Development of Novel Cardanol-Derived Reactive Dispersing Agents for Bio-Based Anionic–Nonionic Waterborne Polyurethane
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Sulfonated Cardanol-Based Polyethylene Glycol (SCP)
2.3. Preparation of Waterborne Polyurethane Dispersions
2.4. Preparation of Waterborne Polyurethane Films
2.5. Characterization
3. Results and Discussion
3.1. Origination and Structure of SCP
3.2. Structure and Properties of Sulfonated Cardanol-Based Waterborne Polyurethane (SCPWPU)
3.3. Effect of UV Cross-Linking on the Performance of SCPWPU
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kang, S.Y.; Ji, Z.; Tseng, L.F.; Turner, S.A.; Villanueva, D.A.; Johnson, R.; Albano, A.; Langer, R. Design and Synthesis of Waterborne Polyurethanes. Adv. Mater. 2018, 30, 1706237. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.J.; Liao, W.; Wang, S.X.; Zhao, H.B.; Wang, Y.Z. Polyurethane foams with functionalized graphene towards high fire-resistance, low smoke release, superior thermal insulation. Chem. Eng. J. 2019, 361, 1245–1254. [Google Scholar] [CrossRef]
- Aguirresarobe, R.H.; Nevejans, S.; Reck, B.; Irusta, L.; Sardon, H.; Asua, J.M.; Ballard, N. Healable and self-healing polyurethanes using dynamic chemistry. Prog. Polym. Sci. 2021, 114, 101362. [Google Scholar] [CrossRef]
- Patel, C.J.; Mannari, V. Air-drying bio-based polyurethane dispersion from cardanol: Synthesis and characterization of coatings. Prog. Org. Coat. 2014, 77, 997–1006. [Google Scholar] [CrossRef]
- Madbouly, S.A. Waterborne Polyurethane Dispersions and Thin Films: Biodegradation and Antimicrobial Behaviors. Molecules 2021, 26, 961. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, Z.; Fu, X.; Wang, Y.; Yuan, A.; Lei, J. Effect of crystalline structure on water resistance of waterborne polyurethane. Eur. Polym. J. 2021, 157, 110647. [Google Scholar] [CrossRef]
- Yu, C.; Salzano de Luna, M.; Russo, A.; Adamiano, I.; Scherillo, F.; Wang, Z.; Zhang, X.; Xia, H.; Lavorgna, M. Role of Diisocyanate Structure on Self-Healing and Anticorrosion Properties of Waterborne Polyurethane Coatings. Adv. Mater. Interfaces 2021, 8, 2100117. [Google Scholar] [CrossRef]
- Honarkar, H. Waterborne polyurethanes: A review. J. Dispers. Sci. Technol. 2018, 39, 507–516. [Google Scholar] [CrossRef]
- Honarkar, H.; Barmar, M.; Barikani, M. New Sulfonated Waterborne Polyurethane Dispersions: Preparation and Characterization. J. Dispers. Sci. Technol. 2016, 37, 1219–1225. [Google Scholar] [CrossRef]
- Vadillo, J.; Larraza, I.; Arbelaiz, A.; Corcuera, M.A.; Save, M.; Derail, C.; Eceiza, A. Influence of the addition of PEG into PCL-based waterborne polyurethane-urea dispersions and films properties. J. Appl. Polym. Sci. 2019, 137, 48847. [Google Scholar] [CrossRef]
- Qiao, P.; Zhang, F.; Lu, A.; Liu, J.; Jin, L.; Wang, Y. Preparation and characterization of high-solid carboxylate/sulfonate waterborne polyurethane and its application in novel water-based superfine fiber synthetic material. J. Appl. Polym. Sci. 2024, 141, e55926. [Google Scholar] [CrossRef]
- Xia, G.; Hu, J.; Sun, Q.; Chen, C.; Wang, X.; Zhu, C.; Jiang, W.; Wan, X.; Mu, Y. Waterborne polyurethanes with novel chain extenders bearing multiple sulfonate groups. Chem. Eng. J. 2023, 478, 147537. [Google Scholar] [CrossRef]
- Dai, M.; Wang, J.; Zhang, Y. Improving water resistance of waterborne polyurethane coating with high transparency and good mechanical properties. Colloids Surf. A 2020, 601, 124994. [Google Scholar] [CrossRef]
- Mou, J.; Wang, X.; Yu, D.; Wang, S.; Miao, Y.; Liu, Q.; Chen, B. Practical two-step chain extension method to prepare sulfonated waterborne polyurethanes based on aliphatic diamine sulphonate. J. Appl. Polym. Sci. 2021, 138, 50353. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, B.; Jiang, Y.; Lei, J.; Zhou, C.; Zhang, J.; Wang, J. Solvent-free and self-catalysis synthesis and properties of waterborne polyurethane. Polymer 2018, 143, 129–136. [Google Scholar] [CrossRef]
- Pamir, O.; Ocal, N.; Aydogan, F. Synthesis, characterization and dispersion stabilities of novel ionic and nonionic diol modified waterborne polyurethane dispersions with different polyols. J. Dispers. Sci. Technol. 2023, 44, 585–593. [Google Scholar] [CrossRef]
- Yen, M.S.; Tsai, H.C.; Hong, P.D. The Physical Properties of Aqueous Cationic–Nonionic Polyurethane with Poly(ethylene glycol methyl ether) Side Chain and Its Blend with Aqueous Cationic Polyurethane. J. Appl. Polym. Sci. 2006, 100, 2963–2974. [Google Scholar] [CrossRef]
- Mishra, V.K.; Patel, K.I. Nonionic Diol Modified UV-Curable Polyurethane Dispersions: Preparation and Characterization. J. Dispers. Sci. Technol. 2015, 36, 351–362. [Google Scholar] [CrossRef]
- Argaiz, M.; Aguirre, M.; Tomovska, R. Towards improved performance of waterborne polymer dispersions through creation of dense ionic interparticle network within their films. Polymer 2023, 265, 125571. [Google Scholar] [CrossRef]
- Madbouly, S.A.; Otaigbe, J.U. Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films. Prog. Polym. Sci. 2009, 34, 1283–1332. [Google Scholar] [CrossRef]
- Agnol, L.D.; Dias, F.T.; Ornaghi, H.L., Jr.; Sangermano, M.; Bianchi, O. UV-curable waterborne polyurethane coatings: A state-of-the-art and recent advances review. Prog. Org. Coat. 2021, 154, 106156. [Google Scholar] [CrossRef]
- Aramayo, M.A.F.; Ferreira Fernandes, R.; Santos Dias, M.; Bozzo, S.; Steinberg, D.; Rocha Diniz da Silva, M.; Maroneze, C.M.; de Carvalho Castro Silva, C. Eco-Friendly Waterborne Polyurethane Coating Modified with Ethylenediamine-Functionalized Graphene Oxide for Enhanced Anticorrosion Performance. Molecules 2024, 29, 4163. [Google Scholar] [CrossRef]
- Zhu, Y.; Romain, C.; Williams, C.K. Sustainable polymers from renewable resources. Nature 2016, 540, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, A.K.; Wu, F.; Mincheva, R.; Hakkarainen, M.; Raquez, J.M.; Mielewski, D.F.; Narayan, R.; Netravali, A.N.; Misra, M. Sustainable polymers. Nat. Rev. Methods Primers 2022, 2, 46. [Google Scholar] [CrossRef]
- Zhang, C.; Xue, J.; Yang, X.; Ke, Y.; Ou, R.; Wang, Y.; Madbouly, S.A.; Wang, Q. From plant phenols to novel bio-based polymers. Prog. Polym. Sci. 2022, 125, 101473. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Deng, H.; Zhang, W.; Kang, J.; Zhang, C. Enhanced Mechanical Properties and Functional Performances of Cationic Waterborne Polyurethanes Enabled by Different Natural Phenolic Acids. ACS Sustain. Chem. Eng. 2020, 8, 17447–17457. [Google Scholar] [CrossRef]
- Malani, R.S.; Malshe, V.C.; Thorat, B.N. Polyols and polyurethanes from renewable sources: Past, present, and future—Part 2: Plant-derived materials. J. Coat. Technol. Res. 2022, 19, 361–375. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, B.; Tian, M.; Ning, N.; Wang, W. Synthesis and applications of bio-based waterborne polyurethane, a review. Prog. Org. Coat. 2024, 186, 108095. [Google Scholar] [CrossRef]
- Pichon, E.; De Smet, D.; Rouster, P.; Freulings, K.; Pich, A.; Bernaerts, K.V. Bio-based non-isocyanate polyurethane(urea) waterborne dispersions for water resistant textile coatings. Mater. Today Chem. 2023, 34, 101822. [Google Scholar] [CrossRef]
- Lu, R.; Yoshida, T.; Miyakoshi, T. Oriental lacquer: A natural polymer. Polym. Rev. 2013, 53, 153–191. [Google Scholar] [CrossRef]
- Caillol, S. The future of cardanol as small giant for biobased aromatic polymers and additives. Eur. Polym. J. 2023, 193, 112096. [Google Scholar] [CrossRef]
- Peungjitton, P.; Sangvanich, S.; Pornpakakul Petsom, A.; Roengsumran, S. Sodium cardanol sulfonate surfactant from cashew nut shell liquid. J. Surfactants Deterg. 2009, 12, 85–89. [Google Scholar] [CrossRef]
- Kanehashi, S.; Yokoyama, K.; Masuda, R.; Kidesaki, T.; Nagai, K.; Miyakoshi, T. Preparation and characterization of cardanol-based epoxy resin for coating at room temperature curing. J. Appl. Polym. Sci. 2013, 130, 2468–2478. [Google Scholar] [CrossRef]
- Noè, C.; Hakkarainen, M.; Sangermano, M. Cationic UV-curing of epoxidized biobased resins. Polymers 2021, 13, 89. [Google Scholar] [CrossRef]
- Roy, A.; Fajardie, P.; Lepoittevin, B.; Baudoux, J.; Lapinte, V.; Caillol, S.; Briou, B. CNSL, a promising building blocks for sustainable molecular design of surfactants: A critical review. Molecules 2022, 27, 1443. [Google Scholar] [CrossRef]
- Zhang, Y.; Chu, L.; Dai, Z.; Bao, N.; de Rooij, M.B.; Gao, L.; Tan, W.; Shen, L. Synergistically enhancing the performance of cardanol-rich epoxy anticorrosive coatings using cardanol-based reactive diluent and its functionalized graphene oxide. Prog. Org. Coat. 2022, 171, 107060. [Google Scholar] [CrossRef]
- Adjoumane, M.M.A.; Edja, A.F.; Doe-Mensah, J.; Boa, D.; Driscoll, M. Effect of cardanol-based plasticizers on thermoplastic cassava (Manihot esculenta) starch properties. Ind. Crops Prod. 2023, 203, 117145. [Google Scholar] [CrossRef]
- Gamit, N.; Patel, K.I.; Dholakiya, B.Z. Novel cardanol based bio-polyols for sustainable construction applications. Polym. Renew. Resour. 2024, 15, 3–24. [Google Scholar] [CrossRef]
- Mishra, V.; Desaia, J.; Patela, K.I. (UV/Oxidative) dual curing polyurethane dispersion from cardanol based polyol: Synthesis and characterization. Ind. Crops Prod. 2018, 111, 165–178. [Google Scholar] [CrossRef]
- Qian, W.; Liu, J.; Zhang, Y.; Chi, C.; Chen, D.; Chen, Q. Synthesis of linear poly-cardanol and its application in rubber materials. Express Polym. Lett. 2022, 16, 75–84. [Google Scholar] [CrossRef]
- Suresh, K.I.; Harikrishnan, M.G. Effect of cardanol diol on the synthesis, characterization, and film properties of aqueous polyurethane dispersions. J. Coat. Technol. Res. 2014, 11, 619–629. [Google Scholar] [CrossRef]
- Balgude, D.; Sabnis, A.; Ghosh, S.K. Synthesis and characterization of cardanol based aqueous 2K polyurethane coatings. Eur. Polym. J. 2016, 85, 620–634. [Google Scholar] [CrossRef]
- Mestry, S.U.; Khuntia, S.P.; Mhaske, S.T. Development of waterborne polyurethane dispersions (WPUDs) from novel cardanol-based reactive dispersing agent. Polym. Bull. 2020, 78, 6819–6834. [Google Scholar] [CrossRef]
- Baik, J.H.; Kim, D.G.; Shim, J.; Lee, J.H.; Choi, Y.S.; Lee, J.C. Solid polymer electrolytes containing poly(ethylene glycol) and renewable cardanol moieties for all-solid-state rechargeable lithium batteries. Polymer 2016, 99, 704–712. [Google Scholar] [CrossRef]
- Edwards, H.G.M.; Brown, D.R.; Dale, J.A.; Plant, S. Raman spectroscopy of sulfonated polystyrene resins. Vib. Spectrosc. 2000, 24, 213–224. [Google Scholar] [CrossRef]
- Cao, Q.; Liu, P. Crystalline-amorphous phase transition of hyperbranched polyurethane phase change materials for energy storage. J. Mater. Sci. 2007, 42, 5661–5665. [Google Scholar] [CrossRef]
- Tao, C.; Bao, J.; Cheng, Q.; Huang, Y.; Xu, G. Preparation of waterborne polyurethane adhesives based on macromolecular-diols containing different diisocyanate. J. Adhes. 2019, 95, 814–833. [Google Scholar] [CrossRef]
- Caki, S.M.; Risti, I.S.; Krakovský, I.; Stojiljkovi, D.T.; Belský, P.; Kollová, L. Crystallization and thermal properties in waterborne polyurethane elastomers: Influence of mixed soft segment block. Mater. Chem. Phys. 2014, 144, 31–40. [Google Scholar] [CrossRef]
- Li, R.; Loontjens, J.A.T.; Shan, Z.H. The varying mass ratios of soft and hard segments in waterborne polyurethane films: Performances of thermal conductivity and adhesive properties. Eur. Polym. J. 2019, 112, 423–432. [Google Scholar] [CrossRef]
- Liang, Z.; Zhu, J.; Li, F.; Wu, Z.; Liu, Y.; Xiong, D. Synthesis and properties of self-crosslinking waterborne polyurethane with side chain for water-based varnish. Prog. Org. Coat. 2021, 150, 105972. [Google Scholar] [CrossRef]
Sample | Cardanol | SCP600 | SCP1000 | SCP1500 | SCP2000 | SCP3000 |
---|---|---|---|---|---|---|
Theoretical (%) | 0 | 3.07 | 2.22 | 1.65 | 1.31 | 0.93 |
Practical (%) | 0 | 2.80 | 1.98 | 1.57 | 1.07 | 0.95 |
Sample | Tc (°C) | ΔHc (J/g) | Tm (°C) | ΔHm (J/g) |
---|---|---|---|---|
1500WPU | 7.7 | 31.14 | 50.2 | 38.31 |
SCP1500WPU | 6.7 | 28.68 | 49.7 | 35.98 |
SCP1500WPU-UV5 | 5.8 | 26.50 | 48.4 | 33.89 |
SCP1500WPU-UV10 | 4.7 | 23.34 | 47.4 | 28.86 |
SCP1500WPU-UV15 | 3.9 | 21.78 | 46.4 | 24.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, J.; Wu, H.; Chen, K.; Li, Y.; Lu, X.; Ding, S.; Zheng, X. Development of Novel Cardanol-Derived Reactive Dispersing Agents for Bio-Based Anionic–Nonionic Waterborne Polyurethane. Polymers 2024, 16, 2958. https://doi.org/10.3390/polym16212958
Xia J, Wu H, Chen K, Li Y, Lu X, Ding S, Zheng X. Development of Novel Cardanol-Derived Reactive Dispersing Agents for Bio-Based Anionic–Nonionic Waterborne Polyurethane. Polymers. 2024; 16(21):2958. https://doi.org/10.3390/polym16212958
Chicago/Turabian StyleXia, Jianrong, Haobin Wu, Kaidong Chen, Yanling Li, Xin Lu, Sibo Ding, and Xuelin Zheng. 2024. "Development of Novel Cardanol-Derived Reactive Dispersing Agents for Bio-Based Anionic–Nonionic Waterborne Polyurethane" Polymers 16, no. 21: 2958. https://doi.org/10.3390/polym16212958
APA StyleXia, J., Wu, H., Chen, K., Li, Y., Lu, X., Ding, S., & Zheng, X. (2024). Development of Novel Cardanol-Derived Reactive Dispersing Agents for Bio-Based Anionic–Nonionic Waterborne Polyurethane. Polymers, 16(21), 2958. https://doi.org/10.3390/polym16212958