In Situ Fluorescent Visualization of the Interfacial Layer of Induced Crystallization in Polyvinyl Chloride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PVC Samples
2.2.1. Preparation of PVC Films Containing Nucleating Agents with Different SMA Contents
2.2.2. Preparation of PVC Strips with Different SP6% Contents
2.2.3. Preparation of PVC Films with Different SPP Contents
2.2.4. Preparation of Fluorescent PVC Films with SPP and Naphthylimide-C12
3. Results and Discussion
3.1. Induced Crystallization of PVC by SP
3.2. Mechanical Properties and Thermal Stability of PVC Containing SP
3.3. Visual Observation of the Induced Crystallization of PVC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, N.L.; Harvey, R.J. Formulating rigid PVC to optimise flame retardancy and smoke suppression. Polym. Polym. Compos. 1999, 7, 545–553. [Google Scholar] [CrossRef]
- Guo, Y.; Ozaydin, M.F.; Wang, D.; Liang, H. Friction heating and effect on tribological properties of soft polyvinyl chloride sliding against steel. Eur. Polym. J. 2018, 106, 85–91. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, P.; Wai, P.T.; Gao, X.; Feng, S.; Lu, M.; Zhang, P.; Leng, Y.; Song, Q.; Zhao, Y. Highly stable and highly stretchable poly (vinyl chloride)-based plastics prepared by adding novel green oligomeric lactate plasticizers. J. Appl. Polym. Sci. 2022, 139, e53109. [Google Scholar] [CrossRef]
- Sorolla-Rosario, D.; Llorca-Porcel, J.; Pérez-Martínez, M.; Lozano-Castelló, D.; Bueno-López, A. Study of microplastics with semicrystalline and amorphous structure identification by TGA and DSC. J. Environ. Chem. Eng. 2022, 10, 106886. [Google Scholar] [CrossRef]
- Obande, O.P.; Gilbert, M. Crystallinity changes during PVC processing. J. Appl. Polym. Sci. 1989, 37, 1713–1726. [Google Scholar] [CrossRef]
- Xu, Z.; Kolapkar, S.S.; Zinchik, S.; Bar-Ziv, E.; McDonald, A.G. Comprehensive kinetic study of thermal degradation of polyvinylchloride (PVC). Polym. Degrad. Stabil. 2020, 176, 109148. [Google Scholar] [CrossRef]
- Luo, W.; Yang, Y.; Han, Y.; Weng, Y.; Zhang, C. Synergistic effect of thermal stabilization and plasticization of epoxidized cardanol esters on PVC. J. Polym. Environm. 2023, 31, 5126–5136. [Google Scholar] [CrossRef]
- Borukaev, T.A.; Kharaev, A.M.; Shaov, A.K.; Salamov, A.K.; Borodulin, A.S. Influence of a mixture of calcium and zinc stearates on the thermal and mechanical properties of PVC plastic. J. Phys. Conf. Ser. 2021, 1990, 012040. [Google Scholar] [CrossRef]
- Wang, X.; Di, C.; Wang, T. Effect of different tin neodecanoate and calcium–zinc heat stabilizers on the thermal stability of PVC. e-Polymers 2023, 23, 20230029. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, L.; Lu, S.; Yao, S.; Chen, S.; He, H.; Ma, M.; Wang, X. A new organic zinc thermal stabilizer containing two kinds of anions with excellent thermal stability on polyvinyl chloride by multistep substitution. J. Appl. Polym. Sci. 2023, 140, e53960. [Google Scholar] [CrossRef]
- Putrawan, I.A.; Azharuddin, A. Valorization of palm oil refining by-product for organotin mercaptide as a polyvinyl chloride thermal stabilizer: Synthesis, efficacy and comparison to mixed metal stearate. J. Bioresour. Bioprod. 2024, 9, 565–576. [Google Scholar] [CrossRef]
- Ravi, N.; Teotia, M.; Soni, R.K. Para-aminobenzoate ester zinc complexes as multifunctional additives for improvement of physico-chemical properties of PVC. J. Polym. Res. 2024, 31, 164. [Google Scholar] [CrossRef]
- Xu, F.; He, X.; Hou, Z.; Yang, X.; Cao, X. A novel coal gangue thermal stabilizer and its effect on thermal stability and mechanical properties of poly (vinyl chloride). J. Vinyl Addit. Techn. 2022, 28, 553–566. [Google Scholar] [CrossRef]
- Xu, Y.; Xiong, Y.; Guo, S. Effect of liquid plasticizers on crystallization of PCL in soft PVC/PCL/plasticizer blends. J. Appl. Polym. Sci. 2019, 137, 48803. [Google Scholar] [CrossRef]
- Nguyen-Tri, P.; Carriere, P.; Duong, A.; Nanda, S. Graphene oxide-induced interfacial transcrystallization of single-fiber milkweed/polycaprolactone/polyvinylchloride composites. ACS Omega 2020, 5, 22430–22439. [Google Scholar] [CrossRef]
- Alshammari, A.H.; Alshammari, K.; Alshammari, M.; Taha, T.A.M. Structural and optical characterization of gC3N4 nanosheet integrated PVC/PVP polymer nanocomposites. Polymers 2023, 15, 871. [Google Scholar] [CrossRef]
- Li, X.; Liu, H.; Tong, X.; Dai, S.; Zhang, J.; Li, W. Charged polymeric additives affect the nucleation of lysozyme crystals. CrystEngComm 2019, 21, 1992–2001. [Google Scholar] [CrossRef]
- Jiang, G.; Wang, H.; Yu, L.; Li, H. Improving crystallization properties of PBSA by blending PBS as a polymeric nucleating agent to prepare high-performance PPC/PBSA/AX8900 blown films. Polym. Eng. Sci. 2022, 62, 1166–1177. [Google Scholar] [CrossRef]
- Yao, H.; Li, W.; Zeng, Z.; Wang, T.; Zhu, J.; Lin, Z. Non-isothermal crystallization kinetics of poly (phthalazinone ether sulfone)/MC nylon 6 in-situ composites. Iran. Polym. J. 2022, 31, 869–882. [Google Scholar] [CrossRef]
- He, X.; Guo, F.; Tang, K.; Ge, T. Crystallization kinetics of modified nanocellulose/monomer casting nylon composites. Polymers 2023, 15, 719. [Google Scholar] [CrossRef]
- Dong, L.; Xiong, C.; Wang, T.; Liu, D.; Lu, S.; Wang, Y. Preparation and properties of compatibilized PVC/SMA-g-PA6 blends. J. Appl. Polym. Sci. 2004, 94, 432–439. [Google Scholar] [CrossRef]
- Li, Y.; Liao, T.; Liu, T.; Wang, J.; Sun, Z.; Zhao, M.; Deng, X.; Zhao, Q. Effect of stearic and oleic acid-based lipophilic emulsifiers on the crystallization of the fat blend and the stability of whipped cream. Food Chem. 2023, 428, 136762. [Google Scholar] [CrossRef] [PubMed]
- Orodepo, G.O.; Gowd, B.E.; Ramakrishnan, S. Periodically spaced side-chain liquid crystalline polymers. Macromolecules 2020, 53, 8775–8786. [Google Scholar] [CrossRef]
- Durand, P.; Zeng, H.; Jismy, B.; Boyron, O.; Heinrich, B.; Herrmann, L.; Bardagot, O.; Moutsios, I.; Mariasevskaia, A.V.; Melnikov, A.P.; et al. Controlling conjugated polymer morphology by precise oxygen position in single-ether side chains. Mater. Horiz. 2024, 11, 4737–4746. [Google Scholar] [CrossRef]
- Zhang, C.; Pan, H.; Zhou, Y. Chain-folding of alternating copolymers to achieve main-chain alkyl chain crystallization with minimum six carbon atoms. Macromolecules 2023, 56, 7870–7878. [Google Scholar] [CrossRef]
- Lin, X.; Fan, L.; Ren, D.; Jiao, Z.; Coates, P.; Yang, W. Enhanced dielectric properties of immiscible poly (vinylidene fluoride)/low density polyethylene blends by inducing multilayered and orientated structures. Compos. Part B Eng. 2017, 114, 58–68. [Google Scholar] [CrossRef]
- Lin, Y.; Raut, A.; Fang, Y.; Yin, Y.; Sprouster, D.; Li, T.; Freychet, G.; Zhernenkov, C.; Nitodas, S.; Sokolov, J.; et al. Application of the core shell model for strengthening polymer filament interfaces. J. Mater. Res. Technol. 2022, 21, 3025–3037. [Google Scholar] [CrossRef]
- Sharma, A.; Campbell, A.; Leoni, J.; Cheng, Y.T.; Mullner, M.; Lakhwani, G. Circular intensity differential scattering reveals the internal structure of polymer fibrils. J. Phys. Chem. Lett. 2019, 10, 7547–7553. [Google Scholar] [CrossRef]
- Cao, X.; Fan, H. Formation of DA conjugated polymer crystals: Diffusion and conformational transition theory. Polymer 2022, 243, 124606. [Google Scholar] [CrossRef]
- Ono, Y.; Kumaki, J. In situ real-time observation of polymer folded-chain crystallization by atomic force microscopy at the molecular level. Macromolecules 2018, 51, 7629–7636. [Google Scholar] [CrossRef]
- Deshmukh, K.; Khatake, S.M.; Joshi, G.M. Surface properties of graphene oxide reinforced polyvinyl chloride nanocomposites. J. Polym. Res. 2013, 20, 286. [Google Scholar] [CrossRef]
- Fuhrich, A.; Paier, J.; Tosoni, S.; Leandro Lewandowski, A.; Gura, L.; Schneider, W.D.; Pacchioni, G.; Freund, H.J. Mixed germania-silica films on Ru (0001): A combined experimental and theoretical study. Isr. J. Chem. 2023, 63, e202300005. [Google Scholar] [CrossRef]
- Skorjanc, T.; Shetty, D.; Valant, M. Covalent organic polymers and frameworks for fluorescence-based sensors. ACS Sens. 2021, 6, 1461–1481. [Google Scholar] [CrossRef]
- Huang, L.; Gu, Z.; Gu, J.; Zhang, F.; Zhuang, J.; Ma, Q.; Zhang, T.; Li, J.; Liu, H.; Feng, W. Green synthesis of sodium pyrithione salt-activated biomass-derived carbon for aqueous zinc-ion capacitors. Green Chem. 2024, 26, 10196–10204. [Google Scholar] [CrossRef]
- Zhou, L.; Zheng, L.; Yu, X.; Gao, M.; Xu, C.; Ge, Y.; Bai, T.; Wen, J.; Cheng, Y.; Zhu, M. Confinement fluorescence effect of an aggregation-induced emission luminogen in crystalline polymer. Aggregate 2023, 4, e338. [Google Scholar] [CrossRef]
- An, Z.; Shan, T.; He, H.; Ma, M.; Shi, Y.; Chen, S.; Wang, X. Contradiction or unity? Thermally stable fluorescent probe for in situ fast identification of self-sort or co-assembly of multicomponent gelators with sensitive properties. ACS Appl. Mater. Interfaces 2021, 13, 8774–8781. [Google Scholar] [CrossRef]
- An, Z.; Liu, R.; Liu, J.; Du, J.; Chen, S.; Wang, X.; Sheng, Z.; Liu, H. Monomer emission mechanism research of tetraphenylethene derivative with supramolecular self-Assembly in polymer microspheres. Langmuir 2023, 39, 12153–12158. [Google Scholar] [CrossRef] [PubMed]
- Ohta, S.; Kajiyama, T.; Takayanagi, M. Annealing effect on the microstructure of poly (vinyl chloride). Polym. Eng. Sci. 2004, 16, 465–472. [Google Scholar] [CrossRef]
- Benhamou, M.; Himmi, M.; Kaidi, H. Induced force between colloidal particles with end-grafted polydisperse polymer chains: The role of the grafting mode. J. Mol. Liq. 2017, 230, 337–343. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Roh, S.; Nguyen, M.T.N.; Nam, Y.; Kim, D.-J.; Lim, B.; Yoon, Y.S.; Lee, J.S. Synthesis of a copolymer with a dynamic disulfide network and its application to a lithium-ion capacitor polymer electrolyte. Chem. Eng. J. 2024, 497, 154430. [Google Scholar] [CrossRef]
- Salmoria, G.V.; Lauth, V.R.; Cardenuto, M.R.; Magnago, R.F. Characterization of PA12/PBT specimens prepared by selective laser sintering. Opt. Laser Technol. 2018, 98, 92–96. [Google Scholar] [CrossRef]
- Abdel-Naby, A.S.; Al-Ghamdi, A.A. Chemical modification of cellulose acetate by N-(phenyl amino) maleimides: Characterization and properties. Int. J. Polym. Anal. Ch. 2020, 25, 8–17. [Google Scholar] [CrossRef]
- Ahmadi, H.; Heugten, P.M.H.; Veber, A.; Puskar, L.; Anderson, P.H.; Cardinaels, R. Toughening Immiscible Polymer Blends: The Role of Interface-Crystallization-Induced Compatibilization Explored Through Nanoscale Visualization. ACS Appl. Mater. Interfaces 2024, 16, 59174–59187. [Google Scholar] [CrossRef]
- Kollár, J.; Hrdlovič, P.; Chmela, Š.; Sarakha, M.; Guyot, G. Synthesis and transient absorption spectra of derivatives of 1,8-naphthalic anhydrides and naphthalimides containing 2,2,6,6-tetramethylpiperidine; triplet route of deactivation. J. Photoch. Photobio. A. 2005, 170, 151–159. [Google Scholar] [CrossRef]
- Ma, N.; Liu, W.; Ma, L.; He, S.; Liu, H.; Zhang, Z.; Sun, A.; Huang, M.; Zhu, C. Crystal transition and thermal behavior of nylon 12. e-Polymers 2020, 20, 346–352. [Google Scholar] [CrossRef]
- Zou, J.; Su, L.; You, F.; Chen, G.; Guo, S. Dynamic rheological behavior and microcrystalline structure of dioctyl phthalate plasticized poly(vinyl chloride). J. Appl. Polym. Sci. 2011, 121, 1725–1733. [Google Scholar] [CrossRef]
- Song, X.; Zhou, R.; Wu, Z.; Kang, J. Exploring the effects of stereo-defect distribution on the crystallization kinetics of isotactic polypropylene/cellulose nanocrystals composites. Soft Mater. 2019, 17, 375–382. [Google Scholar] [CrossRef]
- Wang, C.; Sumida, A.; Adachi, Y.; Imoto, H.; Naka, K.; Ohshita, J. Group 15 element (As, Sb, Bi)-substituted bibenzofurans with noncovalent conformational locks for enhanced planarity. Organometallics 2023, 42, 3397–3404. [Google Scholar] [CrossRef]
- Qi, L.; Zhu, Q.; Cao, D.; Liu, T.; Zhu, K.R.; Chang, K.; Gao, Q. Preparation and properties of stereocomplex of poly(lactic acid) and its amphiphilic copolymers containing glucose groups. Polymers 2020, 12, 760. [Google Scholar] [CrossRef]
Samples | PA12 | SP3% | SP6% | SP9% | SP12% | SPP |
---|---|---|---|---|---|---|
PVC | / | / | / | / | / | / |
PVC-1.5phrPA12 | 1.50 phr | / | / | / | / | / |
PVC-1.5phrSP3% | / | 1.50 phr | / | / | / | / |
PVC-1.5phrSP6% | / | / | 1.50 phr | / | / | / |
PVC-1.5phrSP9% | / | / | / | 1.50 phr | / | |
PVC-1.5phrSP12% | / | / | / | / | 1.50 phr | / |
PVC-0.75phrSP6% | / | / | 0.75 phr | / | / | / |
PVC-1.5phrSP6% | / | / | 1.50 phr | / | / | / |
PVC-2.25phrSP6% | / | / | 2.25 phr | / | / | / |
PVC-3phrSP6% | / | / | 3.00 phr | / | / | / |
PVC-3.75phrSP6% | / | / | 3.75 phr | / | / | / |
PVC-0.75phrSPP | / | / | / | / | / | 0.75 phr |
PVC-1.5phrSPP | / | / | / | / | / | 1.50 phr |
Sample | Tm2/°C | Tm1/°C | ΔHm2/J·g−1 | ΔHm1/J·g−1 | |
---|---|---|---|---|---|
PVC | 146.2 | 188.5 | 1.5 | 0.9 | 4.6% |
PVC-1.5phrPA12 | 167.0 | 193.0 | 2.7 | 2.5 | 9.9% |
PVC-1.5phrSP3% | 163.1 | 191.8 | 2.8 | 2.8 | 10.7% |
PVC-1.5phrSP6% | 161.5 | 191.5 | 3.1 | 3.2 | 11.6% |
PVC-1.5phrSP9% | 161.0 | 190.9 | 2.5 | 2.8 | 10.1% |
PVC-1.5phrSP12% | 163.0 | 189.8 | 2.4 | 2.3 | 9.0% |
Sample | Tm2/°C | Tm1/°C | ΔHm2/J·g−1 | ΔHm1/J·g−1 | cc |
---|---|---|---|---|---|
PVC | 146.2 | 188.5 | 1.5 | 0.9 | 4.6% |
PVC-0.75phrSP6% | 146.7 | 189.9 | 1.6 | 3.0 | 8.8% |
PVC-1.5phrSP6% | 161.5 | 191.5 | 3.1 | 3.1 | 11.7% |
PVC-2.25phrSP6% | 162.5 | 192.7 | 4.4 | 3.6 | 15.1% |
PVC-3phrSP6% | 164.2 | 192.0 | 2.6 | 1.8 | 8.2% |
PVC-3.75phrSP6% | 167.1 | 193.9 | 3.5 | 2.1 | 10.3% |
Sample | λabs/nm | λem/nm | λabs-CLSM/nm | λem-CLSM/nm |
---|---|---|---|---|
SPP | 300–480 | 420–490 | 405 | 370–470 |
Naphthalimide-C12 | 380–500 | 500–600 | 488 | 500–600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, Z.; Liu, R.; Dai, Z.; Liu, J.; Du, J.; Sheng, Z.; Liu, H. In Situ Fluorescent Visualization of the Interfacial Layer of Induced Crystallization in Polyvinyl Chloride. Polymers 2024, 16, 3147. https://doi.org/10.3390/polym16223147
An Z, Liu R, Dai Z, Liu J, Du J, Sheng Z, Liu H. In Situ Fluorescent Visualization of the Interfacial Layer of Induced Crystallization in Polyvinyl Chloride. Polymers. 2024; 16(22):3147. https://doi.org/10.3390/polym16223147
Chicago/Turabian StyleAn, Zhihang, Renping Liu, Zhenhao Dai, Jiaping Liu, Jiaying Du, Zhongyi Sheng, and Heyang Liu. 2024. "In Situ Fluorescent Visualization of the Interfacial Layer of Induced Crystallization in Polyvinyl Chloride" Polymers 16, no. 22: 3147. https://doi.org/10.3390/polym16223147
APA StyleAn, Z., Liu, R., Dai, Z., Liu, J., Du, J., Sheng, Z., & Liu, H. (2024). In Situ Fluorescent Visualization of the Interfacial Layer of Induced Crystallization in Polyvinyl Chloride. Polymers, 16(22), 3147. https://doi.org/10.3390/polym16223147