Sublingual Fast-Dissolving Thin Films of Loratadine: Characterization, In Vitro and Ex Vivo Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formulation of Sublingual Fast-Dissolving Thin Films
2.3. Evaluation of Sublingual Fast-Dissolving Thin Films
2.3.1. Morphological and Surface Topographical Analysis
2.3.2. Drug–Polymer Compatibility Analysis
2.3.3. Physicochemical Characterization of Sublingual Fast-Dissolving Thin films
Weight Variation
Thickness Measurement
Folding Endurance
Tack Test
Surface pH
Percentage Moisture Loss
Drug Content
Disintegration Test
2.3.4. Differential Scanning Calorimetry
2.3.5. X-ray Diffraction (XRD)
2.4. In Vitro Dissolution Studies
2.5. Ex Vivo Mucoadhesion Strength
2.6. Stability Studies
2.7. Statistical Analysis
3. Results and Discussion
3.1. Formulation of the Sublingual Fast-Dissolving Thin Films
3.2. Evaluation of Sublingual Fast-Dissolving Thin Films
3.2.1. Morphological and Surface Topographical Analysis
3.2.2. Drug–Polymer Compatibility Analysis
3.2.3. Physicochemical Characterizations of Sublingual Fast-Dissolving Thin Films
Weight Variation
Thickness Measurement
Folding Endurance
Tack Test
Surface pH
Percentage Moisture Loss
Drug Content of the Sublingual Fast-Dissolving Thin Films
Disintegration Test
3.2.4. Differential Scanning Calorimetry
3.2.5. X-ray Diffraction
3.3. In Vitro Dissolution Studies
3.4. Ex Vivo Mucoadhesion Strength
3.5. Stability Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumria, R.; Nair, A.B.; Al-Dhubiab, B.E. Loratadine buccal films for allergic rhinitis: Development and evaluation. Drug Dev. Ind. Pharm. 2014, 40, 625–631. [Google Scholar] [CrossRef]
- Madhav, K.V.; Kishan, V. Self microemulsifying particles of loratadine for improved oral bioavailability: Preparation, characterization and in vivo evaluation. J. Pharm. Investig. 2018, 48, 497–508. [Google Scholar] [CrossRef]
- Bousquet, J.; van Cauwenberge, P.; Khaltaev, N. Allergic rhinitis and its impact on asthma. J. Allergy Clin. Immunol. 2001, 108, S147-334. [Google Scholar] [CrossRef]
- Haria, M.; Fitton, A.; Peters, D.H. Loratadine: A reappraisal of its pharmacological properties and therapeutic use in allergic disorders. Drugs 1994, 48, 617–637. [Google Scholar] [CrossRef]
- Clissold, S.P.; Sorkin, E.M.; Goa, K.L. Loratadine: A preliminary review of its pharmacodynamic properties and therapeutic efficacy. Drugs 1989, 37, 42–57. [Google Scholar] [CrossRef]
- Amado, J.R.R.; Prada, A.L.; Duarte, J.L.; Keita, H.; da Silva, H.R.; Ferreira, A.M.; Sosa, E.H.; Carvalho, J.C.T. Development, stability and in vitro delivery profile of new loratadine-loaded nanoparticles. Saudi Pharm. J. 2017, 25, 1158–1168. [Google Scholar] [CrossRef]
- Rosenberger, J.; Butler, J.; Dressman, J. A refined developability classification system. J. Pharm. Sci. 2018, 107, 2020–2032. [Google Scholar] [CrossRef]
- Popovic, G.; Cakar, M.; Agbaba, D. Acid–base equilibria and solubility of loratadine and desloratadine in water and micellar media. J. Pharm. Biomed. Anal. 2009, 49, 42–47. [Google Scholar] [CrossRef]
- Alshweiat, A.; Csoka, I.; Tomosi, F.; Janaky, T.; Kovacs, A.; Gaspar, R.; Sztojkov-Ivanov, A.; Ducza, E.; Márki, Á.; Szabó-Révész, P.; et al. Nasal delivery of nanosuspension-based mucoadhesive formulation with improved bioavailability of loratadine: Preparation, characterization, and in vivo evaluation. Int. J. Pharm. 2020, 579, 119166. [Google Scholar] [CrossRef]
- Noehr, J.L.; Damkier, P.; Bidstrup, T.B.; Pedersen, R.S.; Nielsen, F.; Brosen, K. The relative bioavailability of loratadine administered as a chewing gum formulation in healthy volunteers. Eur. J. Clin. Pharmacol. 2006, 62, 437–445. [Google Scholar] [CrossRef]
- Chakraborty, P.; Parcha, V.; Chakraborty, D.D.; Chanda, I.; Ghosh, A. Mathematical optimization and characterisation of pharmaceutically developed novel buccoadhesive wafers for rapid bioactive delivery of Loratadine. J. Pharm. Investig. 2013, 43, 133–143. Available online: https://link.springer.com/article/10.1007/s40005-013-0062-7 (accessed on 1 November 2023). [CrossRef]
- Van Nguyen, K.; Dang, T.K.; Vu, L.T.D.; Ha, N.T.; Truong, H.D.; Tran, T.H. Orodispersible film incorporating nanoparticulate loratadine for an enhanced oral bioavailability. Pharm. Investig. 2023, 53, 417–426. [Google Scholar] [CrossRef]
- Van Nguyen, K.; Nguyen, H.T.; Nghiem, L.H.T.; Van Can, M.; Tran, T.H. Nanosized-Loratadine Embedded Orodispersible Films for Enhanced Bioavailability: Scalable Preparations and Characterizations. AAPS Pharmscitech 2022, 23, 78. [Google Scholar] [CrossRef]
- Centkowska, K.; Ławrecka, E.; Sznitowska, M. Technology of orodispersible polymer films with micronized loratadine—Influence of different drug loadings on film properties. Pharmaceutics 2020, 12, 250. [Google Scholar] [CrossRef]
- Tenn, M.W.; Steacy, L.M.; Ng, C.C.; Ellis, A.K. Onset of action for loratadine tablets for the symptomatic control of seasonal allergic rhinitis in adults challenged with ragweed pollen in the Environmental Exposure Unit: A post hoc analysis of total symptom score. Allergy Asthma Clin. Immunol. 2018, 14, 5. [Google Scholar] [CrossRef]
- Rak, S.; Yang, W.H.; Pedersen, M.R.; Durham, S.R. Once-daily sublingual allergen-specific immunotherapy improves quality of life in patients with grass pollen-induced allergic rhinoconjunctivitis: A double-blind, randomised study. Qual. Life Res. 2007, 16, 191–201. [Google Scholar] [CrossRef]
- Singh, R.; Joshi, V.; Mehetre, N.; Sangamwar, A.T. Insights into co-amorphous systems in therapeutic drug delivery. Ther. Deliv. 2021, 12, 245–265. [Google Scholar] [CrossRef]
- Hejaz, H.A.; Karaman, R. Drug overview. In Commonly Used Drugs-Uses, Side Effects, Bioavailability and Approaches to Improve It; Nova Science Pub Inc.: Hauppauge, NY, USA, 2015; Volume 1. [Google Scholar]
- Rossi, S.; Sandri, G.; Caramella, C.M. Buccal drug delivery: A challenge already won? Drug Discov. Today Technol. 2005, 2, 59–65. [Google Scholar] [CrossRef]
- Mistry, P.; Batchelor, H. Evidence of acceptability of oral paediatric medicines: A review. J. Pharm. Pharmacol. 2017, 69, 361–376. [Google Scholar] [CrossRef]
- Sheu, M.T.; Hsieh, C.M.; Chen, R.N.; Chou, P.Y.; Ho, H.O. Rapid-onset sildenafil sublingual drug delivery systems: In vitro evaluation and in vivo pharmacokinetic studies in rabbits. J. Pharm. Sci. 2016, 105, 2774–2781. [Google Scholar] [CrossRef]
- Ma, Y.; Guan, R.; Gao, S.; Song, W.; Liu, Y.; Yang, Y.; Liu, H. Designing orodispersible films containing everolimus for enhanced compliance and bioavailability. Expert Opin. Drug Deliv. 2020, 17, 1499–1508. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Umemura, K.; Tahara, K.; Takeuchi, H. Formulation design of hydroxypropyl cellulose films for use as orally disintegrating dosage forms. J. Drug Deliv. Sci. Technol. 2018, 46, 93–100. [Google Scholar] [CrossRef]
- Kathpalia, H.; Sule, B.; Gupte, A. Development and evaluation of orally disintegrating film of tramadol hydrochloride. Asian J Biomed. Pharm. Sci. 2013, 3, 27–32. [Google Scholar]
- Garsuch, V.; Breitkreutz, J. Novel analytical methods for the characterization of oral wafers. Eur. J. Pharm. Biopharm. 2009, 73, 195–201. [Google Scholar] [CrossRef]
- Echanur, V.A.; Matadh, A.V.; Pragathi, S.G.; Sarasija, S.; Thean, Y.; Badruddoza, A.Z.; Shah, J.; Kulkarni, V.; Ajjarapu, S.; Reena, N.M.; et al. Continuous manufacturing of oil in water (O/W) emulgel by extrusion process. AAPS Pharmscitech 2023, 24, 76. [Google Scholar] [CrossRef]
- Tedesco, M.P.; Monaco-Lourenço, C.A.; Carvalho, R.A. Gelatin/hydroxypropyl methylcellulose matrices—Polymer interactions approach for oral disintegrating films. Mater. Sci. Eng. C 2016, 69, 668–674. [Google Scholar] [CrossRef]
- Ibrahim, Y.H.E.Y.; Regdon, J.G.; Kristó, K.; Kelemen, A.; Adam, M.E.; Hamedelniel, E.I.; Sovány, T. Design and characterization of chitosan/citrate films as carrier for oral macromolecule delivery. Eur. J. Pharm. Sci. 2020, 146, 105270. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Islam, M.S.; Razu, M.R.; Zaman, A.N.; Jadi, B.; Saha, T.; Pathan, M.S. Preparation and evaluation of sublingual film of ketorolac tromethamine. Drug Dev. Ind. Pharm. 2022, 48, 438–445. [Google Scholar] [CrossRef]
- Ozakar, R.S.; Ozakar, E. Current overview of oral thin films. Turk. J. Pharm. Sci. 2021, 18, 111. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Ikeda, N.; Tahara, K.; Takeuchi, H. Mechanical characteristics of orally disintegrating films: Comparison of folding endurance and tensile properties. Int. J. Pharm. 2020, 589, 119876. [Google Scholar] [CrossRef]
- Moreira, L.G.; Zhang, X.; Muller, C.; Hensel, R.; Arzt, E. Film-Terminated fibrillar microstructures with improved adhesion on skin-like surfaces. ACS Appl. Mater. Interfaces 2022, 14, 46239–46251. [Google Scholar] [CrossRef]
- Zaki, D.Y.; Safwat, E.M.; Nagi, S.M.; Salem, H.N.; Hamdy, T.M.; Moharam, L.M.; Hassan, M.L.; Hamzawy, E.M. A novel dental re-mineralizing blend of hydroxyethyl-cellulose and cellulose nanofibers oral film loaded with nepheline apatite glass: Preparation, characterization and in vitro evaluation of re-mineralizing effect. Carbohydr. Polym. Technol. Appl. 2021, 2, 100035. [Google Scholar] [CrossRef]
- Wadetwar, R.N.; Ali, F.; Kanojiya, P.R. Formulation and evaluation of fast dissolving sublingual film of paroxetine hydrochloride for treatment of depression. Asian. J. Pharm. Clin. Res. 2019, 12, 126–132. [Google Scholar] [CrossRef]
- Maghsoodi, M.; Rahmani, M.; Ghavimi, H.; Montazam, S.H.; Soltani, S.; Alami, M.; Salatin, S.; Jelvehgari, M. Fast dissolving sublingual thin films containing sumatriptan alone and combined with methoclopramide: Evaluation in vitro drug release and mucosal permeation. Pharm. Sci. 2016, 22, 153–163. [Google Scholar] [CrossRef]
- Koland, M.; Sandeep, V.P.; Charyulu, N.R. Fast dissolving sublingual thin films of ondansetron hydrochloride: Effect of additives on in vitro drug release and mucosal permeation. J. Young Pharm. 2010, 2, 216–222. [Google Scholar] [CrossRef]
- Samridhi, S.K. Validation of Isocratic RP-HPLC Method and UV Spectrophotometric Method for the Estimation of Loratadine in Pharmaceutical formulations. Res. J. Pharm. Technol. 2015, 8, 452–461. [Google Scholar] [CrossRef]
- Koland, M.; Charyulu, R.N.; Vijayanarayana, K.; Prabhu, P. In vitro and in vivo evaluation of chitosan buccal films of ondansetron hydrochloride. Int. J. Pharm. Investig. 2011, 1, 164. [Google Scholar] [CrossRef]
- Ali, J.; Lee, J.B.; Gittings, S.; Iachelini, A.; Bennett, J.; Cram, A.; Garnett, M.; Roberts, C.J.; Gershkovich, P. Development and optimization of simulated salivary fluid for biorelevant oral cavity dissolution. Eur. J. Pharm. Biopharm. 2021, 160, 125–133. [Google Scholar] [CrossRef]
- Londhe, V.; Shirsat, R. Formulation and characterization of fast-dissolving sublingual film of iloperidone using Box–Behnken design for enhancement of oral bioavailability. AAPS Pharmscitech 2018, 19, 1392–1400. [Google Scholar] [CrossRef]
- Al-Mogherah, A.I.; Ibrahim, M.A.; Hassan, M.A. Optimization and evaluation of venlafaxine hydrochloride fast dissolving oral films. Saudi Pharm. J. 2020, 28, 1374–1382. [Google Scholar] [CrossRef]
- Khan, G.; Yadav, S.K.; Patel, R.R.; Nath, G.; Bansal, M.; Mishra, B. Development and evaluation of biodegradable chitosan films of metronidazole and levofloxacin for the management of periodontitis. AAPS Pharmscitech 2016, 17, 1312–1325. [Google Scholar] [CrossRef]
- Shivakumar, H.N.; Desai, B.G.; Pandya, S.; Karki, S.S. Influence of β-cyclodextrin complexation on glipizide release from hydroxypropyl methylcellulose matrix tablets. PDA J. Pharm. Sci. Technol. 2007, 61, 472–491. [Google Scholar]
- Maher, E.M.; Ali, A.M.A.; Salem, H.F.; Abdelrahman, A.A. In vitro/in vivo evaluation of an optimized fast dissolving oral film containing olanzapine co-amorphous dispersion with selected carboxylic acids. Drug Deliv. 2016, 23, 3088–3100. [Google Scholar] [CrossRef]
- Shen, B.-D.; Shen, C.Y.; Yuan, X.D.; Bai, J.X.; Lv, Q.Y.; Xu, H.; Dai, L.; Yu, C.; Han, J.; Yuan, H.-L. Development and characterization of an orodispersible film containing drug nanoparticles. Eur. J. Pharm. Biopharm. 2013, 85, 1348–1356. [Google Scholar] [CrossRef]
- Aleem, O.; Kuchekar, B.; Pore, Y.; Late, S. Effect of β-cyclodextrin and hydroxypropyl β-cyclodextrin complexation on physicochemical properties and antimicrobial activity of cefdinir. J. Pharm. Biomed. Anal. 2008, 47, 535–540. [Google Scholar] [CrossRef]
- Speer, I.; Preis, M.; Breitkreutz, J. Dissolution testing of oral film preparations: Experimental comparison of compendial and non-compendial methods. Int. J. Pharm. 2019, 561, 124–134. [Google Scholar] [CrossRef]
- Alhamhoom, Y.; Sharma, A.; Nanjappa, S.H.; Kumar, A.; Alshishani, A.; Ahmed, M.M.; Farhana, S.A.; Rahamathulla, M. Development and Evaluation of Solid Dispersion-Based Sublingual thin films of Nisoldipine. Pharmaceuticals 2023, 16, 1589. [Google Scholar] [CrossRef]
- Bandari, S.; Jadav, S.; Eedara, B.B.; Dhurke, R.; Jukanti, R. Enhancement of solubility and dissolution rate of Loratadine with Gelucire 50/13. J. Pharm. Innov. 2014, 9, 141–149. Available online: https://link.springer.com/article/10.1007/s12247-014-9181-6 (accessed on 1 November 2023). [CrossRef]
- Khan, M.Z.I.; Raušl, D.; Zanoski, R.; Zidar, S.; Mikulčić, J.H.; Krizmanić, L.; Eškinja, M.; Mildner, B.; Knežević, Z. Classification of loratadine based on the biopharmaceutics drug classification concept and possible in vitro–in vivo correlation. Biol. Pharm. Bull. 2004, 27, 1630–1635. [Google Scholar] [CrossRef]
- El-Hammadi, M.; Awad, N. Investigating the use of liquisolid compacts technique to minimize the influence of pH variations on loratadine release. AAPS Pharmscitech 2012, 13, 53–58. [Google Scholar] [CrossRef]
- Rédai, E.M.; Sipos, E.; Vlad, R.A.; Antonoaea, P.; Todoran, N.; Ciurba, A. Development of Co-Amorphous Loratadine–Citric Acid Orodispersible Drug Formulations. Processes 2022, 16, 2722. [Google Scholar] [CrossRef]
- Wang, J.; Chang, R.; Zhao, Y.; Zhang, J.; Zhang, T.; Fu, Q.; Chang, C.; Zeng, A. Coamorphous loratadine-citric acid system with enhanced physical stability and bioavailability. AAPS Pharmscitech 2017, 18, 2541–2550. [Google Scholar] [CrossRef]
- Bandari, S.; Jadav, S.; Eedara, B.B.; Jukanti, R.; Veerareddy, P.R. Physicochemical characterization and dissolution enhancement of loratadine by solid dispersion technique. Korean J. Chem. Eng. 2013, 30, 238–244. [Google Scholar] [CrossRef]
- Borges, A.F.; Silva, C.; Coelho, J.F.J.; Simoes, S. Oral films: Current status and future perspectives: I—Galenical development and quality attributes. J. Control. Release 2015, 206, 1–19. [Google Scholar] [CrossRef]
- Chang, R.; Fu, Q.; Yu, P.; Wang, L.; Li, Y.; Du, W.; Chang, C.; Zeng, A. A new polymorphic form and polymorphic transformation of loratadine. RSC Adv. 2016, 6, 85063–85073. [Google Scholar] [CrossRef]
- Sherafudeen, S.P.; Vasantha, P.V. Development and evaluation of in situ nasal gel formulations of loratadine. Res. Pharm. Sci. 2015, 10, 466. [Google Scholar]
- Frizon, F.; de Oliveira Eloy, J.; Donaduzzi, C.M.; Mitsui, M.L.; Marchetti, J.M. Dissolution rate enhancement of loratadine in polyvinylpyrrolidone K-30 solid dispersions by solvent methods. Powder Technol. 2013, 235, 532–539. [Google Scholar] [CrossRef]
- Nacsa, A.; Berkesi, O.; Szabo-Revesz, P.; Aigner, Z. Achievement of pH-independence of poorly-soluble, ionizable loratadine by inclusion complex formation with dimethyl-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2009, 64, 249–254. [Google Scholar] [CrossRef]
Formulation Ingredients | Composition (mg) | |||||
---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F6 | |
Loratadine | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 |
HPMC E15 | 250 | 500 | - | 250 | - | 250 |
PVP K 30 | - | - | 500 | 250 | - | - |
HPC-EF | - | - | - | - | 500 | 500 |
Glycerin | 125 | 250 | 250 | 250 | 250 | 250 |
Citric acid | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 |
Sodium saccharin | 12.6 | 12.6 | 12.6 | 12.6 | 12.6 | 12.6 |
Peppermint flavor | 3 | 3 | 3 | 3 | 3 | 3 |
Ethanol | Up to 10 mL |
Ingredients | Simulated Saliva |
---|---|
pH 6.8 buffer (mL) | 6.8 |
Tween 20® (µL) | 5.6 |
Xanthan gum (w/v%) | 0.05 |
Porcine gastric mucin (mg/mL) | 10 |
Porcine pancreatic alpha-amylase (mg/mL | 1.0 |
Deionized water (mL) | up to 100 |
Final pH adjusted (1M HCl or NaOH) | ~6.8 |
Characteristic Vibrational Band (cm−1) | Functional Groups | Observed Band Positions in Loratadine | Observed Band Positions in Physical Mixture | Observed Band Positions in F1 Film |
---|---|---|---|---|
1700–1780 | C=O | 1749 | 1748 | 1750 |
3373–3422 | H-N | 3361 | 3358 | 3360 |
500–730 | C-Cl | 710 | 707 | 708 |
1230–1050 | C-N | 1226 | 1228 | 1225 |
Formulations | ||||||
---|---|---|---|---|---|---|
Parameters | F1 | F2 | F3 | F4 | F5 | F6 |
Thickness (mm) | 0.25 ± 0.02 | 0.36 ± 0.07 | 0.33 ± 0.04 | 0.41 ± 0.07 | 0.31 ± 0.05 | 0.41 ± 0.05 |
Weight (mg) | 0.05 ± 0.03 | 0.09 ± 0.02 | 0.06 ± 0.04 | 0.1 ± 0.03 | 0.07 ± 0.02 | 0.09 ± 0.04 |
Tack test | Non tacky | Non tacky | Non tacky | Non tacky | Non tacky | Non tacky |
Folding endurance | 115 ± 1 | 132 ± 3 | 123 ± 2 | 131 ± 1 | 90.3 ± 1 | 73.6 ± 5 |
Surface pH | 6.5 ± 0.1 | 6.5 ± 0.05 | 6.4 ± 0.05 | 6.3 ± 0.1 | 6.2 ± 0.1 | 6.3 ± 0.1 |
DT (sec) | 30.3 ± 0.57 | 61.6 ± 2.88 | 91.6 ± 2.88 | 105 ± 5.13 | 93 ± 1.0 | 125 ± 5.0 |
Moisture loss (%) | 1.10 ± 0.01 | 2.07 ± 0.06 | 1.18 ± 0.07 | 2.19 ± 0.06 | 1.51 ± 0.15 | 2.59 ± 0.68 |
Drug content (%) | 94.04 ± 1.87 | 90.1 ± 0.07 | 88.1 ± 2.61 | 89.10 ± 2.2 | 88.02 ± 0.03 | 88.7 ± 0.06 |
Parameters | Initial | After 3 Months |
---|---|---|
Thickness (mm) | 0.254 ± 0.016 | 0.249 ± 0.02 |
Weight (g) | 0.05 ± 0.004 | 0.04 ± 0.003 |
Folding endurance | 115 ± 0.414 | 113 ± 0.513 |
Disintegration time (sec) | 30.3 ± 0.163 | 31.5 ± 0.843 |
Surface pH | 6.7 ± 0.071 | 6.5 ± 0.5 |
Moisture content (%) | 1.10 ± 0.125 | 1.03 ± 0.065 |
Drug content (%) | 94.0 ± 0.83 | 93.8 ± 0.742 |
%Drug release (25 min) | 71.6 ± 0.381 | 70.14 ± 0.275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhamhoom, Y.; Said, A.K.; Kumar, A.; Nanjappa, S.H.; Wali, D.; Rahamathulla, M.; Farhana, S.A.; Ahmed, M.M.; Shivanandappa, T.B. Sublingual Fast-Dissolving Thin Films of Loratadine: Characterization, In Vitro and Ex Vivo Evaluation. Polymers 2024, 16, 2919. https://doi.org/10.3390/polym16202919
Alhamhoom Y, Said AK, Kumar A, Nanjappa SH, Wali D, Rahamathulla M, Farhana SA, Ahmed MM, Shivanandappa TB. Sublingual Fast-Dissolving Thin Films of Loratadine: Characterization, In Vitro and Ex Vivo Evaluation. Polymers. 2024; 16(20):2919. https://doi.org/10.3390/polym16202919
Chicago/Turabian StyleAlhamhoom, Yahya, Ashitha Kakarlapudi Said, Avichal Kumar, Shivakumar Hagalavadi Nanjappa, Divya Wali, Mohamed Rahamathulla, Syeda Ayesha Farhana, Mohammed Muqtader Ahmed, and Thippeswamy Boreddy Shivanandappa. 2024. "Sublingual Fast-Dissolving Thin Films of Loratadine: Characterization, In Vitro and Ex Vivo Evaluation" Polymers 16, no. 20: 2919. https://doi.org/10.3390/polym16202919
APA StyleAlhamhoom, Y., Said, A. K., Kumar, A., Nanjappa, S. H., Wali, D., Rahamathulla, M., Farhana, S. A., Ahmed, M. M., & Shivanandappa, T. B. (2024). Sublingual Fast-Dissolving Thin Films of Loratadine: Characterization, In Vitro and Ex Vivo Evaluation. Polymers, 16(20), 2919. https://doi.org/10.3390/polym16202919