Flexural Behavior of 3D-Printed Carbon Fiber-Reinforced Nylon Lattice Beams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lattice Parent Material
2.2. Printing Lattice Specimens
2.3. Experimental Testing Set-Up
2.4. Assessment of Crashworthiness Criteria
3. Results and Discussion
3.1. Deformation of the Lattice Beams
3.2. Monolayer Beams: Single Column (ML-SC) and Double Column (ML-DC)
3.3. Triple-Layer Double Column (TL-DC)
3.4. Sandwich Lattice Clusters
4. Conclusions
Proposed Future Considerations
- Material hybridization: In further research, the behavior of the investigated structures for various materials can be included in order to further improve the mechanical properties. The dynamic and impact loading response of the mentioned lattice structures can be considered.
- Environmental factors, including temperature and humidity, should be investigated to assess their impact on the performance of these lattice beams. Also, an investigation of the influence of manufacturing irregularities on the performance of lattice beams would be of great value.
- In order to further the understanding and use of 3D-printed lattice structures in engineering and other high-performance disciplines, these suggestions seek to expand upon the findings of this study.
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbero, E.J.; Turk, M. Experimental Investigation of Beam-Column Behavior of Pultruded Structural Shapes. J. Reinf. Plast. Compos. 2000, 19, 249–265. [Google Scholar] [CrossRef]
- Wu, S.; Shan, Z.; Chen, K.; Zhou, D.; Liang, W.; Wu, X. Bending damage of 3D printing T-beam. J. Phys. Conf. Ser. 2023, 2459, 012141. [Google Scholar] [CrossRef]
- Liu, Y.; Day, M.L. Development of simplified thin-walled beam models for crashworthiness analyses. Int. J. Crashworthiness 2007, 12, 597–608. [Google Scholar] [CrossRef]
- Wu, S.; Shan, Z.; Chen, K.; Wang, S.; Zou, A.; Sun, Q. Bending properties and failure behavior of 3D printed fiber reinforced resin T-beam. Polym. Compos. 2022, 43, 4556–4568. [Google Scholar] [CrossRef]
- Marzbanrad, J.; Alijanpour, M.; Saeid, M. Design and analysis of an automotive bumper beam in low-speed frontal crashes. Thin Walled Struct. 2009, 47, 902–911. [Google Scholar] [CrossRef]
- Najafi, M.; Ahmadi, H.; Liaghat, G.H. Investigation on the flexural properties of sandwich beams with auxetic core. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 61. [Google Scholar] [CrossRef]
- Kim, H.C.; Shin, D.K.; Lee, J.J.; Kwon, J.B. Crashworthiness of aluminum/CFRP square hollow section beam under axial impact loading for crash box application. Compos. Struct. 2014, 112, 1–10. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, C. Numerical and theoretical studies on the oblique lateral collapse of aluminum/CFRP hybrid beams. Compos. Struct. 2022, 300, 116058. [Google Scholar] [CrossRef]
- Nazari, A.R.; Hosseini-Toudeshky, H.; Kabir, M.Z. Experimental investigations on the sandwich composite beams and panels with elastomeric foam core. J. Sandw. Struct. Mater. 2019, 21, 865–894. [Google Scholar] [CrossRef]
- Rong, B.; Wang, L.; Zhang, R. Study on Shear Capacity of Connections with External Stiffening Rings Between Square Steel Tubular Columns and Steel Beams. Adv. Struct. Eng. 2021, 24, 470–483. [Google Scholar] [CrossRef]
- Qi, D.; Yu, H.; Liu, M.; Huang, H.; Xu, S.; Xia, Y.; Qian, G.; Wu, W. Mechanical behaviors of SLM additive manufactured octet-truss and truncated-octahedron lattice structures with uniform and taper beams. Int. J. Mech. Sci. 2019, 163, 105091. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, P.; Zhang, Y.; Wang, F.; Tu, Y.; Ma, Y.; Zhang, C. Design and Optimization of 3D-Printed Variable Cross-Section I-Beams Reinforced with Continuous and Short Fibers. Polymers 2024, 16, 684. [Google Scholar] [CrossRef] [PubMed]
- Kamarian, S.; Teimouri, A.; Alinia, M.; Saber-Samandari, S.; Song, J.I. Machine learning for bending behavior of sandwich beams with 3D-printed core and natural fiber-reinforced composite face sheets. Polym. Compos. 2024, 45, 3043–3054. [Google Scholar] [CrossRef]
- Magnucki, K. Bending of symmetrically sandwich beams and I-beams—Analytical study. Int. J. Mech. Sci. 2019, 150, 411–419. [Google Scholar] [CrossRef]
- Egan, P.; Wang, X.; Greutert, H.; Shea, K.; Wuertz-Kozak, K.; Ferguson, S. Mechanical and Biological Characterization of 3D Printed Lattices. 3D Print. Addit. Manuf. 2019, 6, 73–81. [Google Scholar] [CrossRef]
- Yalçın, M.M. Experimental investigation on energy absorption capability of 3D-printed lattice structures: Effect of strut orientation. Int. Adv. Res. Eng. J. 2024, 8, 69–75. [Google Scholar] [CrossRef]
- Bernard, A.R.; Yalcin, M.M.; ElSayed, M.S.A. Crashworthiness investigations for 3D printed multi-layer multi-topology carbon fiber nylon lattice materials. J. Reinf. Plast. Compos. 2024, 07316844241226834. [Google Scholar] [CrossRef]
- Bernard, A.R.; Yalcin, M.M.; ElSayed, M.S.A. Shape transformers for crashworthiness of additively manufactured engineering resin lattice structures: Experimental and numerical investigations. Mech. Mater. 2024, 190, 104925. [Google Scholar] [CrossRef]
- Lee, G.W.; Kim, T.H.; Yun, J.H.; Kim, N.J.; Ahn, K.H.; Kang, M.S. Strength of Onyx-based composite 3D printing materials according to fiber reinforcement. Front. Mater. 2023, 10, 1183816. [Google Scholar] [CrossRef]
- He, F.; Khan, M. Effects of printing parameters on the fatigue behaviour of 3d-printed abs under dynamic thermo-mechanical loads. Polymers 2021, 13, 2362. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, S. Wearable properties of polylactic acid and thermoplastic polyurethane filaments 3D printed on polyester fabric. J. Ind. Text. 2023, 53, 15280837231166393. [Google Scholar] [CrossRef]
- Ergene, B.; Atlıhan, G.; Pinar, A.M. Experimental and finite element analyses on the vibration behavior of 3D-printed PET-G tapered beams with fused filament fabrication. Multidiscip. Model. Mater. Struct. 2023, 19, 634–651. [Google Scholar] [CrossRef]
- Tancogne-Dejean, T.; Spierings, A.B.; Mohr, D. Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading. Acta Mater. 2016, 116, 14–28. [Google Scholar] [CrossRef]
- Plessis, A.D.; Razavi, S.M.J.; Benedetti, M.; Murchio, S.; Leary, M.; Watson, M.; Bhate, D.; Berto, F. Properties and applications of additively manufactured metallic cellular materials: A review. Prog. Mater. Sci. 2022, 125, 100918. [Google Scholar] [CrossRef]
- Eyercioglu, O.; Tek, E.; Akeloglu, M.A.; Aladag, M. Effect of carbon fiber additive on tensile properties of large scale additive manufactured (LSAM) ABS single wall parts. Int. J. Mater. Eng. Technol. 2023, 6, 79–82. [Google Scholar]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Kahraman, M.F.; Genel, K. Bending performance of the AuxOcta multi-cellular beam structure. Eng. Struct. 2023, 294, 116737. [Google Scholar] [CrossRef]
- Kahraman, M.F.; Genel, K. Effect of angle and thickness of cell wall on bending behavior of auxetic beam. Mater. Today Commun. 2024, 38, 108339. [Google Scholar] [CrossRef]
- Kahraman, M.F.; İriç, S.; Genel, K. Comparative failure behavior of metal honeycomb structures under bending: A finite element-based study. Eng. Fail. Anal. 2024, 157, 107963. [Google Scholar] [CrossRef]
- Eren, Z.; Burnett, C.A.; Wright, D.; Kazancı, Z. Compressive characterisation of 3D printed composite materials using continuous fibre fabrication. Int. J. Lightweight Mater. Manuf. 2023, 6, 494–507. [Google Scholar] [CrossRef]
- Fisher, T.; Almeida, J.H.S.; Falzon, B.G.; Kazancı, Z. Tension and Compression Properties of 3D-Printed Composites: Print Orientation and Strain Rate Effects. Polymers 2023, 15, 1708. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.H.; Chen, Y.; Hu, L.L. Bilinear elastic characteristic of enhanced auxetic honeycombs. Compos. Struct. 2017, 175, 101–110. [Google Scholar] [CrossRef]
- Sivakumar, N.K.; Kaaviya, J.; Palaniyappan, S.; Nandhakumar, G.S.; Prakash, C.; Basavarajappa, S.; Pandiaraj, S.; Hashem, M.I. A machine learning approach for predicting flexural strength of 3D printed hexagon lattice-cored sandwich structures. Mater. Today Commun. 2024, 41, 110230. [Google Scholar] [CrossRef]
- Tabiai, I.; Tkachev, G.; Diehl, P.; Frey, S.; Ertl, T.; Therriault, D.; Lévesque, M. Hybrid image processing approach for autonomous crack area detection and tracking using local digital image correlation results applied to single-fiber interfacial debonding. Eng. Fract. Mech. 2019, 216, 106485. [Google Scholar] [CrossRef]
- Palić, N.; Slavković, V.; Jovanović, Ž.; Živić, F.; Grujović, N. Mechanical behaviour of small load bearing structures fabricated by 3d printing. Appl. Eng. Lett. 2019, 4, 88–92. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, W.; Li, Y.; Yang, W.; Wang, G. Flexural properties and fracture behavior of CF/PEEK in orthogonal building orientation by FDM: Microstructure and mechanism. Polymers 2019, 11, 656. [Google Scholar] [CrossRef]
- Yu, W.; Shi, J.; Sun, L.; Lei, W. Effects of Printing Parameters on Properties of FDM 3D Printed Residue of Astragalus/Polylactic Acid Biomass Composites. Molecules 2022, 27, 7373. [Google Scholar] [CrossRef]
- Amendola, A.; Fabbrocino, F.; Favata, A.; Micheletti, A.; Fraternali, F.; Daraio, C. Experimental and numerical study of wave dynamics in tensegrity columns. In Proceedings of the COMPDYN 2017—6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Athens, Greece, 15–17 June 2017; pp. 4796–4809. [Google Scholar] [CrossRef]
- Pan, Z.B.; Zhou, W.; Zhang, K.; Ma, L.H.; Liu, J. Flexural damage and failure behavior of 3D printed continuous fiber composites by complementary nondestructive testing technology. Polym. Compos. 2022, 43, 2864–2877. [Google Scholar] [CrossRef]
- Mitrović, N.; Golubović, Z.; Mitrović, A.; Travica, M.; Trajković, I.; Milošević, M.; Petrović, A. Influence of Aging on the Flexural Strength of PLA and PLA-X 3D-Printed Materials. Micromachines 2024, 15, 395. [Google Scholar] [CrossRef]
- ASTM C393/C393M-20; Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- ASTM D7249/D7249M-20; Standard Test Method for Facesheet Properties of Sandwich Constructions by Long Beam Flexure. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- Austermann, J.; Redmann, A.J.; Dahmen, V.; Quintanilla, A.L.; Mecham, S.J.; Osswald, T.A. Fiber-reinforced composite sandwich structures by co-curing with additive manufactured epoxy lattices. J. Compos. Sci. 2019, 3, 53. [Google Scholar] [CrossRef]
- Montazeri, A.; Bahmanpour, E.; Safarabadi, M. Three-Point Bending Behavior of Foam-Filled Conventional and Auxetic 3D-Printed Honeycombs. Adv. Eng. Mater. 2023, 25, 2300273. [Google Scholar] [CrossRef]
- Um, H.J.; Lee, J.S.; Shin, J.H.; Kim, H.S. 3D printed continuous carbon fiber reinforced thermoplastic composite sandwich structure with corrugated core for high stiffness/load capability. Compos. Struct. 2022, 291, 115590. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Young’s Modulus, E | 1400 MPa |
45 MPa | |
0.4 | |
1200 kg/m3 |
Parameters | Specifications |
---|---|
Nozzle temperature (°C) | 273 |
Sliced layer thickness (mm) | 0.1 |
Pattern | Solid |
Density | 100% |
Beam Configurations | h (mm) | w (mm) | l (mm) | ||
---|---|---|---|---|---|
Monolayer single column | Uniform | 14 | 10 | 180 | |
Monolayer double column | Uniform | 14 | 20 | 180 | |
Triple-layer double column | Uniform | 34 | 20 | 180 | |
Sandwich | 34 | 20 | 180 |
Specimen Combination | Max Load Capacity LC, (N) | Weight (g) | Energy Absorption EA, (J) | Specific Load Capacity SLC, (N/g) | Specific Energy Absorption SEA, (J/g) | |
---|---|---|---|---|---|---|
ML-SC beams | C1 | 169.4 | 4.63 | 2.03 | 36.59 | 0.44 |
169.0 | 4.63 | 2.00 | 36.50 | 0.43 | ||
170.0 | 4.63 | 2.05 | 36.72 | 0.44 | ||
O1 | 286.7 | 4.70 | 3.11 | 61.00 | 0.66 | |
286.2 | 4.70 | 3.14 | 60.89 | 0.67 | ||
287.0 | 4.70 | 3.09 | 61.06 | 0.66 | ||
ML-DC beams | C2 | 304.1 | 9.06 | 4.12 | 33.57 | 0.45 |
304.0 | 9.06 | 4.10 | 33.55 | 0.45 | ||
304.5 | 9.06 | 4.15 | 33.61 | 0.46 | ||
O2 | 416.1 | 9.13 | 5.49 | 45.58 | 0.60 | |
415.8 | 9.13 | 5.45 | 45.54 | 0.60 | ||
416.3 | 9.13 | 5.51 | 45.60 | 0.60 | ||
TL-DC beams | C3 | 427.4 | 37.49 | 10.86 | 11.40 | 0.29 |
428.0 | 37.49 | 10.89 | 11.42 | 0.29 | ||
426.8 | 37.49 | 10.80 | 11.38 | 0.29 | ||
O3 | 611.3 | 38.27 | 14.99 | 15.97 | 0.39 | |
611.0 | 38.27 | 14.97 | 15.97 | 0.39 | ||
611.5 | 38.27 | 14.98 | 15.98 | 0.39 | ||
Sandwich beams | OCO | 447.7 | 38.03 | 11.26 | 11.77 | 0.30 |
448.1 | 38.03 | 11.20 | 11.78 | 0.29 | ||
447.4 | 38.03 | 11.29 | 11.76 | 0.30 | ||
COC | 466.9 | 37.80 | 12.31 | 12.35 | 0.33 | |
467.3 | 37.80 | 12.28 | 12.36 | 0.32 | ||
466.5 | 37.80 | 12.36 | 12.34 | 0.33 |
Specimen Combination | EA (J) | EA (Per Column) (J) | Differ. (%) | EA (Per Layer) (J) | Differ. (%) | |
---|---|---|---|---|---|---|
SL-SC | C1 | 2.26 | 2.26 | 0 | NA | NA |
O1 | 3.45 | 3.45 | 0 | NA | NA | |
SL-DC | C2 | 4.12 | 2.06 | −9 | 4.12 | 0 |
O2 | 5.49 | 2.75 | −20 | 5.49 | 0 | |
TL-DC | C3 | 10.86 | 1.81 | −19 | 3.62 | −12 |
O3 | 14.99 | 2.50 | −27 | 5.00 | −9 | |
OCO | 11.26 | 1.88 | −45 | 3.75 | −32 | |
COC | 12.31 | 2.05 | −9 | 4.10 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yalçın, M.M. Flexural Behavior of 3D-Printed Carbon Fiber-Reinforced Nylon Lattice Beams. Polymers 2024, 16, 2991. https://doi.org/10.3390/polym16212991
Yalçın MM. Flexural Behavior of 3D-Printed Carbon Fiber-Reinforced Nylon Lattice Beams. Polymers. 2024; 16(21):2991. https://doi.org/10.3390/polym16212991
Chicago/Turabian StyleYalçın, Muhammet Muaz. 2024. "Flexural Behavior of 3D-Printed Carbon Fiber-Reinforced Nylon Lattice Beams" Polymers 16, no. 21: 2991. https://doi.org/10.3390/polym16212991
APA StyleYalçın, M. M. (2024). Flexural Behavior of 3D-Printed Carbon Fiber-Reinforced Nylon Lattice Beams. Polymers, 16(21), 2991. https://doi.org/10.3390/polym16212991