Influence of Oligomeric Lactic Acid and Structural Design on Biodegradation and Absorption of PLA-PHB Blends for Tissue Engineering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Samples by 3D Printing
2.2. Degradation Analysis—Simulation of Physiological Processes
2.3. Chemical Analysis of Samples
2.3.1. Atomic Absorption Spectroscopy (AAS)
2.3.2. Scanning Electron Microscopy (SEM)
2.3.3. Energy-Dispersive Spectrometry (EDS)
3. Results
3.1. Degradation Analysis
3.1.1. Measurement of the Effect of Degradation on Changes in pH Values
3.1.2. Comparison of the Weights of the Dried Samples with the Weights of the Samples Before Degradation
3.1.3. Comparison of Wet Sample Weights with Sample Weights Before Degradation
3.1.4. Comparison of Absorption Properties of Materials
3.2. Chemical Analysis of Samples
3.2.1. Atomic Absorption Spectroscopy (AAS)
3.2.2. Scanning Electron Microscopy (SEM)
3.2.3. Energy-Dispersive Spectrometry (EDS)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vach Agocsova, S.; Culenova, M.; Birova, I.; Omanikova, L.; Moncmanova, B.; Danisovic, L.; Ziaran, S.; Bakos, D.; Alexy, P. Resorbable Biomaterials Used for 3D Scaffolds in Tissue Engineering: A Review. Materials 2023, 16, 4267. [Google Scholar] [CrossRef] [PubMed]
- Olejnik, O.; Masek, A.; Zawadziłło, J. Processability and mechanical properties of thermoplastic polylactide/polyhydroxybutyrate (PLA/PHB) bioblends. Materials 2021, 14, 898. [Google Scholar] [CrossRef] [PubMed]
- Surisaeng, J.; Kanabenja, W.; Passornraprasit, N.; Aumnate, C. Polyhydroxybutyrate/polylactic acid blends: An alternative feedstock for 3D printed bone scaffold model. J. Phys. Conf. Ser. 2022, 2175, 012021. [Google Scholar] [CrossRef]
- Saini, P.; Arora, M.; Kumar, M.R. Poly (lactic acid) blends in biomedical applications. Adv. Drug Deliv. Rev. 2016, 107, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Trebuňová, M.; Petroušková, P.; Balogová, A.F.; Ižaríková, G.; Horňak, P.; Bačenková, D.; Demeterová, J.; Živčák, J. Evaluation of biocompatibility of PLA/PHB/TPS polymer scaffolds with different additives of ATBC and OLA plasticizers. J. Funct. Biomater. 2023, 14, 412. [Google Scholar] [CrossRef]
- Chen, G.-Q.; Wu, Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 2005, 26, 6565–6578. [Google Scholar] [CrossRef]
- Bačenková, D.; Trebuňová, M.; Demeterová, J.; Živčák, J. Human Chondrocytes, Metabolism of Articular Cartilage, and Strategies for Application to Tissue Engineering. Int. J. Mol. Sci. 2023, 24, 17096. [Google Scholar] [CrossRef]
- Abdelwahab, M.A.; Flynn, A.; Chiou, B.-S.; Imam, S.; Orts, W.; Chiellini, E. Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polym. Degrad. Stab. 2012, 97, 1822–1828. [Google Scholar] [CrossRef]
- Zhang, M.; Thomas, N.L. Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Adv. Polym. Technol. 2011, 30, 67–79. [Google Scholar] [CrossRef]
- Avolio, R.; Castaldo, R.; Gentile, G.; Ambrogi, V.; Fiori, S.; Avella, M.; Cocca, M.; Errico, M.E. Plasticization of poly (lactic acid) through blending with oligomers of lactic acid: Effect of the physical aging on properties. Eur. Polym. J. 2015, 66, 533–542. [Google Scholar] [CrossRef]
- Arrieta, M.P.; Perdiguero, M.; Fiori, S.; Kenny, J.M.; Peponi, L. Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid. Polym. Degrad. Stab. 2020, 179, 109226. [Google Scholar] [CrossRef]
- Krobot, Š.; Melčová, V.; Menčík, P.; Kontárová, S.; Rampichová, M.; Hedvičáková, V.; Mojžišová, E.; Baco, A.; Přikryl, R. Poly(3-hydroxybutyrate) (PHB) and polycaprolactone (PCL) based blends for tissue engineering and bone medical applications processed by FDM 3D printing. Polymers 2023, 15, 2404. [Google Scholar] [CrossRef] [PubMed]
- Kohan, M.; Lancoš, S.; Schnitzer, M.; Živčák, J.; Hudák, R. Analysis of PLA/PHB biopolymer material with admixture of hydroxyapatite and tricalcium phosphate for clinical use. Polymers 2022, 14, 5357. [Google Scholar] [CrossRef] [PubMed]
- Melčová, V.; Svoradová, K.; Menčík, P.; Kontárová, S.; Rampichová, M.; Hedvičáková, V.; Sovková, V.; Přikryl, R.; Vojtová, L. Fdm 3d printed composites for bone tissue engineering based on plasticized poly (3-hydroxybutyrate)/poly (d, l-lactide) blends. Polymers 2020, 12, 2806. [Google Scholar] [CrossRef] [PubMed]
- Modrák, M.; Trebuňová, M.; Balogová, A.F.; Hudák, R.; Živčák, J. Biodegradable Materials for Tissue Engineering: Development, Classification and Current Applications. J. Funct. Biomater. 2023, 14, 159. [Google Scholar] [CrossRef]
- Gunatillake, P.A.; Adhikari, R.; Gadegaard, N. Biodegradable synthetic polymers for tissue engineering. Eur. Cell Mater. 2003, 5, 1–16. [Google Scholar] [CrossRef]
- Sheikh, Z.; Najeeb, S.; Khurshid, Z.; Verma, V.; Rashid, H.; Glogauer, M. Biodegradable materials for bone repair and tissue engineering applications. Materials 2015, 8, 5744–5794. [Google Scholar] [CrossRef]
- Navarro, M.; Aparicio, C.; Charles-Harris, M.; Ginebra, M.; Engel, E.; Planell, J. Development of a Biodegradable Composite Scaffold for Bone Tissue Engineering: Physicochemical, Topographical, Mechanical, Degradation, and Biological Properties. In Ordered Polymeric Nanostructures at Surfaces; Springer: Berlin/Heidelberg, Germany, 2006; Volume 200, pp. 209–231. [Google Scholar]
- Balogová, A.F.; Trebuňová, M.; Bačenková, D.; Kohan, M.; Hudák, R.; Tóth, T.; Schnitzer, M.; Živčák, J. Impact of in Vitro Degradation on the Properties of Samples Produced by Additive Production from PLA/PHB-Based Material and Ceramics. Polymers 2022, 14, 5441. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Khajepour, M.; Bayati, A.; Mirasadi, K.; Amin Yousefi, M.; Shegeft, A.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; et al. Advancing sustainable shape memory polymers through 4D printing of polylactic acid-polybutylene adipate terephthalate blends. Eur. Polym. J. 2024, 216, 113289. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Soltanmohammadi, K.; Aberoumand, M.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. 4D printing of porous PLA-TPU structures: Effect of applied deformation, loading mode and infill pattern on the shape memory performance. Phys. Scr. 2024, 99, 025013. [Google Scholar] [CrossRef]
- Burgos, N.; Martino, V.P.; Jiménez, A. Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degrad. Stab. 2013, 98, 651–658. [Google Scholar] [CrossRef]
- Chaochanchaikul, K.; Pongmuksuwan, P. Influence of Ozonized Soybean Oil as a Biobased Plasticizer on the Toughness of Polylactic Acid. J. Polym. Environ. 2022, 30, 1095–1105. [Google Scholar] [CrossRef]
- Freier, T.; Kunze, C.; Nischan, C.; Kramer, S.; Sternberg, K.; Saß, M.; Hopt, U.T.; Schmitz, K.-P. In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate). Biomaterials 2002, 23, 2649–2657. [Google Scholar] [CrossRef] [PubMed]
- Barbeck, M.; Serra, T.; Bosoms, P.; Stojanovic, S.; Najman, S.; Engel, E.; Sader, R.; Kirkpatrick, C.J.; Navarro, M.; Ghanaati, S. Analysis of the in vitro degradation and the in vivo tissue response to bi-layered 3D-printed scaffolds combining PLA and biphasic PLA/bioglass components–Guidance of the inflammatory response as basis for osteochondral regeneration. Bioact. Mater. 2017, 2, 208–223. [Google Scholar] [CrossRef]
PLA-PHB 70:30 (MAT 1) | PLA-PHB 70:30 (MAT 2) | PLA-PHB 70:30 (MAT 3) | |
---|---|---|---|
Structure of the materials | Full | Full | Full |
Porous | Porous | Porous | |
The amount of added plasticizer—OLA | 0% | 5% | 10% |
Parameter | Value |
---|---|
Nozzle size | 0.04 mm |
Nozzle temperature | 190 °C |
Platform temperature | 70 °C |
Print speed | 1500 mm/min |
Print time per sample | 2 min |
Component | Quantity (g) | Concentration |
---|---|---|
NaCl (Mw: 58.44 g/mol) | 8.00 | 0.1400 M |
KCl (Mw: 74.55 g/mol) | 0.40 | 0.0050 M |
CaCl2 (Mw: 110.98 g/mol) | 0.14 | 0.0010 M |
MgSO4-7 H2O (Mw: 246.47 g/mol) | 0.10 | 0.0004 M |
MgCl2-6 H2O (Mw: 203.303 g/mol) | 0.10 | 0.0005 M |
Na2HPO4-2 H2O (Mw: 177.99 g/mol) | 0.60 | 0.0003 M |
KH2PO4 (Mw: 136.086 g/mol) | 0.60 | 0.0004 M |
D-glucose (Dextrose) (Mw: 180.156 g/mol) | 1.00 | 0.0060 M |
NaHCO3 (Mw: 84.01 g/mol) | 0.35 | 0.0040 M |
Component | Quantity (g) | Concentration |
---|---|---|
NaCl (Mw: 58.44 g/mol) | 8.000 | 0.1370 M |
KCl (Mw: 74.55 g/mol) | 0.200 | 0.0027 M |
Na2HPO4 (Mw: 141.96 g/mol) | 1.440 | 0.0100 M |
KH2PO4 (Mw: 136.086 g/mol) | 0.245 | 0.0018 M |
Sample | Solution | Time of Interval of Measurement of pH Values (Days) | |||
---|---|---|---|---|---|
30 | 60 | 90 | 120 | ||
MAT 1 | Saline solution | 2.36 | 2.22 | 2.03 | 2.13 |
Hank’s solution | 3.85 | 1.91 | 1.86 | 1.85 | |
Phosphate-buffered saline | 6.09 | 6.13 | 6.27 | 6.33 | |
MAT 2 | Saline solution | 2.49 | 2.09 | 2.04 | 2.08 |
Hank’s solution | 3.97 | 2.63 | 2.41 | 2.29 | |
Phosphate-buffered saline | 6.27 | 6.18 | 6.11 | 6.48 | |
MAT 3 | Saline solution | 2.38 | 2.41 | 2.44 | 2.34 |
Hank’s solution | 4.36 | 2.15 | 1.94 | 2.0 | |
Phosphate-buffered saline | 6.78 | 6.68 | 6.56 | 6.59 |
Solution/Material | MAT 1 | MAT 2 | MAT 3 |
---|---|---|---|
p (A) | 0.05714 | 0.05714 | 0.20000 |
p (B) | 0.6857 | 0.6857 | 0.1143 |
p (C) | 0.1143 | 0.8857 | 0.6857 |
Sample | Compared Solutions A B C | |
---|---|---|
MAT 1 | Solid | p = 0.4374 |
Porous | p = 0.02639 | |
MAT 2 | Solid | p = 0.5836 |
Porous | p = 0.6677 | |
MAT 3 | Solid | p = 0.1229 |
Porous | p = 0.3094 |
Sample | Na [%] | Na [ppm] | K [ppm] | Mg [ppm] | Ca [%] | Ca [ppm] |
---|---|---|---|---|---|---|
Control sample 1 | 0.06 | 600 | BDL 2 | BDL | BDL | BDL |
MAT 1 (A) | 0.27 | 2700 | BDL | BDL | BDL | BDL |
MAT 1 (B) | 0.21 | 2100 | 218 | 555.1 | 0.58 | 5800 |
MAT 1 (C) | 0.44 | 4400 | 730.5 | 602.2 | 0.49 | 4900 |
MAT 2 (A) | 0.26 | 2600 | BDL | BDL | BDL | BDL |
MAT 2 (B) | 0.24 | 2400 | 218 | 210 | 0.24 | 2400 |
MAT 2 (C) | 0.38 | 3800 | 675 | 275 | 0.22 | 2200 |
MAT 3 (A) | 0.21 | 2100 | BDL | BDL | BDL | BDL |
MAT 3 (B) | 0.26 | 2600 | 215.4 | 482.5 | 0.49 | 4900 |
MAT 3 (C) | 0.38 | 3800 | 618.3 | 575.7 | 0.50 | 5000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čajková, J.; Trebuňová, M.; Modrák, M.; Ižaríková, G.; Bačenková, D.; Balint, T.; Živčák, J. Influence of Oligomeric Lactic Acid and Structural Design on Biodegradation and Absorption of PLA-PHB Blends for Tissue Engineering. Polymers 2024, 16, 2969. https://doi.org/10.3390/polym16212969
Čajková J, Trebuňová M, Modrák M, Ižaríková G, Bačenková D, Balint T, Živčák J. Influence of Oligomeric Lactic Acid and Structural Design on Biodegradation and Absorption of PLA-PHB Blends for Tissue Engineering. Polymers. 2024; 16(21):2969. https://doi.org/10.3390/polym16212969
Chicago/Turabian StyleČajková, Jana, Marianna Trebuňová, Marcel Modrák, Gabriela Ižaríková, Darina Bačenková, Tomáš Balint, and Jozef Živčák. 2024. "Influence of Oligomeric Lactic Acid and Structural Design on Biodegradation and Absorption of PLA-PHB Blends for Tissue Engineering" Polymers 16, no. 21: 2969. https://doi.org/10.3390/polym16212969
APA StyleČajková, J., Trebuňová, M., Modrák, M., Ižaríková, G., Bačenková, D., Balint, T., & Živčák, J. (2024). Influence of Oligomeric Lactic Acid and Structural Design on Biodegradation and Absorption of PLA-PHB Blends for Tissue Engineering. Polymers, 16(21), 2969. https://doi.org/10.3390/polym16212969