The Kinetics of Polymer Brush Growth in the Frame of the Reaction Diffusion Front Formalism
Abstract
:1. Introduction
- (i)
- The chain initiation reaction
- (ii)
- The chain propagation reaction
2. The Model and the Simulation Method
- (i)
- The averaged degree of polymerization
- (ii)
- The weight-averaged degree of polymerization defined asn
- (iii)
- The distribution of the chain length is characterized by the dispersity D that is defined as the ratio .
- (iv)
- The parameter that describes the structure of the entire brush is the mean brush thickness <x>, defined as [87]
3. Results and Discussion
3.1. The Properties of the Obtained Brushes
3.2. Reaction–Diffusion Front
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Teraoka, I. Polymer solutions in confining geometries. Prog. Polym. Sci. 1996, 21, 89–149. [Google Scholar] [CrossRef]
- Chen, W.-L.; Cordero, R.; Tran, H.; Ober, C.K. 50th anniversary perspective: Polymer brushes: Novel surfaces for future materials. Macromolecules 2017, 50, 4089–4113. [Google Scholar] [CrossRef]
- Brittain, W.J.; Minko, S. A structural definition of polymer brushes. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 3505–3512. [Google Scholar] [CrossRef]
- Binder, K.; Milchev, A. Polymer brushes on flat and curved surfaces: How computer simulations can help to test theories and to interpret experiments. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 1515–1555. [Google Scholar] [CrossRef]
- Zhao, B.; Brittain, W.J. Polymer brushes: Surface-immobilized macromolecules. Prog. Polym. Sci. 2000, 25, 677–710. [Google Scholar] [CrossRef]
- Zoppe, J.O.; Ataman, N.C.; Mocny, P.; Wang, J.; Moraes, J.; Klok, H.-A. Surface-initiated controlled radical polymerization: State-of-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem. Rev. 2017, 117, 1105–1318. [Google Scholar] [CrossRef]
- Yan, J.; Bockstaller, M.R.; Matyjaszewski, K. Brush-modified materials: Control of molecular architecture, assembly behavior, properties and applications. Prog. Polym. Sci. 2020, 100, 101180. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Dong, H.; Jakubowski, W.; Pietrasik, J.; Kusumo, A. Grafting from surfaces for “everyone”: ARGET ATRP in the presence of air. Langmuir 2007, 23, 4528–4531. [Google Scholar] [CrossRef]
- Tsuji, Y.; Ohno, K.; Yamamoto, S.; Goto, A.; Fukuda, T. Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. Adv. Polym. Sci. 2006, 197, 1–45. [Google Scholar]
- Khabibullin, A.; Mastan, E.; Matyjaszewski, K.; Zhu, S. Surface-initiated atom transfer radical polymerization. Adv. Polym. Sci. 2016, 270, 29–76. [Google Scholar]
- Milchev, A.; Wittmer, J.P.; Landau, D.P. Formation and equilibrium properties of living polymer brushes. J. Chem. Phys. 2000, 112, 1606–1615. [Google Scholar] [CrossRef]
- Binder, K. Scaling concepts for polymer brushes and their test with computer simulation. Eur. Phys. J. E 2002, 9, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Netz, R.R.; Schick, M. Polymer brushes: From self-consistent field theory to classical theory. Macromolecules 1998, 31, 5105–5122. [Google Scholar] [CrossRef] [PubMed]
- Milner, S.T.; Witten, T.A.; Cates, M.E. Theory of the grafted polymer brush. Macromolecules 1988, 21, 2610–2619. [Google Scholar] [CrossRef]
- Zhulina, E.B.; Borisov, O.V.; Pryamitsyn, V.A.; Birshtein, T.M. Coil globule type transitions in polymers. 1. Collapse of layers of grafted polymer-chains. Macromolecules 1991, 24, 140–149. [Google Scholar] [CrossRef]
- Wittmer, J.; Johner, A.; Joanny, J.F.; Binder, K. Some dynamic properties of grafted polymer layers. Colloids Surf. A 1994, 86, 85–89. [Google Scholar] [CrossRef]
- de Vos, W.M.; Leermakers, F.A.M. Modeling the structure of a polydisperse polymer brush. Polymer 2009, 50, 305–316. [Google Scholar] [CrossRef]
- Matsen, M.W. Field theoretic approach for block polymer melts: SCFT and FTS. J. Chem. Phys. 2020, 152, 110901. [Google Scholar] [CrossRef]
- Milner, S.T. Polymer brushes. Science 1991, 251, 905–914. [Google Scholar] [CrossRef]
- Milner, S.T.; Witten, T.A.; Cates, M.E. Effects of polydispersity in the end-grafted polymer brush. Macromolecules 1989, 22, 853–861. [Google Scholar] [CrossRef]
- Reith, D.; Milchev, A.; Virnau, P.; Binder, K. Computer simulation studies of chain dynamics in polymer brushes. Macromolecules 2012, 45, 4381–4393. [Google Scholar] [CrossRef]
- Deng, B.; Palermo, E.F.; Shi, Y. Comparison of chain-growth polymerization in solution versus on surface using reactive coarse-grained simulations. Polymer 2017, 129, 105–118. [Google Scholar] [CrossRef]
- Elliot, I.G.; Kuhl, T.L.; Faller, R. Molecular simulation study of the structure of high density polymer brushes in good solvent. Macromolecules 2010, 43, 9131–9138. [Google Scholar] [CrossRef]
- Murat, M.; Grest, G.S. Structure of a grafted polymer brush: A molecular dynamics simulation. Macromolecules 1989, 22, 4054–4059. [Google Scholar] [CrossRef]
- Malfreyt, P.; Tildesley, D.J. Dissipative Particle Dynamics simulations of grafted polymer chains between two walls. Langmuir 2000, 16, 4732–4740. [Google Scholar] [CrossRef]
- Pakula, T.; Zhulina, E.B. Computer simulations of polymers in thin layers. II. Structure of polymer melt layers consisting of end-to-end grafted chains. J. Chem. Phys. 1991, 95, 4691–4697. [Google Scholar] [CrossRef]
- Zhulina, E.B.; Pakula, T. Structure of dense polymer layers between end-grafting and end-adsorbing walls. Macromolecules 1992, 25, 754–758. [Google Scholar] [CrossRef]
- Kuznetsov, D.V.; Balazs, A.C. Phase behavior of end-functionalized polymers confined between two surfaces. J. Chem. Phys. 2000, 113, 2479–2483. [Google Scholar] [CrossRef]
- Lai, P.Y.; Binder, K. Structure and dynamics of grafted polymer layers—A Monte Carlo simulation. J. Chem. Phys. 1991, 95, 9288–9299. [Google Scholar] [CrossRef]
- Lai, P.Y.; Binder, K. Structure and dynamics of polymer brushes near the theta point—A Monte Carlo simulation. J. Chem. Phys. 1992, 97, 586–595. [Google Scholar] [CrossRef]
- Stadler, C.; Schmid, F. Phase behavior of grafted chain molecules: Influence of head size and chain length. J. Chem. Phys. 1999, 110, 9697–9705. [Google Scholar] [CrossRef]
- Stadler, C.; Lange, H.; Schmid, F. Short grafted chains: Monte Carlo simulations of a model for monolayers of amphiphiles. Phys. Rev. E 1999, 59, 4248–4257. [Google Scholar] [CrossRef]
- Huang, J.; Jiang, W.; Han, S. Dynamic Monte Carlo simulation on the polymer chain with one end grafted on a flat surface. Macromol. Theory Simul. 2001, 10, 339–342. [Google Scholar] [CrossRef]
- Polanowski, P.; Hałagan, K.; Pietrasik, J.; Jeszka, J.K.; Matyjaszewski, K. Growth of polymer brushes by “grafting from” via ATRP—Monte Carlo simulations. Polymer 2017, 130, 267–279. [Google Scholar] [CrossRef]
- Genzer, J. In silico polymerization: Computer simulation of controlled radical polymerization in bulk and on flat surfaces. Macromolecules 2006, 39, 7157–7169. [Google Scholar] [CrossRef]
- Turgman-Cohen, S.; Genzer, J. Computer simulation of controlled radical polymerization: Effect of chain confinement due to initiator grafting density and solvent quality in “grafting from” method. Macromolecules 2010, 43, 9567–9577. [Google Scholar] [CrossRef]
- Turgman-Cohen, S.; Genzer, J. Computer simulation of concurrent bulk- and surface initiated living polymerization. Macromolecules 2012, 45, 2128–2137. [Google Scholar] [CrossRef]
- Jalili, K.; Abbasi, F.; Milchev, A. Dynamic compression of in situ grown living polymer brush: Simulation and experiment. Macromolecules 2012, 45, 9827–9840. [Google Scholar] [CrossRef]
- Shrivastava, S.; Saha, S.; Singh, A. Dissipative particle dynamics simulation study on ATRP-brush modification of variably shaped surfaces and biopolymer adsorption. Phys. Chem. Chem. Phys. 2022, 24, 17986–18003. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, Y.; Zhang, D.; Zheng, J. Perspectives on theoretical models and molecular simulations of polymer brushes. Langmuir 2024, 40, 1487–1502. [Google Scholar] [CrossRef]
- Hałagan, K.; Banaszak, M.; Jung, J.; Polanowski, P.; Sikorski, A. Dynamics of opposing polymer brushes. A computer simulation study. Polymers 2021, 13, 2758. [Google Scholar] [CrossRef] [PubMed]
- Hałagan, K.; Banaszak, M.; Jung, J.; Polanowski, P.; Sikorski, A. Polymerization and structure of opposing polymer brushes studied by computer simulation. Polymers 2021, 13, 4294. [Google Scholar] [CrossRef] [PubMed]
- Avnir, D.; Kagan, M. Spatial structures generated by chemical reactions at interfaces. Nature 1984, 307, 717–720. [Google Scholar] [CrossRef]
- Dee, G.T. Patterns produced by precipitation at a moving reaction front. Phys. Rev. Lett. 1986, 57, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Henisch, H.K. Periodic Precipitation; Pergamon: Oxford, UK, 1991. [Google Scholar]
- Rice, S.A. Diffusion Limited Reactions; Elsevier: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Ben Avraham, D.; Havlin, S. Diffusion and Reactions in Fractals and Disordered Systems; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Galfi, L.; Racz, Z. Properties of the reaction front in an A + B → C type reaction-diffusion process. Phys. Rev. A 1988, 38, 3151–3154. [Google Scholar] [CrossRef] [PubMed]
- Taitelbaum, H.; Vilensky, B.; Lin, A.L.; Yen, A.; Koo, Y.L.; Kopelman, R. Competing reactions with initially separated components. Phys. Rev. Lett. 1996, 77, 1640–1643. [Google Scholar] [CrossRef]
- Yen, A.; Lin, A.L.; Koo, Y.L.; Vilensky, B.; Taitelbaum, H.; Kopelman, R. Spatiotemporal patterns and nonclassical kinetics of competing elementary reactions: Chromium complex formation with xylenol orange in a capillary. J. Phys. Chem. 1997, 101, 2819–2837. [Google Scholar] [CrossRef]
- Yen, A.; Kopelman, R. Experimental study of a ternary A + 2B → C reaction-diffusion system with a propagating reaction front: Scaling exponents. Phys. Rev. E 1997, 56, 3694–3696. [Google Scholar] [CrossRef]
- Koza, Z. The long-time behavior of initially separated A + B → 0 reaction-diffusion systems with arbitrary diffusion constants. J. Stat. Phys. 1996, 85, 179–191. [Google Scholar] [CrossRef]
- Havlin, S.; Araujo, M.; Larralde, H.; Shehter, A.; Stanley, H.E. Anomalous kinetics in A + B → C with initially-separated reactants. Solitons Fractals 1995, 6, 157–169. [Google Scholar] [CrossRef]
- Araujo, M. Scaling of reaction fronts under quenched disorder. Physica A 1995, 219, 239–245. [Google Scholar] [CrossRef]
- Lee, B.P.; Cardy, J. Scaling of reaction zones in the A + B → 0 diffusion-limited reaction. Phys. Rev. E 1994, 50, R3287–R3290. [Google Scholar] [CrossRef]
- Araujo, M.; Larralde, H.; Havlin, S.; Stanley, H.E. Scaling anomalies in reaction front dynamics of confined systems. Phys. Rev. Lett. 1993, 71, 3592–3595. [Google Scholar] [CrossRef] [PubMed]
- Larralde, H.; Araujo, M.; Havlin, S.; Stanley, H.E. Diffusion-reaction kinetics for A + B (static) → C (inert) for one-dimensional systems with initially separated reactants. Phys. Rev. A 1992, 46, R6121–R6123. [Google Scholar] [CrossRef] [PubMed]
- Bazant, M.Z.; Stone, H.A. Asymptotics of reaction-diffusion fronts with one static and one diffusing reactant. Physica D 2000, 147, 95–121. [Google Scholar] [CrossRef]
- Larralde, H.; Araujo, M.; Havlin, S.; Stanley, H.E. Reaction front for A + B → C diffusion-reaction systems with initially separated reactants. Phys. Rev. A 1992, 46, 855–859. [Google Scholar] [CrossRef]
- Cornell, S.; Droz, M.; Chopard, B. Role of fluctuations for inhomogeneous reaction-diffusion phenomena. Phys. Rev. A 1991, 44, 4826–4832. [Google Scholar] [CrossRef]
- Cornell, S.; Droz, M. Steady-state reaction-diffusion front scaling for mA + nB → [inert]. Phys. Rev. Lett. 1993, 70, 3824–3827. [Google Scholar] [CrossRef]
- Krapivsky, P.L. Diffusion-limited annihilation with initially separated reactants. Phys. Rev. E 1995, 51, 4774–4777. [Google Scholar] [CrossRef]
- Taitelbaum, H.; Koza, Z. Anomalous kinetics of reaction-diffusion fronts. Phil. Mag. B 1998, 77, 1389–1400. [Google Scholar] [CrossRef]
- Taitelbaum, H.; Koo, Y.E.L.; Havlin, S.; Kopelman, R.; Weiss, G.H. Exotic behavior of the reaction front in the A + B → C reaction-diffusion system. Phys. Rev. A 1992, 46, 2151–2154. [Google Scholar] [CrossRef] [PubMed]
- Taitelbaum, H.; Koza, Z. Reaction-diffusion processes: Exotic phenomena in simple systems. Physica A 2000, 285, 166–175. [Google Scholar] [CrossRef]
- Taitelbaum, H.; Yen, A.; Kopelman, R.; Havlin, S.; Weiss, G.H. Effects of bias on the kinetics of A + B → C with initially separated reactants. Phys. Rev. E 1996, 54, 5942–5947. [Google Scholar] [CrossRef]
- Howard, M.; Cardy, J. Fluctuation effects and multiscaling of the reaction-diffusion front for A + B → 0. J. Phys. A 1995, 28, 3599–3621. [Google Scholar] [CrossRef]
- Jiang, Z.; Ebner, C. Simulation study of reaction fronts. Phys. Rev. A 1990, 42, 7483–7486. [Google Scholar] [CrossRef]
- Cornell, S.; Droz, M. Exotic reaction fronts in the steady state. Physica D 1997, 103, 348–356. [Google Scholar] [CrossRef]
- Cornell, S.J. Refined simulations of the reaction front for diffusion-limited two-species annihilation in one dimension. Phys. Rev. E 1995, 51, 4055–4064. [Google Scholar] [CrossRef]
- Chopard, B.; Droz, M. Microscopic Study of the properties of the reaction front in an A + B → C reaction-diffusion process. Europhys. Lett. 1991, 15, 459–464. [Google Scholar] [CrossRef]
- Taitelbaum, H.; Havlin, S.; Kiefer, J.E.; Trus, B.; Weiss, G.H. Some properties of the a + b → C reaction-diffusion system with initially separated components. J. Stat. Phys. 1991, 65, 873–891. [Google Scholar] [CrossRef]
- Lemarchand, A.; Lesne, A.; Perera, A.; Moreau, M.; Mareschal, M. Chemical wave front in two dimensions. Phys. Rev. E 1993, 48, 1568–1571. [Google Scholar] [CrossRef]
- Koza, Z.; Taitelbaum, H. Motion of the reaction front in the A + B → C reaction-diffusion system. Phys. Rev. E 1996, 54, R1040–R1043. [Google Scholar] [CrossRef] [PubMed]
- Koza, Z.; Taitelbaum, H. Reaction-diffusion front in a system with strong quenched disorder. Phys. Rev. E 1997, 56, 6387–6392. [Google Scholar] [CrossRef]
- Polanowski, P.; Koza, Z. Reaction-diffusion fronts in system with concentration dependent diffusivities. Phys. Rev. E 2006, 74, 036103. [Google Scholar] [CrossRef] [PubMed]
- Pakula, T. Simulation on the completely occupied lattices. In Simulation Methods for Polymers; Kotelyanskii, M., Theodorou, D.N., Eds.; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 2004. [Google Scholar]
- Polanowski, P.; Sikorski, A. Simulation of diffusion in a crowded environment. Soft Matter 2014, 10, 3597–3607. [Google Scholar] [CrossRef]
- Pakula, T. Collective dynamics in simple supercooled and polymer liquids. J. Mol. Liq. 2000, 86, 109–121. [Google Scholar] [CrossRef]
- Polanowski, P.; Pakula, T. Studies of polymer conformation and dynamics in two dimensions using simulations based on the Dynamic Lattice Liquid (DLL) model. J. Chem. Phys. 2002, 117, 4022–4029. [Google Scholar] [CrossRef]
- Polanowski, P.; Sikorski, A. The concept of cooperative dynamics in simulations of soft matter. Front. Phys. 2020, 8, 607480. [Google Scholar] [CrossRef]
- Polanowski, P.; Pakula, T. Studies of mobility, interdiffusion, and self-diffusion in two-component mixtures using the dynamic lattice liquid model. J. Chem. Phys. 2003, 118, 11139–11146. [Google Scholar] [CrossRef]
- Polanowski, P.; Pakula, T. Simulation of polymer–polymer interdiffusion using the dynamic lattice liquid model. J. Chem. Phys. 2004, 120, 6306–6311. [Google Scholar] [CrossRef]
- Polanowski, P.; Jeszka, J.K.; Matyjaszewski, K. Polymer brush relaxation during and after polymerization—Monte Carlo simulation study. Polymer 2019, 173, 190–196. [Google Scholar] [CrossRef]
- Polanowski, P.; Jeszka, J.K.; Matyjaszewski, K. Polymer brushes in pores by ATRP: Monte Carlo simulations. Polymer 2020, 211, 123124. [Google Scholar] [CrossRef]
- Polanowski, P.; Sikorski, A. The influence of constraints on gelation in a controlling/living copolymerization process. Int. J. Mol. Sci. 2023, 24, 2701. [Google Scholar] [CrossRef] [PubMed]
- Nickel, B.G. One-parameter recursion model for flexible-chain polymers. Macromolecules 1991, 24, 1358–1366. [Google Scholar] [CrossRef]
Quantity | Short-Time Behavior | Long-Time Behavior |
---|---|---|
R(t) | t1/2 | t−1/2 |
W(t) | t1/2 | t1/6 |
R(xf, t) | const | t−2/3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polanowski, P.; Sikorski, A. The Kinetics of Polymer Brush Growth in the Frame of the Reaction Diffusion Front Formalism. Polymers 2024, 16, 2963. https://doi.org/10.3390/polym16212963
Polanowski P, Sikorski A. The Kinetics of Polymer Brush Growth in the Frame of the Reaction Diffusion Front Formalism. Polymers. 2024; 16(21):2963. https://doi.org/10.3390/polym16212963
Chicago/Turabian StylePolanowski, Piotr, and Andrzej Sikorski. 2024. "The Kinetics of Polymer Brush Growth in the Frame of the Reaction Diffusion Front Formalism" Polymers 16, no. 21: 2963. https://doi.org/10.3390/polym16212963
APA StylePolanowski, P., & Sikorski, A. (2024). The Kinetics of Polymer Brush Growth in the Frame of the Reaction Diffusion Front Formalism. Polymers, 16(21), 2963. https://doi.org/10.3390/polym16212963