Enhancing the Non-Isothermal Crystallization Kinetics of Polylactic Acid by Incorporating a Novel Nucleating Agent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Camphor Leaf Biochar
2.2.2. Preparation of C@MWCNTs
2.2.3. Preparation of PLA and PLA/C@MWCNTs Composites
2.2.4. Characterization of Non-Isothermal Crystallization
3. Results and Discussion
3.1. Effects of C@MWCNTs on Melting and Crystallization Behavior of PLA
3.2. Non-Isothermal Crystallization Kinetics of PLA/C@MWCNTs Composites
3.3. Crystallization Activation Energy of PLA/C@MWCNTs Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Milovanovic, S.; Pajnik, J.; Lukic, I. Tailoring of advanced poly (lactic acid)--based materials: A review. J. Appl. Polym. Sci. 2022, 139, 51839. [Google Scholar] [CrossRef]
- Balla, E.; Daniilidis, V.; Karlioti, G.; Kalamas, T.; Stefanidou, M.; Bikiaris, N.D.; Vlachopoulos, A.; Koumentakou, I.; Bikiaris, D.N. Poly (lactic Acid): A versatile biobased polymer for the future with multifunctional properties—From monomer synthesis, polymerization techniques and molecular weight increase to PLA applications. Polymers 2021, 13, 1822. [Google Scholar] [CrossRef] [PubMed]
- Tarani, E.; Pušnik Črešnar, K.; Zemljič, L.F.; Chrissafis, K.; Papageorgiou, G.Z.; Lambropoulou, D.; Zamboulis, A.; Bikiaris, D.N.; Terzopoulou, Z. Cold crystallization kinetics and thermal degradation of pla composites with metal oxide nanofillers. Appl. Sci. 2021, 11, 3004. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, J.; Liang, X.; Huang, Z.; Li, J.; Peng, S. Crystallization behaviors regulations and mechanical performances enhancement approaches of polylactic acid (PLA) biodegradable materials modified by organic nucleating agents. Int. J. Biol. Macromol. 2023, 233, 123581. [Google Scholar] [CrossRef]
- Liu, L.; Xu, Y.; Pan, Y.; Xu, M.; Di, Y.; Li, B. Facile synthesis of an efficient phosphonamide flame retardant for simultaneous enhancement of fire safety and crystallization rate of poly (lactic acid). Chem. Eng. J. 2021, 421, 127761. [Google Scholar] [CrossRef]
- Ruiz, M.B.; Pérez-Camargo, R.A.; López, J.V.; Penott-Chang, E.; Múgica, A.; Coulembier, O.; Müller, A.J. Accelerating the crystallization kinetics of linear polylactides by adding cyclic poly (L-lactide): Nucleation, plasticization and topological effects. Int. J. Biol. Macromol. 2021, 186, 255–267. [Google Scholar] [CrossRef]
- Yan, Z.; Huang, Y.; Zhao, W.; Wu, B.; Liu, C.; Yan, X.; Pan, H.; Zhao, Y.; Zhang, H. Effect of a self-assembled nucleating agent on the crystallization behavior and spherulitic morphology of poly (lactic acid). ACS Omega 2023, 8, 44093–44105. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Zhou, Z.; Yu, S.; Chen, Z.; Xiang, H.; Zhu, M. The synergistic effect of heterogeneous nucleation and stress-induced crystallization on supramolecular structure and performances of poly (lactic acid) melt-spun fibers. Int. J. Biol. Macromol. 2023, 226, 1579–1587. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Shen, C. Crystallization behavior of poly (lactic acid) and its blends. Polym. Cryst. 2021, 4, e10171. [Google Scholar] [CrossRef]
- Yang, H.; Du, J. Composites made of Ginkgo biloba fibers and polylactic acid exhibit non-isothermal crystallization kinetics. Int. J. Biol. Macromol. 2023, 253, 127232. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, R.; Wang, R.; Cai, J.; Lin, X.; Gan, L.; Wang, Z.; Peng, Y. Atmospheric Pressure Alkaline Etching of MFI Zeolite Under Mild Temperature Toward Hollow Microstructure and Ultralow k Film. Small Methods 2024, 2400167. [Google Scholar] [CrossRef]
- Wang, R.; Xu, R.; Zhang, K.; Gan, L.; Lin, X.; Zhang, S.; Peng, Y. High-Light-Transmittance and Low-Haze Antifog MFI Zeolite Films Fabricated by Solvothermal Secondary Growth. Cryst. Growth Des. 2024, 24, 2938–2946. [Google Scholar] [CrossRef]
- Xu, R.; Peng, Y.; Lu, P.; Miao, Y.; Duan, X.; Lee, D.T.; Wang, R.; Wang, Z.; Tsapatsis, M. Twin suppression effect of dihydroxy-benzene isomers during the secondary growth of b-oriented zeolite MFI nanosheet films. CrystEngComm 2023, 25, 2359–2365. [Google Scholar] [CrossRef]
- Rosely, C.S.; Shaiju, P.; Gowd, E.B. Poly (l-lactic acid)/Boron Nitride Nanocomposites: Influence of Boron Nitride Functionalization on the Properties of Poly (l-lactic acid). J. Phys. Chem. B 2019, 123, 8599–8609. [Google Scholar] [CrossRef]
- Rosely, C.S.; Joseph, A.M.; Leuteritz, A.; Gowd, E.B. Phytic acid modified boron nitride nanosheets as sustainable multifunctional nanofillers for enhanced properties of poly (l-lactide). ACS Sustain. Chem. Eng. 2020, 8, 1868–1878. [Google Scholar] [CrossRef]
- Wen, B.; Ma, L.; Zou, W.; Zheng, X. Enhanced thermal conductivity of poly (lactic acid)/alumina composite by synergistic effect of tuning crystallization of poly (lactic acid) crystallization and filler content. J. Mater. Sci. Mater. Electron. 2020, 31, 6328–6338. [Google Scholar] [CrossRef]
- Huang, S.-M.; Hwang, J.-J.; Liu, H.-J.; Zheng, A.-M. A characteristic study of polylactic acid/organic modified montmorillonite (PLA/OMMT) nanocomposite materials after hydrolyzing. Crystals 2021, 11, 376. [Google Scholar] [CrossRef]
- Zheng, W.; Beeler, M.; Claus, J.; Xu, X. Poly (lactic acid)/montmorillonite blown films: Crystallization, mechanics, and permeation. J. Appl. Polym. Sci. 2017, 134, 45260. [Google Scholar] [CrossRef]
- Yang, B.; Wang, D.; Chen, F.; Su, L.-F.; Miao, J.-B.; Chen, P.; Qian, J.-S.; Xia, R.; Liu, J.-W. Melting and crystallization behaviors of poly (lactic acid) modified with graphene acting as a nucleating agent. J. Macromol. Sci. Part B 2019, 58, 290–304. [Google Scholar] [CrossRef]
- Ahmed, J.; Luciano, G.; Maggiore, S. Nonisothermal crystallization behavior of polylactide/polyethylene glycol/graphene oxide nanosheets composite films. Polym. Compos. 2020, 41, 2108–2119. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, S.G.; Kim, S.H. Isothermal crystallization behavior and mechanical properties of polylactide/carbon nanotube nanocomposites. Compos. Part A Appl. Sci. Manuf. 2013, 46, 11–18. [Google Scholar] [CrossRef]
- Yousefzade, O.; Franco, L.; Nami, M.; Puiggali, J.; Garmabi, H. Nanocomposites based on chain extended poly (l-lactic acid)/carboxylated carbon nanotubes: Crystallization kinetics and lamellar morphology. J. Compos. Mater. 2019, 53, 2131–2147. [Google Scholar] [CrossRef]
- Lin, X.; Jin, R.; Ouyang, Y.; Chen, Z.; Xu, R.; Wu, Y.; Dai, X.; Peng, Y.; Liu, Y. Manipulation of non-isothermal crystallization kinetics of poly (lactic acid) composite film by a novel nucleating agent. Thermochim. Acta 2024, 739, 179808. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Lian, H.-Y.; Shih, Y.-F.; Chen-Wei, S.-M.; Jeng, R.-J. Preparation, characterization and crystallization kinetics of Kenaf fiber/multi-walled carbon nanotube/polylactic acid (PLA) green composites. Mater. Chem. Phys. 2017, 196, 249–255. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, D.-S.; Park, S.-H.; Park, H. Phytochemistry and applications of Cinnamomum camphora essential oils. Molecules 2022, 27, 2695. [Google Scholar] [CrossRef]
- Hou, J.; Zhang, J.; Zhang, B.; Jin, X.; Zhang, H.; Jin, Z. Transcriptional analysis of metabolic pathways and regulatory mechanisms of essential oil biosynthesis in the leaves of Cinnamomum camphora (L.) Presl. Front. Genet. 2020, 11, 598714. [Google Scholar] [CrossRef]
- Yakdoumi, F.Z.; Hadj-Hamou, A.S.; Rahoui, N.; Rahman, M.M.; Abetz, V. Polylactic acid nanocomposites containing functionalized multiwalled carbon nanotubes as antimicrobial packaging materials. Int. J. Biol. Macromol. 2022, 213, 55–69. [Google Scholar] [CrossRef]
- Molinari, G.; Parlanti, P.; Passaglia, E.; Aiello, F.; Gemmi, M.; Lazzeri, A.; Righetti, M.C. Dependence of the crystal structure on the d-units amount in semi-crystalline poly (lactic acid). Int. J. Biol. Macromol. 2024, 281, 136296. [Google Scholar] [CrossRef]
- Furushima, Y.; Schick, C.; Toda, A. Crystallization, recrystallization, and melting of polymer crystals on heating and cooling examined with fast scanning calorimetry. Polym. Cryst. 2018, 1, e10005. [Google Scholar] [CrossRef]
- Liang, Y.-Y.; Xu, J.-Z.; Liu, X.-Y.; Zhong, G.-J.; Li, Z.-M. Role of surface chemical groups on carbon nanotubes in nucleation for polymer crystallization: Interfacial interaction and steric effect. Polymer 2013, 54, 6479–6488. [Google Scholar] [CrossRef]
- Su, Z.; Guo, W.; Liu, Y.; Li, Q.; Wu, C. Non-isothermal crystallization kinetics of poly (lactic acid)/modified carbon black composite. Polym. Bull. 2009, 62, 629–642. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of phase change 1. J. Chem. Phy. 1939, 7, 1103. [Google Scholar] [CrossRef]
- Avrami, M. Granulation, phase change, and microstructure kinetics of phase change. III. J. Chem. Phys. 1941, 9, 177–184. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of phase change. II transformation--time relations for random distribution of nuclei. J. Chem. Phys. 1940, 8, 212–224. [Google Scholar] [CrossRef]
- Jeziorny, A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer 1978, 19, 1142–1144. [Google Scholar] [CrossRef]
- Vyazovkin, S. Jeziorny method should be avoided in avrami analysis of nonisothermal crystallization. Polymers 2022, 15, 197. [Google Scholar] [CrossRef]
- Piorkowska, E.; Galeski, A.; Haudin, J.-M. Critical assessment of overall crystallization kinetics theories and predictions. Prog. Polym. Sci. 2006, 31, 549–575. [Google Scholar] [CrossRef]
- Ozawa, T. Kinetics of non-isothermal crystallization. Polymer 1971, 12, 150–158. [Google Scholar] [CrossRef]
- Liu, T.; Mo, Z.; Wang, S.; Zhang, H. Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone). Polym. Eng. Sci. 1997, 37, 568–575. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, Z.; Yan, S.; Yang, W. Crystallization behavior of biodegradable poly (L-lactide)/multiwalled carbon nanotubes nanocomposites from the amorphous state. Polym. Eng. Sci. 2011, 51, 1564–1573. [Google Scholar] [CrossRef]
Samples | β (°C/min) | n | Zc | r2 |
---|---|---|---|---|
PLA | 5 | 3.13 | 0.367 | 0.99787 |
10 | 3.51 | 0.722 | 0.99904 | |
15 | 3.00 | 0.930 | 0.99995 | |
20 | 2.39 | 1.007 | 0.99982 | |
PLA/0.1% C@MWCNTs | 5 | 3.50 | 0.411 | 0.99811 |
10 | 3.13 | 0.780 | 0.99961 | |
15 | 3.40 | 0.926 | 0.99967 | |
20 | 2.84 | 1.015 | 0.99992 | |
PLA/0.3% C@MWCNTs | 5 | 3.97 | 0.618 | 0.99959 |
10 | 3.71 | 0.915 | 0.99993 | |
15 | 3.38 | 1.000 | 0.99888 | |
20 | 3.28 | 1.028 | 0.99931 |
Samples | Relative Crystallinities (%) | ||||
---|---|---|---|---|---|
20 | 40 | 60 | 80 | ||
PLA | α | 0.743 | 0.793 | 0.832 | 0.865 |
F(T) | 12.886 | 16.202 | 19.421 | 23.455 | |
PLA/0.1%C@MWCNTs | α | 0.938 | 0.958 | 0.986 | 1.024 |
F(T) | 12.242 | 15.735 | 19.077 | 23.227 | |
PLA/0.3%C@MWCNTs | α | 1.637 | 1.720 | 1.777 | 1.849 |
F(T) | 7.449 | 10.804 | 14.294 | 19.243 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, R.; Chen, Z.; Ouyang, Y.; Lin, X.; Dai, X.; Zhang, S.; Xu, R.; Wang, Z.; Peng, Y. Enhancing the Non-Isothermal Crystallization Kinetics of Polylactic Acid by Incorporating a Novel Nucleating Agent. Polymers 2024, 16, 3204. https://doi.org/10.3390/polym16223204
Jin R, Chen Z, Ouyang Y, Lin X, Dai X, Zhang S, Xu R, Wang Z, Peng Y. Enhancing the Non-Isothermal Crystallization Kinetics of Polylactic Acid by Incorporating a Novel Nucleating Agent. Polymers. 2024; 16(22):3204. https://doi.org/10.3390/polym16223204
Chicago/Turabian StyleJin, Ruijie, Zehong Chen, Yidan Ouyang, Xintu Lin, Xin Dai, Shangxi Zhang, Ruilan Xu, Zhengbao Wang, and Yong Peng. 2024. "Enhancing the Non-Isothermal Crystallization Kinetics of Polylactic Acid by Incorporating a Novel Nucleating Agent" Polymers 16, no. 22: 3204. https://doi.org/10.3390/polym16223204
APA StyleJin, R., Chen, Z., Ouyang, Y., Lin, X., Dai, X., Zhang, S., Xu, R., Wang, Z., & Peng, Y. (2024). Enhancing the Non-Isothermal Crystallization Kinetics of Polylactic Acid by Incorporating a Novel Nucleating Agent. Polymers, 16(22), 3204. https://doi.org/10.3390/polym16223204