zhou, H.; Gu, J.; Wei, Y.; Zhang, W.; Kang, J.; Huang, J.-Q.; Zhang, B.; Hu, C.; Lin, X. Cellulose Filter Papers Derived Separator Featuring Effective Ion Transferring Channels for Sodium-Ion Batteries. J. Power Sources 2023, 558, 232649. [Google Scholar] [CrossRef]
- Gao, K.; Hu, X.; Dai, C.; Yi, T. Crystal Structures of Electrospun PVDF Membranes and Its Separator Application for Rechargeable Lithium Metal Cells. Mater. Sci. Eng. B Adv. Funct. Solid-State Mater. 2006, 131, 100–105. [Google Scholar] [CrossRef]
- Liu, F.; Hashim, N.A.; Liu, Y.; Abed, M.R.M.; Li, K. Progress in the Production and Modification of PVDF Membranes. J. Membr. Sci. 2011, 375, 1–27. [Google Scholar] [CrossRef]
- Raghavan, P.; Lim, D.-H.; Ahn, J.-H.; Nah, C.; Sherrington, D.C.; Ryu, H.-S.; Ahn, H.-J. Electrospun Polymer Nanofibers: The Booming Cutting Edge Technology. React. Funct. Polym. 2012, 72, 915–930. [Google Scholar] [CrossRef]
- Lim, D.-H.; Manuel, J.; Ahn, J.-H.; Kim, J.-K.; Jacobsson, P.; Matic, A.; Ha, J.K.; Cho, K.K.; Kim, K.-W. Polymer Electrolytes Based on Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) Nanofibrous Membranes Containing Polymer Plasticizers for Lithium Batteries. Solid State Ion. 2012, 225, 631–635. [Google Scholar] [CrossRef]
- Gopalan, A.I.; Santhosh, P.; Manesh, K.M.; Nho, J.H.; Kim, S.H.; Hwang, C.-G.; Lee, K.-P. Development of Electrospun PVDF–PAN Membrane-Based Polymer Electrolytes for Lithium Batteries. J. Membr. Sci. 2008, 325, 683–690. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Jeong, Y.B.; Kim, D.-W. Cycling Performance of Lithium-Ion Batteries Assembled with a Hybrid Composite Membrane Prepared by an Electrospinning Method. J. Power Sources 2010, 195, 6197–6201. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Ma, Y.; Liu, J.; Liu, X. Improved Performance of PVDF-HFP/PI Nanofiber Membrane for Lithium Ion Battery Separator Prepared by a Bicomponent Cross-Electrospinning Method. Mater. Lett. 2014, 133, 67–70. [Google Scholar] [CrossRef]
- Angulakshmi, N.; Stephan, A.M. Electrospun Trilayer Polymeric Membranes as Separator for Lithium–Ion Batteries. Electrochim. Acta 2014, 127, 167–172. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, X.; Cao, C.; Li, J.; Zhu, Y. Poly(Vinylidene Fluoride)/SiO2 Composite Membranes Prepared by Electrospinning and Their Excellent Properties for Nonwoven Separators for Lithium-Ion Batteries. J. Power Sources 2014, 251, 423–431. [Google Scholar] [CrossRef]
- Padmaraj, O.; Nageswara Rao, B.; Jena, P.; Venkateswarlu, M.; Satyanarayana, N. Electrochemical Studies of Electrospun Organic/Inorganic Hybrid Nanocomposite Fibrous Polymer Electrolyte for Lithium Battery. Polymer 2014, 55, 1136–1142. [Google Scholar] [CrossRef]
- Shubha, N.; Prasanth, R.; Hoon, H.H.; Srinivasan, M. Plastic Crystalline-Semi Crystalline Polymer Composite Electrolyte Based on Non-Woven Poly(Vinylidenefluoride-Co-Hexafluoropropylene) Porous Membranes for Lithium Ion Batteries. Electrochim. Acta 2014, 125, 362–370. [Google Scholar] [CrossRef]
- Liang, Y.; Cheng, S.; Zhao, J.; Zhang, C.; Sun, S.; Zhou, N.; Qiu, Y.; Zhang, X. Heat Treatment of Electrospun Polyvinylidene Fluoride Fibrous Membrane Separators for Rechargeable Lithium-Ion Batteries. J. Power Sources 2013, 240, 204–211. [Google Scholar] [CrossRef]
- Kimura, N.; Sakumoto, T.; Mori, Y.; Wei, K.; Kim, B.-S.; Song, K.-H.; Kim, I.-S. Fabrication and Characterization of Reinforced Electrospun Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) Nanofiber Membranes. Compos. Sci. Technol. 2014, 92, 120–125. [Google Scholar] [CrossRef]
- Li, H.; Feng, T.; Liang, Y.; Wu, M. Construction of PMIA@PAN/PVDF-HFP/TiO2 Coaxial Fibrous Separator with Enhanced Mechanical Strength and Electrolyte Affinity for Lithium-Ion Batteries. Chin. Chem. Lett. 2023, 34, 108350. [Google Scholar] [CrossRef]
- Lin, B.; Chen, G.-D.; He, F.-A.; Li, Y.; Yang, Y.; Shi, B.; Feng, F.-R.; Chen, S.-Y.; Lam, K.-H. Preparation of MWCNTs/PVDF Composites with High-Content β Form Crystalline of PVDF and Enhanced Dielectric Constant by Electrospinning-Hot Pressing Method. Diam. Relat. Mater. 2023, 131, 109556. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Ma, Y.; Yang, W. Improved Performance of Lithium Ion Battery Separator Enabled by Co-Electrospinnig Polyimide/Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) and the Incorporation of TiO2-(2-Hydroxyethyl Methacrylate). J. Power Sources 2015, 273, 1127–1135. [Google Scholar] [CrossRef]
- Fu, Q.; Zhang, W.; Muhammad, I.P.; Chen, X.; Zeng, Y.; Wang, B.; Zhang, S. Coaxially Electrospun PAN/HCNFs@PVDF/UiO-66 Composite Separator with High Strength and Thermal Stability for Lithium-Ion Battery. Microporous Mesoporous Mat. 2021, 311, 110724. [Google Scholar] [CrossRef]
- Li, M.; Wang, K.; Shen, F.; Bai, Y.; Yang, C.; Liu, J.; Yan, J.; Chen, Y.; Han, X. An Electrolyte-Locked Thermally Stable Composite Separator for Safe Lithium Ion Batteries. J. Alloys Compd. 2023, 938, 168543. [Google Scholar] [CrossRef]
- Wang, K.; Wang, W.; Wang, Y.; Wang, M. Dual Phase Change Separator Combining Cooling and Thermal Shutdown Functions for Li-Ion Battery with Enhanced Safety. Chem. Eng. J. 2024, 481, 148538. [Google Scholar] [CrossRef]
- Shi, C.; Dai, J.; Huang, S.; Li, C.; Shen, X.; Zhang, P.; Wu, D.; Sun, D.; Zhao, J. A Simple Method to Prepare a Polydopamine Modified Core-Shell Structure Composite Separator for Application in High-Safety Lithium-Ion Batteries. J. Membr. Sci. 2016, 518, 168–177. [Google Scholar] [CrossRef]
- Bicy, K.; Suriyakumar, S.; Anu Paul, P.; Anu, A.S.; Kalarikkal, N.; Stephen, A.M.; Geethamma, G.V.; Rouxel, D.; Thomas, S. Highly Lithium Ion Conductive, Al2O3 Decorated Electrospun P(VDF-TrFE) Membranes for Lithium Ion Battery Separators. New J. Chem. 2018, 42, 19505–19520. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, D.; Shao, Z.; Liu, S. Cellulosic Materials-Enhanced Sandwich Structure-like Separator via Electrospinning towards Safer Lithium-Ion Battery. Carbohydr. Polym. 2019, 214, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Qiu, L.; Ma, X.; Dong, L.; Jin, Z.; Xia, G.; Du, P.; Xiong, J. Electrospun Cellulose Polymer Nanofiber Membrane with Flame Resistance Properties for Lithium-Ion Batteries. Carbohydr. Polym. 2020, 234, 115907. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Mateti, S.; Cai, Q.; Sultana, I.; Fan, Y.; Wang, X.; Hou, C.; Chen, Y. High Temperature and High Rate Lithium-Ion Batteries with Boron Nitride Nanotubes Coated Polypropylene Separators. Energy Storage Mater. 2019, 19, 352–359. [Google Scholar] [CrossRef]
- Chen, Z.; Hsu, P.-C.; Lopez, J.; Li, Y.; To, J.W.F.; Liu, N.; Wang, C.; Andrews, S.C.; Liu, J.; Cui, Y.; et al. Fast and Reversible Thermoresponsive Polymer Switching Materials for Safer Batteries. Nat. Energy 2016, 1, 15009. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Ni, J.; Li, L. Electrospinning for Flexible Sodium-Ion Batteries. Energy Storage Mater. 2022, 45, 704–719. [Google Scholar] [CrossRef]
- Liu, L.; Xu, T.; Gui, X.; Gao, S.; Sun, L.; Lin, Q.; Song, X.; Wang, Z.; Xu, K. Electrospun Silsequioxane-Grafted PVDF Hybrid Membranes for High-Performance Rechargeable Lithium Batteries. Compos. Pt. B Eng. 2021, 215, 108849. [Google Scholar] [CrossRef]
- Tiwari, S.; Dubey, D.K.; Prakash, O.; Das, S.; Maiti, P. Effect of Functionalization on Electrospun PVDF Nanohybrid for Piezoelectric Energy Harvesting Applications. Energy 2023, 275, 127492. [Google Scholar] [CrossRef]
- Cao, C.; Tan, L.; Liu, W.; Ma, J.; Li, L. Polydopamine Coated Electrospun Poly(Vinyldiene Fluoride) Nanofibrous Membrane as Separator for Lithium-Ion Batteries. J. Power Sources 2014, 248, 224–229. [Google Scholar] [CrossRef]
- Zhang, Y.; He, R.; Li, Y.; Liu, H.; Liu, H.; Zhang, X.-X. Fabrication of Coaxially Electrospun PEI@PVDF-HFP Fibrous Membrane as Flame-Retardant and Anti-Shrink Separator for Lithium-Ion Battery. Mater. Lett. 2024, 361, 136063. [Google Scholar] [CrossRef]
- Sun, X.; Guo, J.; Zhi, X.; Xu, J.; Bian, Y.; Hou, K.; Li, X.; Wang, L.; Liang, G. Improved Ionic Conductivity and Cycling Stability via Composite Separator Constructed by Coating Organic-Modified Sepiolite/PVDF Layer on PP via Electrospinning Technology. Colloid Surf. A-Physicochem. Eng. Asp. 2024, 691, 133925. [Google Scholar] [CrossRef]
- Liu, J.-H.; Wang, P.; Gao, Z.; Li, X.; Cui, W.; Li, R.; Ramakrishna, S.; Zhang, J.; Long, Y.-Z. Review on Electrospinning Anode and Separators for Lithium Ion Batteries. Renew. Sust. Energ. Rev. 2024, 189, 113939. [Google Scholar] [CrossRef]
- Gee, S.; Johnson, B.; Smith, A.L. Optimizing Electrospinning Parameters for Piezoelectric PVDF Nanofiber Membranes. J. Membr. Sci. 2018, 563, 804–812. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, R.; Tian, M.; Qiu, C.; Fane, A.G. Fabrication of Polyvinylidene Fluoride (PVDF) Nanofiber Membranes by Electro-Spinning for Direct Contact Membrane Distillation. J. Membr. Sci. 2013, 425–426, 30–39. [Google Scholar] [CrossRef]
- Hu, X.; Chen, X.; Giagnorio, M.; Wu, C.; Luo, Y.; Hélix-Nielsen, C.; Yu, P.; Zhang, W. Beaded Electrospun Polyvinylidene Fluoride (PVDF) Membranes for Membrane Distillation (MD). J. Membr. Sci. 2022, 661, 120850. [Google Scholar] [CrossRef]
- Chen, X.; Tougne, C.; Jiang, T.; Espindola-Rodriguez, M.; Zhao, Q.; Jia, Q.; Mendil-Jakani, H.; Jiang, J.; Zhang, W. Highly Oriented PVDF Molecular Chains for Enhanced Material Performance. Polymer 2022, 261, 125366. [Google Scholar] [CrossRef]
- Choi, S.W.; Kim, J.R.; Ahn, Y.R.; Jo, S.M.; Cairns, E.J. Characterization of Electrospun PVdF Fiber-Based Polymer Electrolytes. Chem. Mat. 2007, 19, 104–115. [Google Scholar] [CrossRef]
- Sarma, S.; Verma, A.K.; Phadkule, S.S.; Saharia, M. Towards an Interpretable Machine Learning Model for Electrospun Polyvinylidene Fluoride (PVDF) Fiber Properties. Comput. Mater. Sci. 2022, 213, 111661. [Google Scholar] [CrossRef]
- Ma, X.; Kolla, P.; Yang, R.; Wang, Z.; Zhao, Y.; Smirnova, A.L.; Fong, H. Electrospun Polyacrylonitrile Nanofibrous Membranes with Varied Fiber Diameters and Different Membrane Porosities as Lithium-Ion Battery Separators. Electrochim. Acta 2017, 236, 417–423. [Google Scholar] [CrossRef]
- Behroozi, A.H.; Al-Shaeli, M.; Vatanpour, V. Fabrication and Modification of Nanofiltration Membranes by Solution Electrospinning Technique: A Review of Influential Factors and Applications in Water Treatment. Desalination 2023, 558, 116638. [Google Scholar] [CrossRef]
- Gao, X.; Sheng, L.; Xie, X.; Yang, L.; Bai, Y.; Dong, H.; Liu, G.; Wang, T.; Huang, X.; He, J. Morphology Optimizing of Polyvinylidene Fluoride (PVDF) Nanofiber Separator for Safe Lithium-Ion Battery. J. Appl. Polym. Sci. 2022, 139, 52154. [Google Scholar] [CrossRef]
- Zhao, H.; Deng, N.; Ju, J.; Li, Z.; Kang, W.; Cheng, B. Novel Configuration of Heat-Resistant Gel Polymer Electrolyte with Electrospun Poly (Vinylidene Fluoride-Co-Hexafluoropropylene) and Poly-m-Phenyleneisophthalamide Composite Separator for High-Safety Lithium-Ion Battery. Mater. Lett. 2019, 236, 101–105. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Shi, L.; Zhao, Y.; Yuan, S. Enhanced Thermal Stability and Lithium Ion Conductivity of Polyethylene Separator by Coating Colloidal SiO2 Nanoparticles with Porous Shell. J. Colloid Interface Sci. 2019, 554, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Li, Z.; Mi, L.; Zheng, J.; Feng, X.; Chen, W. Polypropylene/Hydrophobic-Silica-Aerogel-Composite Separator Induced Enhanced Safety and Low Polarization for Lithium-Ion Batteries. J. Power Sources 2018, 376, 177–183. [Google Scholar] [CrossRef]
- Zhang, C.; Reddy, V.S.; Ramakrishna, S. Advancing Lithium-Ion Battery Technology with Electrospun PVDF-HFP/SiO2 Nanocomposite Electrolyte Membrane and CuCo2O4 High-Performance Anode Material. J. Energy Storage 2024, 87, 111429. [Google Scholar] [CrossRef]
- Jung, B.; Lee, B.; Jeong, Y.-C.; Lee, J.; Yang, S.R.; Kim, H.; Park, M. Thermally Stable Non-Aqueous Ceramic-Coated Separators with Enhanced Nail Penetration Performance. J. Power Sources 2019, 427, 271–282. [Google Scholar] [CrossRef]
- Choi, J.; Kim, P.J. A Roadmap of Battery Separator Development: Past and Future. Curr. Opin. Electrochem. 2022, 31, 100858. [Google Scholar] [CrossRef]
- Yanilmaz, M.; Lu, Y.; Dirican, M.; Fu, K.; Zhang, X. Nanoparticle-on-Nanofiber Hybrid Membrane Separators for Lithium-Ion Batteries via Combining Electrospraying and Electrospinning Techniques. J. Membr. Sci. 2014, 456, 57–65. [Google Scholar] [CrossRef]
- Liu, K.; Zhuo, D.; Lee, H.-W.; Liu, W.; Lin, D.; Lu, Y.; Cui, Y. Extending the Life of Lithium-Based Rechargeable Batteries by Reaction of Lithium Dendrites with a Novel Silica Nanoparticle Sandwiched Separator. Adv. Mater. 2017, 29, 1603987. [Google Scholar] [CrossRef]
- Fang, C.; Yang, S.; Zhao, X.; Du, P.; Xiong, J. Electrospun Montmorillonite Modified Poly(Vinylidene Fluoride) Nanocomposite Separators for Lithium-Ion Batteries. Mater. Res. Bull. 2016, 79, 1–7. [Google Scholar] [CrossRef]
- Deka, M.; Kumar, A. Enhanced Electrical and Electrochemical Properties of PMMA–Clay Nanocomposite Gel Polymer Electrolytes. Electrochim. Acta 2010, 55, 1836–1842. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, F.; Guo, Z.; Dong, S. Poly(Vinylidene Fluoride-Hexafluoropropylene)/Organo-Montmorillonite Clays Nanocomposite Lithium Polymer Electrolytes. Electrochim. Acta 2004, 49, 3595–3602. [Google Scholar] [CrossRef]
- Zhou, J.; Hou, D.; Cheng, S.; Zhang, J.; Chen, W.; Zhou, L.; Zhang, P. Recent Advances in Dispersion and Alignment of Fillers in PVDF-Based Composites for High-Performance Dielectric Energy Storage. Mater. Today Energy 2023, 31, 101208. [Google Scholar] [CrossRef]
- Pan, Z.; Yao, L.; Zhai, J.; Fu, D.; Shen, B.; Wang, H. High-Energy-Density Polymer Nanocomposites Composed of Newly-Structured One-Dimensional BaTiO3@Al2O3 Nanofibers. ACS Appl. Mater. Interfaces 2017, 9, 4024–4033. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yu, J.; Liang, X.; Huang, Z.; Li, J.; Peng, S. Crystallization Behaviors Regulations and Mechanical Performances Enhancement Approaches of Polylactic Acid (PLA) Biodegradable Materials Modified by Organic Nucleating Agents. Int. J. Biol. Macromol. 2023, 233, 123581. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Jeong, J.Y.; Kim, J.I.; Kim, S.; Park, J.H. An Ultrathin Inorganic-Organic Hybrid Layer on Commercial Polymer Separators for Advanced Lithium-Ion Batteries. J. Power Sources 2019, 416, 89–94. [Google Scholar] [CrossRef]
- Jia, S.; Yang, S.; Pan, Y.; Din, S.U.; Cai, Y. Boehmite-PVDF-CTFE/F-PI Composite Separator Irradiated by Electron Beam for High-Rate Lithium-Ion Batteries. J. Membr. Sci. 2024, 704, 122827. [Google Scholar] [CrossRef]
- Zhao, H.; Kang, W.; Deng, N.; Liu, M.; Cheng, B. A Fresh Hierarchical-Structure Gel Poly-m-Phenyleneisophthalamide Nanofiber Separator Assisted by Electronegative Nanoclay-Filler towards High-Performance and Advanced-Safety Lithium-Ion Battery. Chem. Eng. J. 2020, 384, 123312. [Google Scholar] [CrossRef]
- Leng, X.; Zeng, J.; Yang, M.; Li, C.; Prabhakar Vattikuti, S.V.; Chen, J.; Li, S.; Shim, J.; Guo, T.; Jo Ko, T. Bimetallic Ni–Co MOF@PAN Modified Electrospun Separator Enhances High-Performance Lithium–Sulfur Batteries. J. Energy Chem. 2023, 82, 484–496. [Google Scholar] [CrossRef]
- Valverde, A.; Gonçalves, R.; Silva, M.M.; Wuttke, S.; Fidalgo-Marijuan, A.; Costa, C.M.; Vilas-Vilela, J.L.; Laza, J.M.; Arriortua, M.I.; Lanceros-Méndez, S.; et al. Metal–Organic Framework Based PVDF Separators for High Rate Cycling Lithium-Ion Batteries. ACS Appl. Energy Mater. 2020, 3, 11907–11919. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, G.; Kang, W.; Deng, N.; Cheng, B. Taming Polysulfides and Facilitating Lithium-Ion Migration: Novel Electrospinning MOFs@PVDF-Based Composite Separator with Spiderweb-like Structure for Li-S Batteries. Electrochim. Acta 2021, 365, 137344. [Google Scholar] [CrossRef]
- Ouyang, X.; Liang, R.; Hu, Y.; Li, G.; Hu, C.; Zhong, Q. Hollow Tube Covalent Organic Framework for Syringe Filter-Based Extraction of Ultraviolet Stabilizer in Food Contact Materials. J. Chromatogr. A 2021, 1656, 462538. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Di, W.; Jiang, Y.; Xu, F.; Long, Z.; Ren, F.; Zhang, P. The Morphological Evolution, Mechanical Properties and Ionic Conductivities of Electrospinning P(VDF-HFP) Membranes at Various Temperatures. Ionics 2009, 15, 731–734. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, W.; Lu, W.; Mei, Y.; He, F.; Zhang, M.; Liu, Y.; Chen, Y.; Peng, J.; Ding, Y. Anisotropic Semi-Aligned PAN@PVdF-HFP Separator for Li-Ion Batteries. Nanotechnology 2020, 31, 435701. [Google Scholar] [CrossRef] [PubMed]
- Pei, H.; Chen, J.; Liu, H.; Zhang, L.; Hui, H.; Li, Z.; Li, J.; Li, X. Ionic Conductivity Enhanced by Crown Ether Bridges for Lithium-Ion Battery Separators. Appl. Surf. Sci. 2022, 608, 155030. [Google Scholar] [CrossRef]
- Barbosa, J.C.; Correia, D.M.; Gonçalves, R.; de Zea Bermudez, V.; Silva, M.M.; Lanceros-Mendez, S.; Costa, C.M. Enhanced Ionic Conductivity in Poly(Vinylidene Fluoride) Electrospun Separator Membranes Blended with Different Ionic Liquids for Lithium Ion Batteries. J. Colloid Interface Sci. 2021, 582, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhu, J.-W.; Fang, J.-B.; Li, X.; Yu, M.; Long, Y.-Z. Electrospun High-Thermal-Resistant Inorganic Composite Nonwoven as Lithium-Ion Battery Separator. J. Nanomater. 2020, 2020, e3879040. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Sun, Y.; Liang, X.; Xiang, H. Sb2O3 Modified PVDF-CTFE Electrospun Fibrous Membrane as a Safe Lithium-Ion Battery Separator. J. Membr. Sci. 2019, 572, 512–519. [Google Scholar] [CrossRef]
- Gao, Q.; Agarwal, S.; Greiner, A.; Zhang, T. Electrospun Fiber-Based Flexible Electronics: Fiber Fabrication, Device Platform, Functionality Integration and Applications. Prog. Mater. Sci. 2023, 137, 101139. [Google Scholar] [CrossRef]
- Hwang, K.; Kwon, B.; Byun, H. Preparation of PVdF Nanofiber Membranes by Electrospinning and Their Use as Secondary Battery Separators. J. Membr. Sci. 2011, 378, 111–116. [Google Scholar] [CrossRef]
- Raghavan, P.; Manuel, J.; Zhao, X.; Kim, D.-S.; Ahn, J.-H.; Nah, C. Preparation and Electrochemical Characterization of Gel Polymer Electrolyte Based on Electrospun Polyacrylonitrile Nonwoven Membranes for Lithium Batteries. J. Power Sources 2011, 196, 6742–6749. [Google Scholar] [CrossRef]
- Ghomi, E.R.; Lakshminarayanan, R.; Chellappan, V.; Verma, N.K.; Chinnappan, A.; Neisiany, R.E.; Amuthavalli, K.; Poh, Z.S.; Wong, B.H.S.; Dubey, N.; et al. Electrospun Aligned PCL/Gelatin Scaffolds Mimicking the Skin ECM for Effective Antimicrobial Wound Dressings. Adv. Fiber Mater. 2023, 5, 235–251. [Google Scholar] [CrossRef]
- Wang, Q.; Sheng, H.; Lv, Y.; Liang, J.; Liu, Y.; Li, N.; Xie, E.; Su, Q.; Ershad, F.; Lan, W.; et al. A Skin-Mountable Hyperthermia Fatch Based on Metal Nanofiber Network with High Transparency and Low Resistivity toward Subcutaneous Tumor Treatment. Adv. Funct. Mater. 2022, 32, 2111228. [Google Scholar] [CrossRef]
- Zhou, M.; Xu, F.; Ma, L.; Luo, Q.; Ma, W.; Wang, R.; Lan, C.; Pu, X.; Qin, X. Continuously Fabricated Nano/Micro Aligned Fiber Based Waterproof and Breathable Fabric Triboelectric Nanogenerators for Self-Powered Sensing Systems. Nano Energy 2022, 104, 107885. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhou, R.; Zhao, H.; Ye, F.; Zhang, X.; Ge, Y. Oriented PAN/PVDF/PAN Laminated Nanofiber Separator for Lithium-Ion Batteries. Text. Res. J. 2022, 92, 2635–2642. [Google Scholar] [CrossRef]
- Khalifa, M.; Janakiraman, S.; Ghosh, S.; Venimadhav, A.; Anandhan, S. PVDF/Halloysite Nanocomposite-Based Non-Wovens as Gel Polymer Electrolyte for High Safety Lithium Ion Battery. Polym. Compos. 2019, 40, 2320–2334. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Z.; Zhang, Q.; Song, X.; Lu, X.; Zhang, Z.; Onyianta, A.J.; Wang, M.; Titirici, M.-M.; Eichhorn, S.J. Stable Odium-Metal Eatteries in Carbonate Electrolytes Achieved by Eifunctional, Sustainable Separators with Tailored Alignment. Adv. Mater. 2022, 34, 2206367. [Google Scholar] [CrossRef] [PubMed]
- Essam, A.; El-Shazly, A.H.; Shokry, H. Piezoelectric PVDF Nanofibrous Membrane Electrospinning Optimization Parameters. Key Eng. Mater. 2021, 897, 71–76. [Google Scholar] [CrossRef]
- Gao, X.; Sheng, L.; Yang, L.; Xie, X.; Li, D.; Gong, Y.; Cao, M.; Bai, Y.; Dong, H.; Liu, G.; et al. High-Stability Core–Shell Structured PAN/PVDF Nanofiber Separator with Excellent Lithium-Ion Transport Property for Lithium-Based Battery. J. Colloid Interface Sci. 2023, 636, 317–327. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, J.; Lee, J.H.; Park, C.H.; Kim, C.S. One-Step Fabrication of Polyvinylidene Fluoride Membranes Enriched with Electroactive β-Phase for Secondary Battery Separators via Simultaneous near Infrared Radiation and Electrospinning. Mater. Lett. 2024, 372, 137041. [Google Scholar] [CrossRef]
- Lee, J.; Yoon, J.; Oh, S.-G. Electrospun Nanofiber-Based Tri-Layer Separators with CuO/TiO2 Nanowires for High-Performance and Long-Cycle Stability of Lithium-Ion Batteries. J. Ind. Eng. Chem. 2024, 135, 165–174. [Google Scholar] [CrossRef]
- Qin, S.; Wang, Y.; Wu, X.; Zhang, X.; Zhu, Y.; Yu, N.; Zhang, Y.; Wu, Y. Nylon-Based Composite Gel Membrane Fabricated via Sequential Layer-by-Layer Electrospinning for Rechargeable Lithium Batteries with High Performance. Polymers 2020, 12, 1572. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Qiu, L.; Ma, X.; Chu, Z.; Zhuang, Z.; Dong, L.; Du, P.; Xiong, J. Electrospun PMIA and PVDF-HFP Composite Nanofibrous Membranes with Two Different Structures for Improved Lithium-Ion Battery Separators. Solid State Ion. 2020, 347, 115253. [Google Scholar] [CrossRef]
- Chen, Z.; Guan, M.; Cheng, Y.; Li, H.; Ji, G.; Chen, H.; Fu, X.; Awuye, D.E.; Zhu, Y.; Yin, X.; et al. Boehmite-Enhanced Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)/Polyacrylonitrile (PVDF-HFP/PAN) Coaxial Electrospun Nanofiber Hybrid Membrane: A Superior Separator for Lithium-Ion Batteries. Adv. Compos. Hybrid Mater. 2023, 6, 219. [Google Scholar] [CrossRef]
- Jiang, Y.; Ding, Y.; Zhang, P.; Li, F.; Yang, Z. Temperature-Dependent on/off PVP@TiO2 Separator for Safe Li-Storage. J. Membr. Sci.Nces Lithium-Ion Battery Sep. Revers. /Irreversible Therm. Shutdown Capa 2018, 565, 33–41. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Shang, R.; Cheng, C.; Cheng, Y.; Xing, J.; Wei, Z.; Zhao, Y. Recent Advances in Lithium-Ion Battery Separators with Reversible/Irreversible Thermal Shutdown Capability. Energy Storage Mater. 2021, 43, 143–157. [Google Scholar] [CrossRef]
- Cook, M.T.; Haddow, P.; Kirton, S.B.; McAuley, W.J. Polymers Exhibiting Lower Critical Solution Temperatures as a Route to Thermoreversible Celators for Healthcare. Adv. Funct. Mater. 2021, 31, 2008123. [Google Scholar] [CrossRef]
- Jeong, H.; Hwang, J.; Kim, J.; Song, W.-J.; Lee, K.J. Syringeless Electrospinning of PVDF/SiO2 as Separator Membrane for High-Performance Lithium-Ion Batteries. Mater. Chem. Phys. 2022, 288, 126354. [Google Scholar] [CrossRef]
- Cai, M.; Yuan, D.; Zhang, X.; Pu, Y.; Liu, X.; He, H.; Zhang, L.; Ning, X. Lithium Ion Battery Separator with Improved Performance via Side-by-Side Bicomponent Electrospinning of PVDF-HFP/PI Followed by 3D Thermal Crosslinking. J. Power Sources 2020, 461, 228123. [Google Scholar] [CrossRef]
- Xing, J.; Li, J.; Fan, W.; Zhao, T.; Chen, X.; Li, H.; Cui, Y.; Wei, Z.; Zhao, Y. A Review on Nanofibrous Separators towards Enhanced Mechanical Properties for Lithium-Ion Batteries. Compos. Pt. B Eng. 2022, 243, 110105. [Google Scholar] [CrossRef]
- Tang, W.; Liu, Q.; Luo, N.; Chen, F.; Fu, Q. High Safety and Electrochemical Performance Electrospun Para-Aramid Nanofiber Composite Separator for Lithium-Ion Battery. Compos. Sci. Technol. 2022, 225, 109479. [Google Scholar] [CrossRef]
- Chou, L.-Y.; Ye, Y.; Lee, H.K.; Huang, W.; Xu, R.; Gao, X.; Chen, R.; Wu, F.; Tsung, C.-K.; Cui, Y. Electrolyte-Resistant Dual Materials for the Synergistic Safety Enhancement of Lithium-Ion Batteries. Nano Lett. 2021, 21, 2074–2080. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Gao, Q.; Duan, M.; Cheng, D.; Yang, Z. An Advanced Hybrid Fibrous Separator by In-Situ Confining Growth Method for High Performance Lithium-Ion Batteries. Electrochim. Acta 2022, 433, 141209. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, H.; Wang, B.; Yang, S.; Wu, B.; Zhou, Y.; Li, H.; Wei, Z.; Zhao, Y. Microfiber/Nanofiber/Attapulgite Multilayer Separator with a Pore-Size Gradient for High-Performance and Safe Lithium-Ion Batteries. Molecules 2024, 29, 3277. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Han, D.-Y.; Hong, D.; Park, S. A Polymeric Separator Membrane with Chemoresistance and High Li-Ion Flux for High-Energy-Density Lithium Metal Batteries. Energy Storage Mater. 2022, 45, 941–951. [Google Scholar] [CrossRef]
- Leng, X.; Yang, M.; Li, C.; Arifeen, W.U.; Ko, T.J. High-Performance Separator for Lithium-Ion Battery Based on Dual-Hybridizing of Materials and Processes. Chem. Eng. J. 2022, 433, 133773. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Yang, L.; Ruan, X.; Liu, Z.; Liao, K.; Duan, Q.; Zhan, Y. Electrospun PVDF-Based Polymers for Lithium-Ion Battery Separators: A Review. Polymers 2024, 16, 2895. https://doi.org/10.3390/polym16202895
He J, Yang L, Ruan X, Liu Z, Liao K, Duan Q, Zhan Y. Electrospun PVDF-Based Polymers for Lithium-Ion Battery Separators: A Review. Polymers. 2024; 16(20):2895. https://doi.org/10.3390/polym16202895
Chicago/Turabian StyleHe, Juanxia, Lihong Yang, Xingzhe Ruan, Zechun Liu, Kezhang Liao, Qingshan Duan, and Yongzhong Zhan. 2024. "Electrospun PVDF-Based Polymers for Lithium-Ion Battery Separators: A Review" Polymers 16, no. 20: 2895. https://doi.org/10.3390/polym16202895
APA StyleHe, J., Yang, L., Ruan, X., Liu, Z., Liao, K., Duan, Q., & Zhan, Y. (2024). Electrospun PVDF-Based Polymers for Lithium-Ion Battery Separators: A Review. Polymers, 16(20), 2895. https://doi.org/10.3390/polym16202895